Files
swift-mirror/lib/SymbolGraphGen/SymbolGraphASTWalker.cpp
QuietMisdreavus 235f140b4c [SymbolGraphGen] check implicit clang decls for having extension parents (#83143)
Resolves rdar://151911998

This PR addresses an uncommon situation in the symbol graph when
importing Objective-C symbols into Swift. When a class conforms to a
protocol that includes an initializer, that initializer is automatically
generated for that class in the AST. This initializer has the same USR
as the original protocol symbol, but is housed in a different
DeclContext to indicate the membership.

Right now, we catch this situation when the protocol conformance is
declared on the class definition: There's a branch to check for
"implicit" decls with an underlying Clang symbol, and creates a
synthesized USR if that symbols DeclContext points to a type. However,
when the protocol conformance is added in a category extension, the
DeclContext for the generated initializer points to the extension,
causing the symbol to bypass that check and get added to the symbol
graph with a duplicated USR. This PR adds a check to look for
ExtensionDecls as the DeclContext so that the symbol can correctly
receive a synthesized USR.

One of the tests in this PR
(`SymbolGraph/ClangImporter/ObjCInitializer.swift`) tests a similar
situation where this "implicit decl with a Clang node" is created: Some
initializers in Objective-C get imported into Swift twice, with
differently-adapted parameter names. This is covered by the original
code, but i wanted to leave the test in because i broke this case in my
initial investigation! 😅 The other test
(`SymbolGraph/ClangImporter/ProtocolInitializer.swift`) tests the new
behavior that is fixed by this PR.
2025-07-18 09:04:16 -06:00

464 lines
17 KiB
C++

//===--- SymbolGraphASTWalker.cpp - Symbol Graph AST Walker ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "clang/AST/DeclObjC.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/StringSwitch.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ClangModuleLoader.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Serialization/SerializedModuleLoader.h"
#include "swift/SymbolGraphGen/SymbolGraphGen.h"
#include "SymbolGraphASTWalker.h"
using namespace swift;
using namespace symbolgraphgen;
namespace {
/// Get the fully-qualified module name of the given `ModuleDecl` as a `std::string`.
///
/// For example, if `M` is a submodule of `ParentModule` named `SubModule`,
/// this function would return `"ParentModule.SubModule"`.
std::string getFullModuleName(const ModuleDecl *M) {
if (!M) return {};
std::string S;
llvm::raw_string_ostream OS(S);
M->getReverseFullModuleName().printForward(OS);
return S;
}
/// Compare the two \c ModuleDecl instances to see whether they are the same.
///
/// This does a by-name comparison to consider a module's underlying Clang module to be equivalent
/// to the wrapping module of the same name.
///
/// If the `isClangEqual` argument is set to `false`, the modules must also be from the same
/// compiler, i.e. a Swift module and its underlying Clang module would be considered not equal.
bool areModulesEqual(const ModuleDecl *lhs, const ModuleDecl *rhs, bool isClangEqual = true) {
if (getFullModuleName(lhs) != getFullModuleName(rhs))
return false;
if (!isClangEqual && (lhs->isNonSwiftModule() != rhs->isNonSwiftModule()))
return false;
return true;
}
bool clangModuleExports(const clang::Module *ClangParent, const clang::Module *CM) {
if (!ClangParent || !CM) return false;
if (ClangParent == CM) return true;
for (auto ClangExport : ClangParent->Exports) {
auto *ExportedModule = ClangExport.getPointer();
if (ClangExport.getInt()) {
if (!ExportedModule && CM->isSubModuleOf(ClangParent)) {
return true;
} else if (ExportedModule && CM->isSubModuleOf(ExportedModule)) {
return true;
}
}
if (ExportedModule && clangModuleExports(ExportedModule, CM)) {
return true;
}
}
if (ClangParent->Exports.empty() && CM->isSubModuleOf(ClangParent)) {
// HACK: In the absence of an explicit export statement, consider any submodule to be exported.
