Files
swift-mirror/lib/SIL/IR/SILValue.cpp

612 lines
20 KiB
C++

//===--- SILValue.cpp - Implementation for SILValue -----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/Assertions.h"
#include "swift/SIL/SILValue.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuiltinVisitor.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SIL/Test.h"
#include "llvm/ADT/StringSwitch.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Check SILNode Type Properties
//===----------------------------------------------------------------------===//
/// These are just for performance and verification. If one needs to make
/// changes that cause the asserts the fire, please update them. The purpose is
/// to prevent these predicates from changing values by mistake.
//===----------------------------------------------------------------------===//
// Check SILValue Type Properties
//===----------------------------------------------------------------------===//
/// These are just for performance and verification. If one needs to make
/// changes that cause the asserts the fire, please update them. The purpose is
/// to prevent these predicates from changing values by mistake.
static_assert(std::is_standard_layout<SILValue>::value,
"Expected SILValue to be standard layout");
static_assert(sizeof(SILValue) == sizeof(uintptr_t),
"SILValue should be pointer sized");
//===----------------------------------------------------------------------===//
// Utility Methods
//===----------------------------------------------------------------------===//
void ValueBase::replaceAllUsesWith(ValueBase *RHS) {
assert(this != RHS && "Cannot RAUW a value with itself");
while (!use_empty()) {
Operand *Op = *use_begin();
Op->set(RHS);
}
}
void ValueBase::replaceAllUsesWithUndef() {
auto *F = getFunction();
if (!F) {
llvm_unreachable("replaceAllUsesWithUndef can only be used on ValueBase "
"that have access to the parent function.");
}
while (!use_empty()) {
Operand *Op = *use_begin();
Op->set(SILUndef::get(F, Op->get()->getType()));
}
}
void ValueBase::replaceAllTypeDependentUsesWith(ValueBase *RHS) {
SmallVector<Operand *, 4> typeUses(getTypeDependentUses());
for (Operand *use : typeUses) {
use->set(RHS);
}
}
SILInstruction *ValueBase::getDefiningInstruction() {
if (auto *inst = dyn_cast<SingleValueInstruction>(this))
return inst;
if (auto *result = dyn_cast<MultipleValueInstructionResult>(this))
return result->getParent();
return nullptr;
}
SILInstruction *ValueBase::getDefiningInstructionOrTerminator() {
if (auto *inst = dyn_cast<SingleValueInstruction>(this))
return inst;
if (auto *result = dyn_cast<MultipleValueInstructionResult>(this))
return result->getParent();
if (auto *result = SILArgument::isTerminatorResult(this))
return result->getSingleTerminator();
return nullptr;
}
SILInstruction *ValueBase::getDefiningInsertionPoint() {
if (auto *inst = getDefiningInstruction())
return inst;
if (auto *arg = dyn_cast<SILArgument>(this))
return &*arg->getParentBlock()->begin();
return nullptr;
}
SILInstruction *ValueBase::getNextInstruction() {
if (auto *inst = getDefiningInstruction())
return &*std::next(inst->getIterator());
if (auto *arg = dyn_cast<SILArgument>(this))
return &*arg->getParentBlock()->begin();
return nullptr;
}
std::optional<ValueBase::DefiningInstructionResult>
ValueBase::getDefiningInstructionResult() {
if (auto *inst = dyn_cast<SingleValueInstruction>(this))
return DefiningInstructionResult{inst, 0};
if (auto *result = dyn_cast<MultipleValueInstructionResult>(this))
return DefiningInstructionResult{result->getParent(), result->getIndex()};
return std::nullopt;
}
bool SILPhiArgument::isLexical() const {
if (!isPhi())
return false;
// FIXME: Cache this on the node.
// Does there exist an incoming value which is lexical?
//
// Invert the condition to "is every incoming value non-lexical?" in order to
// stop visiting incoming values once one lexical value is
// found--visitTransitiveIncomingPhiOperands stops once false is returned
// from it.
auto isEveryIncomingValueNonLexical =
visitTransitiveIncomingPhiOperands([&](auto *, auto *operand) {
auto value = operand->get();
SILPhiArgument *phi = dyn_cast<SILPhiArgument>(value);
if (phi && phi->isPhi()) {
return true;
}
// If this non-phi incoming value is lexical, then there is one at least
// one lexical value incoming to this phi, to it's lexical.
return !value->isLexical();
});
return !isEveryIncomingValueNonLexical;
}
bool ValueBase::isLexical() const {
if (auto *argument = dyn_cast<SILFunctionArgument>(this))
return argument->getLifetime().isLexical();
auto *phi = dyn_cast<SILPhiArgument>(this);
if (phi && phi->isPhi())
return phi->isLexical();
if (auto *bbi = dyn_cast<BeginBorrowInst>(this))
return bbi->isLexical();
if (auto *mvi = dyn_cast<MoveValueInst>(this))
return mvi->isLexical();
// TODO: This is only a workaround. Optimizations should look through such instructions to
// get the isLexical state, instead of doing it here.
