Files
swift-mirror/lib/SILGen/Conversion.h
Gabor Horvath f26749245b [SILGen] Fix the type of closure thunks that are passed const reference structs
This PR is another attempt at landing #76903. The changes compared to
the original PR:
* Instead of increasing the size of SILDeclRef, store the necessary type
  information in a side channel using withClosureTypeInfo.
* Rely on SGFContext to get the right ClangType
* Extend BridgingConversion with an AbstractionPattern to store the
  original clang type.
* The PR above introduced a crash during indexing system modules that
  references foreign types coming from modules imported as
  implementation only. These entities are implementation details so they
  do not need to be included during serialization. This PR adds a test
  and adds logic to exclude such clang types in the serialization
  process.

rdar://131321096&141786724
2025-09-09 12:07:52 +01:00

620 lines
21 KiB
C++

//===--- Conversion.h - Types for value conversion --------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Defines the Conversion class as well as ConvertingInitialization.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_LOWERING_CONVERSION_H
#define SWIFT_LOWERING_CONVERSION_H
#include "Initialization.h"
#include "SGFContext.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/ExternalUnion.h"
#include "swift/SIL/AbstractionPattern.h"
#include <optional>
namespace swift {
namespace Lowering {
class OptionalInjectionConversion;
/// An abstraction representing certain kinds of conversion that SILGen can
/// do automatically in various situations. These are used primarily with
/// ConvertingInitialization in order to guide the emission of an expression.
/// Some of these conversions are semantically required, such as propagating
/// @isolated(any) down to the emission of the function reference, or some of
/// the bridging conversions.
class Conversion {
public:
enum KindTy {
/// A bridging conversion to a foreign type.
BridgeToObjC,
/// A bridging conversion to a foreign type following a force.
/// Although it's not reflected in the name, this is always an
/// implicit force cast.
ForceAndBridgeToObjC,
/// Force an optional value.
ForceOptional,
/// A bridging conversion from a foreign type.
BridgeFromObjC,
/// A bridging conversion for a function result.
BridgeResultFromObjC,
/// An erasure to Any (possibly wrapped in optional conversions).
/// This is sortof a bridging conversion? Really it's more of a
/// subtype conversion, but we're calling it out separately here,
/// and that's easier.
AnyErasure,
/// A subtype conversion, except it's allowed to do optional injections
/// and existential erasures. This comes up with bridging peepholes
/// and is annoying to not have a way to represent. The conversion
/// should always involve class references and so will be harmless
/// in terms of representations.
BridgingSubtype,
/// A subtype conversion.
Subtype,
/// A reabstraction conversion. There can also be a subtype difference
/// between the substituted types.
Reabstract,
};
static bool isBridgingKind(KindTy kind) {
switch (kind) {
case BridgeToObjC:
case ForceAndBridgeToObjC:
case ForceOptional:
case BridgeFromObjC:
case BridgeResultFromObjC:
case AnyErasure:
case BridgingSubtype:
case Subtype:
return true;
case Reabstract:
return false;
}
llvm_unreachable("bad kind");
}
static bool isReabstractionKind(KindTy kind) {
switch (kind) {
case Reabstract:
return true;
case BridgeToObjC:
case ForceAndBridgeToObjC:
case ForceOptional:
case BridgeFromObjC:
case BridgeResultFromObjC:
case AnyErasure:
case BridgingSubtype:
case Subtype:
return false;
}
llvm_unreachable("bad kind");
}
private:
KindTy Kind;
struct BridgingStorage {
bool IsExplicit;
AbstractionPattern InputOrigType;
};
/// The types we store for reabstracting contexts. In general, when
/// we're just emitting an expression, it's expected that the input
/// abstraction type and lowered type will match the input formal type,
/// which will be the type of the expression we're emitting. They can
/// therefore simply be replaced if we're e.g. prepending a subtype
/// conversion to the reabstraction. But it's very useful to be able to
/// represent both sides of the conversion uniformly so that e.g. we can
/// elegantly perform a single (perhaps identity) reabstraction when
/// receiving a function result or loading a value from abstracted
/// storage.