return true;
}
return false;
}
bool underlyingClangModuleExports(const ModuleDecl *ParentModule, const ModuleDecl *M) {
return clangModuleExports(ParentModule->findUnderlyingClangModule(), M->findUnderlyingClangModule());
}
} // anonymous namespace
SymbolGraphASTWalker::SymbolGraphASTWalker(ModuleDecl &M,
const SymbolGraphOptions &Options)
: Options(Options), M(M), MainGraph(*this, M, std::nullopt, Ctx) {}
SymbolGraphASTWalker::SymbolGraphASTWalker(
ModuleDecl &M,
const SmallPtrSet<const ModuleDecl *, 4> ExportedImportedModules,
const llvm::SmallDenseMap<const ModuleDecl *, SmallPtrSet<Decl *, 4>, 4>
QualifiedExportedImports,
const SymbolGraphOptions &Options)
: Options(Options), M(M), ExportedImportedModules(ExportedImportedModules),
QualifiedExportedImports(QualifiedExportedImports),
MainGraph(*this, M, std::nullopt, Ctx) {}
ModuleDecl *SymbolGraphASTWalker::getRealModuleOf(const Decl *D) const {
ModuleDecl *Module = D->getModuleContext();
if (auto *ClangDecl = D->getClangDecl())
if (auto *ClangModule = ClangDecl->getOwningModule())
if (auto *ClangModuleLoader = D->getASTContext().getClangModuleLoader())
if (auto *M = ClangModuleLoader->getWrapperForModule(ClangModule))
Module = M;
return Module;
}
/// Get a "sub" symbol graph for the parent module of a type that
/// the main module `M` is extending.
SymbolGraph *SymbolGraphASTWalker::getModuleSymbolGraph(const Decl *D) {
auto *M = getRealModuleOf(D);
const auto *DC = D->getDeclContext();
SmallVector<const NominalTypeDecl *, 2> ParentTypes = {};
const Decl *ExtendedNominal = nullptr;
while (DC) {
if (const auto *NTD = dyn_cast_or_null<NominalTypeDecl>(DC->getAsDecl())) {
DC = NTD->getDeclContext();
M = getRealModuleOf(NTD);
ParentTypes.push_back(NTD);
} else if (const auto *Ext = dyn_cast_or_null<ExtensionDecl>(DC->getAsDecl())) {
DC = Ext->getExtendedNominal()->getDeclContext();
M = getRealModuleOf(Ext->getExtendedNominal());
if (!ExtendedNominal)
ExtendedNominal = Ext->getExtendedNominal();
} else {
DC = nullptr;
}
}
auto moduleIsMainGraph = [&](const ModuleDecl *M) {
if (areModulesEqual(&this->M, M)) {
return true;
} else if (MainGraph.DeclaringModule.has_value() &&
areModulesEqual(MainGraph.DeclaringModule.value(), M)) {
// Cross-import overlay modules already appear as "extensions" of their declaring module; we
// should put actual extensions of that module into the main graph
return true;
}
// Check the module and decl separately since the extension could be from a different module
// than the decl itself.
if (isExportedImportedModule(M)) {
return true;
}
return false;
};
if (moduleIsMainGraph(M) || isQualifiedExportedImport(D))
return &MainGraph;
// If this type is the child of a type which was re-exported in a qualified export, use the main graph.
if (llvm::any_of(ParentTypes, [&](const NominalTypeDecl *NTD){ return isQualifiedExportedImport(NTD); })) {
return &MainGraph;
}
// As a shorthand when dealing with Clang submodules, use their top-level module's graph if the
// submodule is ultimately exported from its top-level module.
auto *TopLevelModule = M->getTopLevelModule();
if (TopLevelModule != M && underlyingClangModuleExports(TopLevelModule, M))
M = TopLevelModule;
if (moduleIsMainGraph(M))
return &MainGraph;
auto Found = ExtendedModuleGraphs.find(M->getNameStr());
if (Found != ExtendedModuleGraphs.end()) {
return Found->getValue();
}
auto *Memory = Ctx.allocate(sizeof(SymbolGraph), alignof(SymbolGraph));
auto *SG = new (Memory)
SymbolGraph(*this, MainGraph.M, std::optional<ModuleDecl *>(M), Ctx);
ExtendedModuleGraphs.insert({M->getNameStr(), SG});
return SG;
}
static bool isUnavailableOrObsoletedOnPlatform(const Decl *D) {
if (const auto Avail = D->getUnavailableAttr()) {
if (Avail->getPlatform() != PlatformKind::none)
return true;
}
return false;
}
bool SymbolGraphASTWalker::walkToDeclPre(Decl *D, CharSourceRange Range) {
if (SynthesizedChildrenBaseDecl && D == SynthesizedChildrenBaseDecl)
return true;
if (isUnavailableOrObsoletedOnPlatform(D)) {
return false;
}
switch (D->getKind()) {
// We'll record nodes for the following kinds of declarations.
case swift::DeclKind::Class:
case swift::DeclKind::Struct:
case swift::DeclKind::Enum:
case swift::DeclKind::EnumElement:
case swift::DeclKind::Protocol:
case swift::DeclKind::Constructor:
case swift::DeclKind::Func:
case swift::DeclKind::Var:
case swift::DeclKind::Subscript:
case swift::DeclKind::TypeAlias:
case swift::DeclKind::AssociatedType:
case swift::DeclKind::Extension:
case swift::DeclKind::Macro:
break;
// We'll descend into everything else.