// rdar://143577158
if (auto *eilr = dyn_cast<EndInitLetRefInst>(this))
return eilr->getOperand()->isLexical();
return false;
}
namespace swift::test {
// Arguments:
// - value
// Dumps:
// - value
// - whether it's lexical
static FunctionTest IsLexicalTest("is_lexical", [](auto &function,
auto &arguments,
auto &test) {
auto value = arguments.takeValue();
auto isLexical = value->isLexical();
value->print(llvm::outs());
auto *boolString = isLexical ? "true" : "false";
llvm::outs() << boolString << "\n";
});
} // end namespace swift::test
bool ValueBase::isGuaranteedForwarding() const {
if (getOwnershipKind() != OwnershipKind::Guaranteed) {
return false;
}
// NOTE: canOpcodeForwardInnerGuaranteedValues returns true for transformation
// terminator results.
if (canOpcodeForwardInnerGuaranteedValues(this) ||
isa<SILFunctionArgument>(this)) {
return true;
}
// If not a phi, return false
auto *phi = dyn_cast<SILPhiArgument>(this);
if (phi && phi->isPhi()) {
return phi->isGuaranteedForwarding();
}
return isBorrowAccessorResult();
}
bool ValueBase::isBeginApplyToken() const {
auto *result = isaResultOf<BeginApplyInst>(this);
if (!result)
return false;
return result->isBeginApplyToken();
}
bool ValueBase::isBorrowAccessorResult() const {
auto *apply = dyn_cast_or_null<ApplyInst>(getDefiningInstruction());
if (!apply)
return false;
if (apply->getSubstCalleeConv().funcTy->getNumResults() != 1) {
return false;
}
auto resultConvention =
apply->getSubstCalleeConv().funcTy->getSingleResult().getConvention();
return resultConvention == ResultConvention::Guaranteed ||
resultConvention == ResultConvention::GuaranteedAddress;
}
bool ValueBase::hasDebugTrace() const {
for (auto *op : getUses()) {
if (auto *debugValue = dyn_cast<DebugValueInst>(op->getUser())) {
if (debugValue->hasTrace())
return true;
}
}
return false;
}
bool ValueBase::isFromVarDecl() {
if (auto *mvi = dyn_cast<MoveValueInst>(this)) {
return mvi->isFromVarDecl();
}
if (auto *bbi = dyn_cast<BeginBorrowInst>(this)) {
return bbi->isFromVarDecl();
}
return false;
}
SILBasicBlock *SILNode::getParentBlock() const {
if (auto *Inst = dyn_cast<SILInstruction>(this))
return Inst->getParent();
if (auto *Arg = dyn_cast<SILArgument>(this))
return Arg->getParent();
if (auto *MVR = dyn_cast<MultipleValueInstructionResult>(this)) {
return MVR->getParent()->getParent();
}
if (auto *undef = dyn_cast<SILUndef>(this)) {
// By convention, undefs are considered to be defined at the entry of the function.
return undef->getParent()->getEntryBlock();
}
return nullptr;
}
SILFunction *SILNode::getFunction() const {
if (auto *parentBlock = getParentBlock()) {
// This can return nullptr if the block's parent is a global variable
// initializer.
if (auto *parentFunction = parentBlock->getParent()) {
return parentFunction;
}
}
if (auto *undef = dyn_cast<SILUndef>(this))
return undef->getParent();
if (auto *placeHolder = dyn_cast<PlaceholderValue>(this))
return placeHolder->getParent();
return nullptr;
}
SILModule *SILNode::getModule() const { return &getFunction()->getModule(); }
/// Get a location for this value.
SILLocation SILValue::getLoc() const {
if (auto *instr = Value->getDefiningInstruction())
return instr->getLoc();
if (auto *arg = dyn_cast<SILArgument>(*this)) {
if (arg->getDecl())
return RegularLocation(const_cast<ValueDecl *>(arg->getDecl()));
}
// TODO: bbargs should probably use one of their operand locations.
