Files
swift-mirror/stdlib/public/Concurrency/AsyncLet.cpp
John McCall 3cfda35b7c Remove the unused swift_asyncLet_{start,end,wait,wait_throwing} runtime
functions.

These were introduced in an early draft implementation of async let, but
never used by a released compiler. They are not used as symbols by any
app binaries. There's no reason to keep carrying them.

While I'm at it, dramatically improve the documentation of the remaining
async let API functions.
2025-11-03 13:45:18 -08:00

533 lines
21 KiB
C++

//===--- AsyncLet.h - async let object management -00------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Object management routines for asynchronous task objects.
//
//===----------------------------------------------------------------------===//
#include "swift/Runtime/Concurrency.h"
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "Debug.h"
#include "TaskPrivate.h"
#include "swift/ABI/AsyncLet.h"
#include "swift/ABI/Metadata.h"
#include "swift/ABI/Task.h"
#include "swift/ABI/TaskOptions.h"
#include "swift/Basic/Casting.h"
#include "swift/Runtime/Heap.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Threading/Mutex.h"
#include "llvm/ADT/PointerIntPair.h"
#if !defined(_WIN32) && !defined(__wasi__) && __has_include(<dlfcn.h>)
#include <dlfcn.h>
#endif
#include <new>
using namespace swift;
namespace {
class alignas(Alignment_AsyncLet) AsyncLetImpl: public ChildTaskStatusRecord {
public:
// This is where we could define a Status or other types important for async-let
private:
// Flags stored in the low bits of the task pointer.
enum {
/// Whether the result buffer (the `void*` passed to all the various
/// runtime functions) has already been initialized. This implies that
/// the async let task has completed (and without throwing).
///
/// Note that the result buffer is currently a *copy* of the actual
/// return value: we currently set up the task so that it evaluates
/// into a future, then wait on that future the same way we would
/// wait for an unstructured task. This is wasteful, since async let
/// tasks always have a single waiter; there's no good reason not to
/// evaluate the task directly into the result buffer and avoid the
/// copy.
HasResult = 1 << 0,
/// Whether the task was allocated with the parent task's stack
/// allocator. We normally try to use the allocation given to us by
/// the compiler, but if that's not big enough, the runtime must
/// allocate more memory.
DidAllocateFromParentTask = 1 << 1,
};
/// The task that was kicked off to initialize this `async let`,
/// and flags.
llvm::PointerIntPair<AsyncTask *, 2, unsigned> taskAndFlags;
/// Reserved space for a future_wait context frame, used during suspensions
/// on the child task future.
std::aligned_storage<sizeof(TaskFutureWaitAsyncContext),
alignof(TaskFutureWaitAsyncContext)>::type futureWaitContextStorage;
friend class ::swift::AsyncTask;
public:
explicit AsyncLetImpl(AsyncTask* task)
: ChildTaskStatusRecord(task),
taskAndFlags(task, 0) {
assert(task->hasChildFragment() && "async let task must be a child task.");
}
/// Returns the task record representing this async let task.
/// The record is stored in the parent task, and should be removed when the
/// async let goes out of scope.
ChildTaskStatusRecord *getTaskRecord() {
return reinterpret_cast<ChildTaskStatusRecord *>(this);
}
AsyncTask *getTask() const {
return taskAndFlags.getPointer();
}
bool hasResultInBuffer() const {
return taskAndFlags.getInt() & HasResult;
}
void setHasResultInBuffer(bool value = true) {
if (value)
taskAndFlags.setInt(taskAndFlags.getInt() | HasResult);
else
taskAndFlags.setInt(taskAndFlags.getInt() & ~HasResult);
}
bool didAllocateFromParentTask() const {
return taskAndFlags.getInt() & DidAllocateFromParentTask;
}
void setDidAllocateFromParentTask(bool value = true) {
if (value)
taskAndFlags.setInt(taskAndFlags.getInt() | DidAllocateFromParentTask);
else
taskAndFlags.setInt(taskAndFlags.getInt() & ~DidAllocateFromParentTask);
}
// The compiler preallocates a large fixed space for the `async let`, with the
// intent that most of it be used for the child task context. The next two
// methods return the address and size of that space.