default:
return true;
}
auto SG = getModuleSymbolGraph(D);
// If this is an extension, let's check that it implies some new conformances,
// potentially with generic requirements.
if (const auto *Extension = dyn_cast<ExtensionDecl>(D)) {
const auto *ExtendedNominal = Extension->getExtendedNominal();
auto ExtendedSG = getModuleSymbolGraph(ExtendedNominal);
// Ignore effectively private decls.
if (ExtendedSG->isImplicitlyPrivate(Extension)) {
return false;
}
if (SG->isUnconditionallyUnavailableOnAllPlatforms(Extension)) {
return false;
}
if (isUnavailableOrObsoletedOnPlatform(ExtendedNominal)) {
return false;
}
// We only treat extensions to external types as extensions. Extensions to
// local types are directly associated with the extended nominal.
auto const shouldBeRecordedAsExtension =
this->shouldBeRecordedAsExtension(Extension);
Symbol Source = shouldBeRecordedAsExtension
? Symbol(ExtendedSG, Extension, nullptr)
: Symbol(ExtendedSG, ExtendedNominal, nullptr);
// The extended nominal is recorded elsewhere for local types.
if (shouldBeRecordedAsExtension) {
ExtendedSG->recordNode(Source);
// Next to the extension symbol itself, we also introduce a relationship
// between the extension symbol and the extended nominal.
ExtendedSG->recordEdge(Source,
Symbol(ExtendedSG, ExtendedNominal, nullptr),
RelationshipKind::ExtensionTo());
}
// If there are some protocol conformances on this extension, we'll
// grab them for some new conformsTo relationships.
if (!Extension->getInherited().empty()) {
// We want to add conformsTo relationships for all protocols implicitly
// implied by those explicitly stated on the extension.
//
// We start by collecting the conformances declared on the extension with
// `getLocalConformances`. From there, we inspect each protocol for any
// other protocols it inherits (whether stated explicitly or via a
// composed protocol type alias) with `getInheritedProtocols`. Each new
// protocol is added to `UnexpandedProtocols` until there are no new
// protocols to add. At that point, all direct and indirect conformances
// are stored in `Protocols`.
SmallPtrSet<const ProtocolDecl *, 4> Protocols;
SmallVector<const ProtocolDecl *, 4> UnexpandedProtocols;
// Start the process with the conformances stated
// explicitly on the extension.
for (const auto *Conformance : Extension->getLocalConformances()) {
UnexpandedProtocols.push_back(Conformance->getProtocol());
}
// "Recursively" expand the unexpanded list and populate
// the expanded `Protocols` list (in an iterative manner).
while (!UnexpandedProtocols.empty()) {
const auto *Proto = UnexpandedProtocols.pop_back_val();
if (!Protocols.contains(Proto)) {
for (const auto *InheritedProtocol : Proto->getInheritedProtocols()) {
UnexpandedProtocols.push_back(InheritedProtocol);
}
Protocols.insert(Proto);
}
}
// Record the expanded list of protocols.
for (const auto *Proto : Protocols) {
Symbol Target(&MainGraph, Proto, nullptr);
ExtendedSG->recordEdge(Source, Target, RelationshipKind::ConformsTo(),
Extension);
}
// We also might establish some synthesized members because we
// extended an external type.
if (!areModulesEqual(ExtendedNominal->getModuleContext(), &M)) {
ExtendedSG->recordConformanceSynthesizedMemberRelationships(Source);
}
}
// Continue looking into the extension.
return true;
}
auto *VD = cast<ValueDecl>(D);
if (!BaseDecl && !SG->canIncludeDeclAsNode(VD)) {
return false;
}
// If this symbol extends a type from another module, record it in that
// module's symbol graph, which will be emitted separately.
if (const auto *Extension
= dyn_cast_or_null<ExtensionDecl>(VD->getDeclContext())) {
if (const auto *ExtendedNominal = Extension->getExtendedNominal()) {
auto ExtendedModule = ExtendedNominal->getModuleContext();
auto ExtendedSG = getModuleSymbolGraph(ExtendedNominal);
if (!isOurModule(ExtendedModule)) {
ExtendedSG->recordNode(Symbol(ExtendedSG, VD, nullptr));
return true;
}
}
}
// Clang decls that are inherited from protocols get the USR of the protocol
// symbol, regardless of which class it's actually appearing on. To prevent
// multiple of these symbols colliding with each other, treat them as
// synthesized symbols and use their parent type as the base type.