return Value->getFunction()->getLocation();
}
void SILValue::dump() const {
Value->dump();
}
//===----------------------------------------------------------------------===//
// OwnershipKind
//===----------------------------------------------------------------------===//
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
const OwnershipKind &kind) {
return os << kind.asString();
}
StringRef OwnershipKind::asString() const {
switch (value) {
case OwnershipKind::Any:
return "any";
case OwnershipKind::Unowned:
return "unowned";
case OwnershipKind::Owned:
return "owned";
case OwnershipKind::Guaranteed:
return "guaranteed";
case OwnershipKind::None:
return "none";
}
llvm_unreachable("covered switch");
}
//===----------------------------------------------------------------------===//
// ValueOwnershipKind
//===----------------------------------------------------------------------===//
ValueOwnershipKind::ValueOwnershipKind(const SILFunction &F, SILType Type,
SILArgumentConvention Convention)
: ValueOwnershipKind(F, Type, Convention,
SILModuleConventions(F.getModule())) {}
ValueOwnershipKind::ValueOwnershipKind(const SILFunction &F, SILType Type,
SILArgumentConvention Convention,
SILModuleConventions moduleConventions)
: value(OwnershipKind::Any) {
// Trivial types can be passed using a variety of conventions. They always
// have trivial ownership.
if (Type.isTrivial(F)) {
value = OwnershipKind::None;
return;
}
switch (Convention) {
case SILArgumentConvention::Indirect_In_CXX:
case SILArgumentConvention::Indirect_In_Guaranteed:
value = moduleConventions.isTypeIndirectForIndirectParamConvention(
Type.getASTType())
? OwnershipKind::None
: OwnershipKind::Guaranteed;
break;
case SILArgumentConvention::Indirect_In:
value = moduleConventions.isTypeIndirectForIndirectParamConvention(
Type.getASTType())
? OwnershipKind::None
: OwnershipKind::Owned;
break;
case SILArgumentConvention::Indirect_Inout:
case SILArgumentConvention::Indirect_InoutAliasable:
case SILArgumentConvention::Indirect_Out:
case SILArgumentConvention::Pack_Inout:
case SILArgumentConvention::Pack_Out:
case SILArgumentConvention::Pack_Owned:
case SILArgumentConvention::Pack_Guaranteed:
value = OwnershipKind::None;
return;
case SILArgumentConvention::Direct_Owned:
value = OwnershipKind::Owned;
return;
case SILArgumentConvention::Direct_Unowned:
value = OwnershipKind::Unowned;
return;
case SILArgumentConvention::Direct_Guaranteed:
value = OwnershipKind::Guaranteed;
return;
}
}
StringRef ValueOwnershipKind::asString() const {
return value.asString();
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
ValueOwnershipKind kind) {
return os << kind.asString();
}
ValueOwnershipKind::ValueOwnershipKind(StringRef S)
: value(OwnershipKind::Any) {
auto Result = llvm::StringSwitch<std::optional<OwnershipKind::innerty>>(S)
.Case("unowned", OwnershipKind::Unowned)
.Case("owned", OwnershipKind::Owned)
.Case("guaranteed", OwnershipKind::Guaranteed)
.Case("none", OwnershipKind::None)
.Default(std::nullopt);
if (!Result.has_value())
llvm_unreachable("Invalid string representation of ValueOwnershipKind");
value = Result.value();
}
ValueOwnershipKind
ValueOwnershipKind::getProjectedOwnershipKind(const SILFunction &F,
SILType Proj) const {
if (Proj.isTrivial(F))
return OwnershipKind::None;
return *this;
}
#if 0
/// Map a SILValue mnemonic name to its ValueKind.
ValueKind swift::getSILValueKind(StringRef Name) {
#define SINGLE_VALUE_INST(Id, TextualName, Parent, MemoryBehavior, \
ReleasingBehavior) \
if (Name == #TextualName) \
return ValueKind::Id;
#define VALUE(Id, Parent) \
if (Name == #Id) \
return ValueKind::Id;
#include "swift/SIL/SILNodes.def"
#ifdef NDEBUG
llvm::errs()
<< "Unknown SILValue name\n";
abort();
#endif
llvm_unreachable("Unknown SILValue name");
}
/// Map ValueKind to a corresponding mnemonic name.
StringRef swift::getSILValueName(ValueKind Kind) {
switch (Kind) {
#define SINGLE_VALUE_INST(Id, TextualName, Parent, MemoryBehavior, \
ReleasingBehavior) \
case ValueKind::Id: \
return #TextualName;
#define VALUE(Id, Parent) \
case ValueKind::Id: \
return #Id;
#include "swift/SIL/SILNodes.def"
}
}
#endif
//===----------------------------------------------------------------------===//
// UseLifetimeConstraint
//===----------------------------------------------------------------------===//
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
UseLifetimeConstraint constraint) {
switch (constraint) {
case UseLifetimeConstraint::NonLifetimeEnding:
os << "NonLifetimeEnding";
break;
case UseLifetimeConstraint::LifetimeEnding:
os << "LifetimeEnding";
break;
}
return os;
}
//===----------------------------------------------------------------------===//
// Operand
//===----------------------------------------------------------------------===//
void Operand::updateReborrowFlags() {
if (isa<EndBorrowInst>(getUser())) {
swift::updateReborrowFlags(get());
}
}
void Operand::verify() const {
if (isa<BorrowedFromInst>(getUser()) && getOperandNumber() == 0) {
assert(isa<SILArgument>(get()) || isa<SILUndef>(get()));
}
}
SILBasicBlock *Operand::getParentBlock() const {
auto *self = const_cast<Operand *>(this);
return self->getUser()->getParent();
}
SILFunction *Operand::getParentFunction() const {
auto *self = const_cast<Operand *>(this);
return self->getUser()->getFunction();
}
bool Operand::canAcceptKind(ValueOwnershipKind kind,
SILModuleConventions *silConv) const {
auto operandOwnership = getOperandOwnership(silConv);
auto constraint = operandOwnership.getOwnershipConstraint();
if (constraint.satisfiesConstraint(kind)) {
// Constraints aren't precise enough to enforce Unowned value uses.