struct ReabstractionStorage {
AbstractionPattern InputOrigType;
AbstractionPattern OutputOrigType;
SILType InputLoweredTy;
};
CanType SourceType;
CanType ResultType;
SILType LoweredResultType;
using Members = ExternalUnionMembers<BridgingStorage, ReabstractionStorage>;
static Members::Index getStorageIndexForKind(KindTy kind) {
switch (kind) {
case BridgeToObjC:
case ForceAndBridgeToObjC:
case ForceOptional:
case BridgeFromObjC:
case BridgeResultFromObjC:
case AnyErasure:
case BridgingSubtype:
case Subtype:
return Members::indexOf<BridgingStorage>();
case Reabstract:
return Members::indexOf<ReabstractionStorage>();
}
llvm_unreachable("bad kind");
}
ExternalUnion<KindTy, Members, getStorageIndexForKind> Types;
static_assert(decltype(Types)::union_is_trivially_copyable,
"define the special members if this changes");
Conversion(KindTy kind, AbstractionPattern inputOrigType, CanType sourceType,
CanType resultType, SILType loweredResultTy, bool isExplicit)
: Kind(kind), SourceType(sourceType), ResultType(resultType),
LoweredResultType(loweredResultTy) {
Types.emplaceAggregate<BridgingStorage>(kind, isExplicit, inputOrigType);
}
Conversion(AbstractionPattern inputOrigType, CanType inputSubstType,
SILType inputLoweredTy,
AbstractionPattern outputOrigType, CanType outputSubstType,
SILType outputLoweredTy)
: Kind(Reabstract), SourceType(inputSubstType),
ResultType(outputSubstType),
LoweredResultType(outputLoweredTy) {
Types.emplaceAggregate<ReabstractionStorage>(Kind, inputOrigType,
outputOrigType,
inputLoweredTy);
}
static bool isAllowedConversion(CanType inputType, CanType outputType) {
// Allow all identity conversions. (This should only happen with
// reabstraction.)
if (inputType == outputType) return true;
// Allow optional-to-optional conversions, but not injections
// into optional. Emitters can be expected to just strip optionality
// from the result type when peepholing through an optional injection,
// and doing so avoids the need to handle injections specially in
// emitters, like those for function references and closures.
while (auto outputObjectType = outputType.getOptionalObjectType()) {
auto inputObjectType = inputType.getOptionalObjectType();
if (!inputObjectType) return false;
outputType = outputObjectType;
inputType = inputObjectType;
}
// Disallow existential erasures from being directly represented here
// because it may involve a representation change for the value. Emitters
// shouldn't have to specially recognize those.
if (outputType.isExistentialType())
return inputType.isExistentialType();
assert(!inputType.getOptionalObjectType());
return true;
}
public:
static Conversion getOrigToSubst(AbstractionPattern origType,
CanType substType,
SILType inputLoweredTy,
SILType outputLoweredTy) {
return getReabstract(origType, substType, inputLoweredTy,
AbstractionPattern(substType), substType, outputLoweredTy);
}
static Conversion getSubstToOrig(AbstractionPattern origType,
CanType substType,
SILType inputLoweredTy,
SILType outputLoweredTy) {
return getReabstract(AbstractionPattern(substType), substType, inputLoweredTy,
origType, substType, outputLoweredTy);
}
static Conversion getReabstract(AbstractionPattern inputOrigType,
CanType inputSubstType,
SILType inputLoweredTy,
AbstractionPattern outputOrigType,
CanType outputSubstType,
SILType outputLoweredTy) {
assert(isAllowedConversion(inputSubstType, outputSubstType) &&
"don't build subtype conversions that do existential erasures");
return Conversion(inputOrigType, inputSubstType, inputLoweredTy,
outputOrigType, outputSubstType, outputLoweredTy);
}
static Conversion
getBridging(KindTy kind, CanType origType, CanType resultType,
SILType loweredResultTy,
std::optional<AbstractionPattern> inputOrigType = std::nullopt,
bool isExplicit = false) {
assert(isBridgingKind(kind));
assert((kind != Subtype || isAllowedConversion(origType, resultType)) &&
"disallowed conversion for subtype relationship");
if (inputOrigType)
return Conversion(kind, *inputOrigType, origType, resultType,
loweredResultTy, isExplicit);
return Conversion(kind, AbstractionPattern(origType), origType, resultType,
loweredResultTy, isExplicit);
}
static Conversion getSubtype(CanType origType, CanType substType,
SILType loweredResultTy) {
return getBridging(Subtype, origType, substType, loweredResultTy);
}
KindTy getKind() const {
return Kind;
}
bool isBridging() const {
return isBridgingKind(getKind());
}
bool isReabstraction() const {
return isReabstractionKind(getKind());
}
AbstractionPattern getReabstractionInputOrigType() const {
return Types.get<ReabstractionStorage>(Kind).InputOrigType;
}
CanType getReabstractionInputSubstType() const {
return getSourceType();
}
SILType getReabstractionInputLoweredType() const {
return Types.get<ReabstractionStorage>(Kind).InputLoweredTy;
}
AbstractionPattern getReabstractionOutputOrigType() const {
return Types.get<ReabstractionStorage>(Kind).OutputOrigType;
}
CanType getReabstractionOutputSubstType() const {
return getResultType();
}
SILType getReabstractionOutputLoweredType() const {
return getLoweredResultType();
}
bool isBridgingExplicit() const {
return Types.get<BridgingStorage>(Kind).IsExplicit;
}
AbstractionPattern getBridgingOriginalInputType() const {
return Types.get<BridgingStorage>(Kind).InputOrigType;
}
CanType getSourceType() const {
return SourceType;
}
CanType getResultType() const {
return ResultType;
}
SILType getLoweredResultType() const {
return LoweredResultType;
}
/// Given that this conversion is not one of the specialized bridging
/// conversion (i.e. it is either a reabstraction or a subtype conversion),
/// rebuild it with the given source type.