if (VD->isImplicit() && VD->getClangDecl()) {
const NominalTypeDecl *Parent = dyn_cast_or_null<NominalTypeDecl>(VD->getDeclContext());
if (!Parent) {
if (const auto *ParentExt = dyn_cast_or_null<ExtensionDecl>(VD->getDeclContext()))
Parent = ParentExt->getExtendedNominal();
}
if (Parent) {
SG->recordNode(Symbol(SG, VD, Parent));
return true;
}
}
// If this is a Clang typedef of an underlying type that is being hidden (e.g. `typedef struct
// _MyStruct { ... } MyStruct`) then copy in the child symbols from the underlying type to the
// type alias.
if (const auto *TD = dyn_cast_or_null<TypeAliasDecl>(VD)) {
const auto InnerType = TD->getUnderlyingType();
if (NominalTypeDecl *NTD = InnerType->getAnyNominal()) {
// Only fold typedefs together if the inner type is from our module and it
// otherwise isn't being shown
if (isOurModule(NTD->getModuleContext()) &&
!SG->canIncludeDeclAsNode(NTD)) {
// We specifically only want to look for underlying types that are "embedded" in the typedef
// definition, so let's pull out the Clang decl and check for that
if (NTD->hasClangNode()) {
if (const auto *ClangDecl = NTD->getClangNode().getAsDecl()) {
if (const auto *ClangTagDecl = dyn_cast<clang::TagDecl>(ClangDecl)) {
if (ClangTagDecl->isEmbeddedInDeclarator()) {
PublicPrivateTypeAliases.insert_or_assign(NTD, TD);
synthesizeChildSymbols(NTD, TD);
}
}
}
}
}
}
}
// Otherwise, record this in the main module `M`'s symbol graph.
SG->recordNode(Symbol(SG, VD, BaseDecl));
return true;
}
bool SymbolGraphASTWalker::isConsideredExportedImported(const Decl *D) const {
// Check to see if this decl is an extension of something else that was re-exported.
// Do this first in case there's a chain of extensions that leads somewhere that's not a re-export.
// FIXME: this considers synthesized members of extensions to be valid
const auto *DC = D->getDeclContext();
const Decl *ExtendedNominal = nullptr;
while (DC && !ExtendedNominal) {
if (const auto *ED = dyn_cast_or_null<ExtensionDecl>(DC->getAsDecl())) {
ExtendedNominal = ED->getExtendedNominal();
} else {
DC = DC->getParent();
}
}
if (ExtendedNominal && isConsideredExportedImported(ExtendedNominal)) {
return true;
}
// Check to see if the decl is a child symbol of another decl that was re-exported.
DC = D->getDeclContext();
if (DC) {
if (const auto *VD = dyn_cast_or_null<ValueDecl>(DC->getAsDecl())) {
if (isConsideredExportedImported(VD))
return true;
}
}
// Check the decl itself to see if it was directly re-exported.
if (isFromExportedImportedModule(D) || isQualifiedExportedImport(D))
return true;
// If none of the other checks passed, this wasn't from a re-export.
return false;
}
bool SymbolGraphASTWalker::isFromExportedImportedModule(const Decl* D, bool countUnderlyingClangModule) const {
auto *M = getRealModuleOf(D);
return isQualifiedExportedImport(D) || isExportedImportedModule(M, countUnderlyingClangModule);
}
bool SymbolGraphASTWalker::isQualifiedExportedImport(const Decl *D) const {
return llvm::any_of(QualifiedExportedImports, [&D](const auto &QI) {
return QI.getSecond().contains(D);
});
}
bool SymbolGraphASTWalker::isExportedImportedModule(const ModuleDecl *M, bool countUnderlyingClangModule) const {
return llvm::any_of(ExportedImportedModules, [&M, countUnderlyingClangModule](const auto *MD) {
return areModulesEqual(M, MD->getModuleContext(), /*isClangEqual*/countUnderlyingClangModule);
});
}
bool SymbolGraphASTWalker::isOurModule(const ModuleDecl *M) const {
return areModulesEqual(M, &this->M) || isExportedImportedModule(M);
}
bool SymbolGraphASTWalker::shouldBeRecordedAsExtension(
const ExtensionDecl *ED) const {
return Options.EmitExtensionBlockSymbols &&
!areModulesEqual(ED->getModuleContext(),
ED->getExtendedNominal()->getModuleContext()) &&
!isExportedImportedModule(
ED->getExtendedNominal()->getModuleContext());
}
bool SymbolGraphASTWalker::synthesizeChildSymbols(Decl *D,
const ValueDecl *BD) {
BaseDecl = BD;
SynthesizedChildrenBaseDecl = D;
SWIFT_DEFER {
BaseDecl = nullptr;
SynthesizedChildrenBaseDecl = nullptr;
};
return walk(D);
}