if (kind == OwnershipKind::Unowned) {
return canAcceptUnownedValue(operandOwnership);
}
return true;
}
return false;
}
bool Operand::satisfiesConstraints(SILModuleConventions *silConv) const {
return canAcceptKind(get()->getOwnershipKind(), silConv);
}
bool Operand::isLifetimeEnding() const {
auto constraint = getOwnershipConstraint();
// If our use lifetime constraint is NonLifetimeEnding, just return false.
if (!constraint.isLifetimeEnding())
return false;
// Otherwise, we may have a lifetime ending use. We consider two cases here:
// the case where our value has OwnershipKind::None and one where it has some
// other OwnershipKind. Note that values with OwnershipKind::None ownership
// can not have their lifetime ended since they are outside of the ownership
// system. Given such a case, if we have such a value we return
// isLifetimeEnding() as false even if the constraint itself has a constraint
// that says a value is LifetimeEnding. If we have a value that has a
// non-OwnershipKind::None ownership then we just return true as expected.
return get()->getOwnershipKind() != OwnershipKind::None;
}
bool Operand::isConsuming() const {
if (!getOwnershipConstraint().isConsuming())
return false;
return get()->getOwnershipKind() != OwnershipKind::None;
}
void Operand::dump() const { print(llvm::dbgs()); }
void Operand::print(llvm::raw_ostream &os) const {
os << "Operand.\n"
"Owner: "
<< *Owner << "Value: " << get() << "Operand Number: " << getOperandNumber()
<< '\n'
<< "Is Type Dependent: " << (isTypeDependent() ? "yes" : "no") << '\n';
}
SILFunction *Operand::getFunction() const {
return getUser()->getFunction();
}
//===----------------------------------------------------------------------===//
// OperandConstraint
//===----------------------------------------------------------------------===//
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
OwnershipConstraint constraint) {
return os << "<Constraint "
"Kind:" << constraint.getPreferredKind()
<< " LifetimeConstraint:" << constraint.getLifetimeConstraint()
<< ">";
}
StringRef OperandOwnership::asString() const {
switch (value) {
case OperandOwnership::NonUse:
return "non-use";
case OperandOwnership::TrivialUse:
return "trivial-use";
case OperandOwnership::InstantaneousUse:
return "instantaneous";
case OperandOwnership::UnownedInstantaneousUse:
return "unowned-instantaneous";
case OperandOwnership::ForwardingUnowned:
return "forwarding-unowned";
case OperandOwnership::PointerEscape:
return "pointer-escape";
case OperandOwnership::BitwiseEscape:
return "bitwise-escape";
case OperandOwnership::Borrow:
return "borrow";
case OperandOwnership::DestroyingConsume:
return "destroying-consume";
case OperandOwnership::ForwardingConsume:
return "forwarding-consume";
case OperandOwnership::InteriorPointer:
return "interior-pointer";
case OperandOwnership::AnyInteriorPointer:
return "any-interior-pointer";
case OperandOwnership::GuaranteedForwarding:
return "guaranteed-forwarding";
case OperandOwnership::EndBorrow:
return "end-borrow";
case OperandOwnership::Reborrow:
return "reborrow";
}
llvm_unreachable("covered switch");
}
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &os,
const OperandOwnership &operandOwnership) {
return os << operandOwnership.asString();
}
//===----------------------------------------------------------------------===//
// PlaceholderValue
//===----------------------------------------------------------------------===//
int PlaceholderValue::numPlaceholderValuesAlive = 0;
PlaceholderValue::PlaceholderValue(SILFunction *fn, SILType type)
: ValueBase(ValueKind::PlaceholderValue, type), parentFunction(fn) {
numPlaceholderValuesAlive++;
}
PlaceholderValue::~PlaceholderValue() {
numPlaceholderValuesAlive--;
}