/// Return a pointer to the unused space within the async let block.
void *getPreallocatedSpace() {
return (void*)(this + 1);
}
/// Return the size of the unused space within the async let block.
static constexpr size_t getSizeOfPreallocatedSpace() {
return sizeof(AsyncLet) - sizeof(AsyncLetImpl);
}
TaskFutureWaitAsyncContext *getFutureContext() {
return reinterpret_cast<TaskFutureWaitAsyncContext*>(&futureWaitContextStorage);
}
}; // end AsyncLetImpl
} // end anonymous namespace
/******************************************************************************/
/************************* ASYNC LET IMPLEMENTATION ***************************/
/******************************************************************************/
static_assert(sizeof(AsyncLetImpl) <= sizeof(AsyncLet) &&
alignof(AsyncLetImpl) <= alignof(AsyncLet),
"AsyncLetImpl doesn't fit in AsyncLet");
static AsyncLetImpl *asImpl(AsyncLet *alet) {
return reinterpret_cast<AsyncLetImpl*>(alet);
}
static AsyncLetImpl *asImpl(const AsyncLet *alet) {
return reinterpret_cast<AsyncLetImpl*>(
const_cast<AsyncLet*>(alet));
}
void swift::asyncLet_addImpl(AsyncTask *task, AsyncLet *asyncLet,
bool didAllocateInParentTask) {
AsyncLetImpl *impl = ::new (asyncLet) AsyncLetImpl(task);
impl->setDidAllocateFromParentTask(didAllocateInParentTask);
auto record = impl->getTaskRecord();
assert(impl == record && "the async-let IS the task record");
// ok, now that the async let task actually is initialized: attach it to the
// current task
bool addedRecord = addStatusRecordToSelf(record,
[&](ActiveTaskStatus parentStatus, ActiveTaskStatus& newStatus) {
updateNewChildWithParentAndGroupState(task, parentStatus, NULL);
return true;
});
(void)addedRecord;
assert(addedRecord);
}
// =============================================================================
// ==== begin ------------------------------------------------------------------
SWIFT_CC(swift)
void swift::swift_asyncLet_begin(AsyncLet *alet,
TaskOptionRecord *options,
const Metadata *futureResultType,
void *closureEntryPoint,
HeapObject *closureContext,
void *resultBuffer) {
SWIFT_TASK_DEBUG_LOG("creating async let buffer of type %s at %p",
swift_getTypeName(futureResultType, true).data,
resultBuffer);
auto flags = TaskCreateFlags();
#if SWIFT_CONCURRENCY_TASK_TO_THREAD_MODEL
// In the task to thread model, we don't want tasks to start running on
// separate threads - they will run in the context of the parent
flags.setEnqueueJob(false);
#else
flags.setEnqueueJob(true);
#endif
AsyncLetWithBufferTaskOptionRecord asyncLetOptionRecord(alet, resultBuffer);
asyncLetOptionRecord.Parent = options;
swift_task_create(
flags.getOpaqueValue(),
&asyncLetOptionRecord,
futureResultType,
closureEntryPoint, closureContext);
}
// =============================================================================
// ==== get -------------------------------------------------------------------
SWIFT_CC(swiftasync)
static void swift_asyncLet_getImpl(SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncLet *alet,
void *resultBuffer,
TaskContinuationFunction *resumeFunction,
AsyncContext *callContext) {
// Don't need to do anything if the result buffer is already populated.
if (asImpl(alet)->hasResultInBuffer()) {
return resumeFunction(callerContext);
}
// Mark the async let as having its result populated.
// The only task that can ask this of the async let is the same parent task
// that's currently executing, so we can set it now and tail-call future_wait,
// since by the time we can call back it will be populated.
asImpl(alet)->setHasResultInBuffer();
swift_task_future_wait(reinterpret_cast<OpaqueValue*>(resultBuffer),
callerContext, alet->getTask(),
resumeFunction, callContext);
}
struct AsyncLetContinuationContext: AsyncContext {
AsyncLet *alet;
OpaqueValue *resultBuffer;
};
static_assert(sizeof(AsyncLetContinuationContext) <= sizeof(TaskFutureWaitAsyncContext),
"compiler provides the same amount of context space to each");
SWIFT_CC(swiftasync)
static void _asyncLet_get_throwing_continuation(
SWIFT_ASYNC_CONTEXT AsyncContext *callContext,
SWIFT_CONTEXT void *error) {
auto continuationContext = static_cast<AsyncLetContinuationContext*>(callContext);
auto alet = continuationContext->alet;
// If the future completed successfully, its result is now in the async let
// buffer.
if (!error) {
asImpl(alet)->setHasResultInBuffer();
}
// Continue the caller's execution.
auto throwingResume =
function_cast<ThrowingTaskFutureWaitContinuationFunction*>(callContext->ResumeParent);
return throwingResume(callContext->Parent, error);
}
SWIFT_CC(swiftasync)
static void swift_asyncLet_get_throwingImpl(
SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncLet *alet,
void *resultBuffer,
ThrowingTaskFutureWaitContinuationFunction *resumeFunction,
AsyncContext *callContext) {
// Don't need to do anything if the result buffer is already populated.