Conversion withSourceType(AbstractionPattern origSourceType,
CanType sourceType,
SILType loweredSourceTy) const;
Conversion withSourceType(SILGenFunction &SGF, CanType sourceType) const;
/// Given that this conversion is not one of the specialized bridging
/// conversion (i.e. it is either a reabstraction or a subtype conversion),
/// rebuild it with the given result type.
Conversion withResultType(AbstractionPattern origResultType,
CanType sourceType,
SILType loweredSourceTy) const;
ManagedValue emit(SILGenFunction &SGF, SILLocation loc,
ManagedValue source, SGFContext ctxt) const;
/// Try to form a conversion that does an optional injection
/// or optional-to-optional conversion followed by this conversion.
std::optional<Conversion>
adjustForInitialOptionalConversions(CanType newSourceType) const;
/// Try to form a conversion that does a force-value followed by
/// this conversion.
std::optional<Conversion> adjustForInitialForceValue() const;
OptionalInjectionConversion adjustForInitialOptionalInjection() const;
void dump() const LLVM_ATTRIBUTE_USED;
void print(llvm::raw_ostream &out) const;
};
/// Information about how to peephole two conversions.
///
/// This is really the private state of SILGenConvert.
class ConversionPeepholeHint {
public:
enum Kind : uint8_t {
/// The value will be exactly the right type.
Identity,
/// The value needs to be bridged to AnyObject (possibly optionally).
BridgeToAnyObject,
/// The value just needs to undergo a subtype conversion.
Subtype,
/// The inner conversion is a subtype conversion and can be done implicitly
/// as part of the outer conversion.
SubtypeIntoReabstract,
/// Both conversions are reabstractions and can be combined.
Reabstract,
};
private:
Kind TheKind;
bool Forced;
public:
ConversionPeepholeHint(Kind kind, bool forced)
: TheKind(kind), Forced(forced) {
}
Kind getKind() const { return TheKind; }
/// Does the value need to be forced before the conversion?
/// This comes up with result conversions where the result was imported
/// as non-optional, as well as with implicitly unwrapped optionals.
bool isForced() const { return Forced; }
};
struct CombinedConversions {
std::optional<Conversion> first;
std::optional<Conversion> second;
explicit CombinedConversions() {}
explicit CombinedConversions(const Conversion &first)
: first(first) {}
explicit CombinedConversions(const Conversion &first,
const Conversion &second)
: first(first), second(second) {}
};
bool canPeepholeConversions(SILGenFunction &SGF,
const Conversion &outer,
const Conversion &inner);
/// The result of trying to combine an optional injection with an existing
/// conversion.
class OptionalInjectionConversion {
enum Kind {
None,
Injection,
Value
};
std::optional<Conversion> conversion;
Kind kind;
OptionalInjectionConversion(Kind kind, const Conversion &conv)
: conversion(conv), kind(kind) {}
public:
OptionalInjectionConversion() : kind(None) {}
static OptionalInjectionConversion forInjection(const Conversion &conv) {
return { Injection, conv };
}
static OptionalInjectionConversion forValue(const Conversion &conv) {
return { Value, conv };
}
/// Is the result of this combination a conversion that produces a
/// value of the original optional type?
bool isInjection() const {
return kind == Injection;
}
const Conversion &getInjectionConversion() const {
assert(isInjection());
return *conversion;
}
/// Is the result of this combination a conversion that produces a
/// value of the element of the original optional type?
bool isValue() const {
return kind == Value;
}
const Conversion &getValueConversion() const {
assert(isValue());
return *conversion;
}
};
/// An initialization where we ultimately want to apply a conversion to
/// the value before completing the initialization.
///
/// Value generators may call getAsConversion() to check whether an
/// Initialization is one of these. This adds initWithConvertedValue
/// to the normal set of ways to receive an initializing value.
class ConvertingInitialization final : public Initialization {
private:
enum StateTy {
/// Nothing has happened.
Uninitialized,
/// The converted value has been set.