if (asImpl(alet)->hasResultInBuffer()) {
return resumeFunction(callerContext, nullptr);
}
auto aletContext = static_cast<AsyncLetContinuationContext*>(callContext);
aletContext->ResumeParent =
function_cast<TaskContinuationFunction*>(resumeFunction);
aletContext->Parent = callerContext;
aletContext->alet = alet;
auto futureContext = asImpl(alet)->getFutureContext();
// Unlike the non-throwing variant, whether we end up with a result depends
// on the success of the task. If we raise an error, then the result buffer
// will not be populated. Save the async let binding so we can fetch it
// after completion.
return swift_task_future_wait_throwing(
reinterpret_cast<OpaqueValue*>(resultBuffer),
aletContext, alet->getTask(),
_asyncLet_get_throwing_continuation,
futureContext);
}
// =============================================================================
// ==== finish -----------------------------------------------------------------
SWIFT_CC(swiftasync)
// FIXME: noinline to work around an LLVM bug where the outliner breaks
// musttail.
SWIFT_NOINLINE
static void asyncLet_finish_after_task_completion(SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncLet *alet,
TaskContinuationFunction *resumeFunction,
AsyncContext *callContext,
SWIFT_CONTEXT void *error) {
auto parentTask = swift_task_getCurrent();
assert(parentTask && "async-let must have a parent task");
auto task = alet->getTask();
// Remove the child record from the parent task
auto record = asImpl(alet)->getTaskRecord();
removeStatusRecordFromSelf(record);
// Destroy the task. Note that this destroys the copy of the result
// (error or normal) in the task's future fragment.
SWIFT_TASK_DEBUG_LOG("async let end of task %p, parent: %p", task, parentTask);
task->~AsyncTask();
// Deallocate the memory for the child task, if it was allocated with
// the parent's stack allocator.
if (alet->didAllocateFromParentTask()) {
_swift_task_dealloc_specific(parentTask, (void*) task);
}
// Call the continuation function.
return function_cast<ThrowingTaskFutureWaitContinuationFunction*>(resumeFunction)
(callerContext, error);
}
SWIFT_CC(swiftasync)
static void _asyncLet_finish_continuation(
SWIFT_ASYNC_CONTEXT AsyncContext *callContext,
SWIFT_CONTEXT void *error) {
// Retrieve the async let pointer from the context.
auto continuationContext
= reinterpret_cast<AsyncLetContinuationContext*>(callContext);
auto alet = continuationContext->alet;
auto resultBuffer = continuationContext->resultBuffer;
// We waited for the task using swift_task_future_wait_throwing,
// which means we've been passed a copy of the result in the future
// fragment (either an error, if the task threw, or the result
// in the result buffer). Destroy that copy now.
// Destroy the error, or the result that was stored to the buffer.
if (error) {
#if SWIFT_CONCURRENCY_EMBEDDED
swift_unreachable("untyped error used in embedded Swift");
#else
swift_errorRelease((SwiftError*)error);
#endif
} else {
alet->getTask()->futureFragment()->getResultType().vw_destroy(resultBuffer);
}
// Clean up the async let now that the task has finished.
return asyncLet_finish_after_task_completion(callContext->Parent,
alet,
callContext->ResumeParent,
callContext,
nullptr);
}
SWIFT_CC(swiftasync)
static void swift_asyncLet_finishImpl(SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncLet *alet,
void *resultBuffer,
TaskContinuationFunction *resumeFunction,
AsyncContext *callContext) {
auto task = alet->getTask();
// If the result buffer is already populated, then we just need to destroy
// the value in it and then clean up the task.
if (asImpl(alet)->hasResultInBuffer()) {
task->futureFragment()->getResultType().vw_destroy(
reinterpret_cast<OpaqueValue*>(resultBuffer));
return asyncLet_finish_after_task_completion(callerContext,
alet,
resumeFunction,
callContext,
nullptr);
}
// Otherwise, cancel the task and let it finish first.
swift_task_cancel(task);
// Save the async let pointer in the context so we can clean it up once the
// future completes.
auto aletContext = static_cast<AsyncLetContinuationContext*>(callContext);
aletContext->Parent = callerContext;
aletContext->ResumeParent = resumeFunction;
aletContext->alet = alet;
aletContext->resultBuffer = reinterpret_cast<OpaqueValue*>(resultBuffer);
auto futureContext = asImpl(alet)->getFutureContext();
// TODO: It would be nice if we could await the future without having to
// provide a buffer to store the value to, since we're going to dispose of
// it anyway.
return swift_task_future_wait_throwing(
reinterpret_cast<OpaqueValue*>(resultBuffer),
callContext, alet->getTask(),
_asyncLet_finish_continuation,
futureContext);
}
// =============================================================================
// ==== consume ----------------------------------------------------------------
SWIFT_CC(swiftasync)
static void _asyncLet_consume_continuation(
SWIFT_ASYNC_CONTEXT AsyncContext *callContext) {
// Retrieve the async let pointer from the context.
auto continuationContext
= reinterpret_cast<AsyncLetContinuationContext*>(callContext);
auto alet = continuationContext->alet;
// Clean up the async let now that the task has finished.
return asyncLet_finish_after_task_completion(callContext->Parent, alet,
callContext->ResumeParent,
callContext,
nullptr);
}
SWIFT_CC(swiftasync)
static void swift_asyncLet_consumeImpl(SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncLet *alet,
void *resultBuffer,
TaskContinuationFunction *resumeFunction,
AsyncContext *callContext) {
// If the result buffer is already populated, then we just need to clean up
// the task.
if (asImpl(alet)->hasResultInBuffer()) {
return asyncLet_finish_after_task_completion(callerContext,
alet,
resumeFunction,
callContext,
nullptr);
}
// Save the async let pointer in the context so we can clean it up once the
// future completes.
auto aletContext = static_cast<AsyncLetContinuationContext*>(callContext);
aletContext->Parent = callerContext;
aletContext->ResumeParent = resumeFunction;
aletContext->alet = alet;
auto futureContext = asImpl(alet)->getFutureContext();
// Await completion of the task. We'll destroy the task afterward.
return swift_task_future_wait(
reinterpret_cast<OpaqueValue*>(resultBuffer),
callContext, alet->getTask(),
_asyncLet_consume_continuation,
futureContext);
}
SWIFT_CC(swiftasync)
static void _asyncLet_consume_throwing_continuation(
SWIFT_ASYNC_CONTEXT AsyncContext *callContext,
SWIFT_CONTEXT void *error) {
// Get the async let pointer so we can destroy the task.
auto continuationContext = static_cast<AsyncLetContinuationContext*>(callContext);
auto alet = continuationContext->alet;
return asyncLet_finish_after_task_completion(callContext->Parent,
alet,
callContext->ResumeParent,
callContext,
error);
}
SWIFT_CC(swiftasync)
static void swift_asyncLet_consume_throwingImpl(
SWIFT_ASYNC_CONTEXT AsyncContext *callerContext,
AsyncLet *alet,
void *resultBuffer,
ThrowingTaskFutureWaitContinuationFunction *resumeFunction,
AsyncContext *callContext) {
// If the result buffer is already populated, we just need to clean up the
// task.
if (asImpl(alet)->hasResultInBuffer()) {
return asyncLet_finish_after_task_completion(callerContext,
alet,
function_cast<TaskContinuationFunction*>(resumeFunction),
callContext,
nullptr);
}
auto aletContext = static_cast<AsyncLetContinuationContext*>(callContext);
aletContext->ResumeParent =
function_cast<TaskContinuationFunction*>(resumeFunction);
aletContext->Parent = callerContext;
aletContext->alet = alet;
auto futureContext = asImpl(alet)->getFutureContext();
// Unlike the non-throwing variant, whether we end up with a result depends
// on the success of the task. If we raise an error, then the result buffer
// will not be populated. Save the async let binding so we can fetch it
// after completion.
return swift_task_future_wait_throwing(
reinterpret_cast<OpaqueValue*>(resultBuffer),
aletContext, alet->getTask(),
_asyncLet_consume_throwing_continuation,
futureContext);
}
// =============================================================================
// ==== AsyncLet Implementation ------------------------------------------------
AsyncTask* AsyncLet::getTask() const {
return asImpl(this)->getTask();
}
void *AsyncLet::getPreallocatedSpace() {
return asImpl(this)->getPreallocatedSpace();
}
size_t AsyncLet::getSizeOfPreallocatedSpace() {
return AsyncLetImpl::getSizeOfPreallocatedSpace();
}
bool AsyncLet::didAllocateFromParentTask() {
return asImpl(this)->didAllocateFromParentTask();
}
void AsyncLet::setDidAllocateFromParentTask(bool value) {
return asImpl(this)->setDidAllocateFromParentTask(value);
}
// =============================================================================
#define OVERRIDE_ASYNC_LET COMPATIBILITY_OVERRIDE
#include "../CompatibilityOverride/CompatibilityOverrideIncludePath.h"