Initialized,
/// finishInitialization has been called.
Finished,
/// The converted value has been extracted.
Extracted,
/// We're doing pack initialization instead of the normal state
/// transition, and we haven't been finished yet.
PackExpanding,
/// We're doing pack initialization instead of the normal state
/// transition, and finishInitialization has been called.
FinishedPackExpanding,
};
StateTy State;
/// The conversion that needs to be applied to the formal value.
Conversion TheConversion;
/// The converted value, set if the initializing code calls tryPeephole,
/// setReabstractedValue, or copyOrInitValueInto.
ManagedValue Value;
SGFContext FinalContext;
StateTy getState() const {
return State;
}
InitializationPtr OwnedSubInitialization;
public:
ConvertingInitialization(Conversion conversion, SGFContext finalContext)
: State(Uninitialized), TheConversion(conversion),
FinalContext(finalContext) {}
ConvertingInitialization(Conversion conversion,
InitializationPtr subInitialization)
: State(Uninitialized), TheConversion(conversion),
FinalContext(SGFContext(subInitialization.get())) {
OwnedSubInitialization = std::move(subInitialization);
}
/// Return the conversion to apply to the unconverted value.
const Conversion &getConversion() const {
return TheConversion;
}
/// Return the context into which to emit the converted value.
SGFContext getFinalContext() const {
return FinalContext;
}
// The three ways to perform this initialization:
/// Set the converted value for this initialization.
///
/// If the converted value has been emitted into the final context, you
/// can pass ManagedValue::forInContext() to this function. In this
/// case, you must call finishInitialization on the final initialization
/// yourself prior to calling this. finishEmission will return
/// ManagedValue::forInContext().
///
/// Otherwise, if the final context exists, this will forward the value
/// into it and finish it. finishEmission will return
/// ManagedValue::forInContext().
///
/// Otherwise, this will store the value internally, and finishEmission
/// will return it.
///
/// You must call finishInitialization after calling this.
void initWithConvertedValue(SILGenFunction &SGF, SILLocation loc,
ManagedValue value);
/// Set the unconverted value for this initialization. The value will
/// first be converted. If the final context has an initialization,
/// the converted value will be forwarded into it, and finishEmission
/// will return ManagedValue::forInContext(). Otherwise, finishEmission
/// will return the converted value.
///
/// You must call finishInitialization after calling this.
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override;
/// Given that the result of the given expression needs to sequentially
/// undergo the given conversion and then this conversion, attempt to
/// peephole the result.
///
/// If this returns true, this initialization will have been initialized
/// as if initWithConvertedValue has been called. You must call
/// finishInitialization in this path.
///
/// Otherwise, there is no state change for the conversion.
bool tryPeephole(SILGenFunction &SGF, Expr *E, Conversion innerConversion);
bool tryPeephole(SILGenFunction &SGF, SILLocation loc,
Conversion innerConversion, ValueProducerRef producer);
bool tryPeephole(SILGenFunction &SGF, SILLocation loc, ManagedValue value,
Conversion innerConversion);
/// Given that an emitter was able to adjust the conversion when
/// emitting into this initialization, continue emission into the
/// new conversion.
ManagedValue emitWithAdjustedConversion(SILGenFunction &SGF, SILLocation loc,
Conversion adjustedConversion,
ValueProducerRef producer);
/// Given the unconverted result, i.e. the result of emitting a
/// value formally of the unconverted type with this initialization
/// as the SGFContext, produce the converted result.
///
/// If this initialization was initialized, the unconverted result
/// must be ManagedValue::forInContext(), and vice-versa.
///
/// The result of this function may itself be
/// ManagedValue::forInContext() if this Initialization was created
/// with an SGFContext which contains another Initialization.
ManagedValue finishEmission(SILGenFunction &SGF, SILLocation loc,
ManagedValue formalResult);
// Implement to make the cast work.
ConvertingInitialization *getAsConversion() override {
return this;
}
// Bookkeeping.
void finishInitialization(SILGenFunction &SGF) override {
if (getState() == PackExpanding) {
FinalContext.getEmitInto()->finishInitialization(SGF);
State = FinishedPackExpanding;
} else {
assert(getState() == Initialized);
State = Finished;
}
}
// Support pack-expansion initialization.
bool canPerformPackExpansionInitialization() const override {
if (auto finalInit = FinalContext.getEmitInto())
return finalInit->canPerformPackExpansionInitialization();
return false;
}
void performPackExpansionInitialization(SILGenFunction &SGF,
SILLocation loc,
SILValue indexWithinComponent,
llvm::function_ref<void(Initialization *into)> fn) override;
};
} // end namespace Lowering
} // end namespace swift
#endif