Files
swift-mirror/stdlib/public/core/NFC.swift

456 lines
15 KiB
Swift

//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import SwiftShims
extension Sequence where Element == Unicode.Scalar {
internal var _internalNFC: Unicode._InternalNFC<Self> {
Unicode._InternalNFC(self)
}
}
extension Unicode {
/// The contents of the source sequence, in Normalization Form C.
///
/// Normalization to NFC preserves canonical equivalence.
///
internal struct _InternalNFC<Source> where Source: Sequence<Unicode.Scalar> {
internal let source: Source
internal init(_ source: Source) {
self.source = source
}
}
}
extension Unicode._InternalNFC: Sequence {
internal consuming func makeIterator() -> Iterator {
Iterator(source: source.makeIterator())
}
internal struct Iterator: IteratorProtocol {
internal var source: Source.Iterator
internal var normalizer: Unicode._NFCNormalizer
internal init(source: Source.Iterator) {
self.source = source
if let strIter = source as? String.UnicodeScalarView.Iterator {
self.normalizer = Unicode._NFCNormalizer(sourceString: strIter._guts)
} else if let substrIter = source as? Substring.UnicodeScalarView.Iterator {
self.normalizer = Unicode._NFCNormalizer(sourceString: substrIter._elements._wholeGuts)
} else {
self.normalizer = Unicode._NFCNormalizer()
}
}
internal mutating func next() -> Unicode.Scalar? {
normalizer.resume { source.next() } ?? normalizer.flush()
}
}
}
extension Unicode._InternalNFC: Sendable where Source: Sendable {}
extension Unicode._InternalNFC.Iterator: Sendable where Source.Iterator: Sendable {}
extension Unicode {
/// A stateful normalizer, producing a single logical stream
/// of normalized text from chunked inputs.
///
/// To use the normalizer, first create an instance.
/// Next, feed it a chunk of a text stream using the `resume(consuming:)`
/// function. The normalizer will consume from the stream and buffer
/// it as needed, so continue feeding the same source until
/// it returns `nil`, indicating that the source was exhausted.
///
/// ```swift
/// var normalizer = Unicode.NFCNormalizer()
///
/// var input: some IteratorProtocol<Unicode.Scalar> = ...
/// while let scalar = normalizer.resume(consuming: &input) {
/// print(scalar)
/// }
///
/// // assert(input.next() == nil)
/// ```
///
/// You may continue consuming sources until you reach the end
/// of the logical text stream. Once you reach the end,
/// call `flush()` to drain any remaining content
/// from the normalizer's buffers.
///
/// ```swift
/// while let scalar = normalizer.flush() {
/// print(scalar)
/// }
/// ```
///
/// The chunks of input text do not need to be aligned on any normalization
/// boundary. The normalizer state has value semantics, so it is possible
/// to copy and store and is inherently thread-safe.
///
internal struct _NFCNormalizer: Sendable {
internal enum State {
case emittingSegment
case consuming
}
internal var state = State.consuming
internal var isTerminated = false
internal var sourceIsAlreadyNFC = false
internal var nfd = Unicode._NFDNormalizer()
internal var buffer = Unicode._NormDataBuffer()
// This is our starter that is currently being composed with other scalars
// into new scalars. For example, "e\u{301}", here our first scalar is 'e',
// which is a starter, thus we assign composee to this 'e' and move to the
// next scalar. We attempt to compose our composee, 'e', with '\u{301}' and
// find that there is a composition. Thus our new composee is now 'é' and
// we continue to try and compose following scalars with this composee.
internal var composee = Optional<Unicode.Scalar>.none
internal init(sourceString: borrowing _StringGuts) {
sourceIsAlreadyNFC = sourceString.isNFC
}
/// Creates a new normalizer.
///
internal init() { }
/// Resume normalizing the text stream.
///
/// Each call to `resume` returns the next scalar in the normalized output,
/// consuming elements from the given source as necessary.
///
/// If the normalizer returns `nil`, the source was exhausted.
/// Once a source is exhausted, you may:
///
/// - Call `resume` again some time later with a different source
/// to continue processing the same logical text stream, or
///
/// - Call `flush` in order to mark the end of the stream
/// and consume data remaining in the normalizer's internal buffers.
///
/// Typical usage looks like the following:
///
/// ```swift
/// var normalizer = Unicode.NFCNormalizer()
///
/// var input: some IteratorProtocol<Unicode.Scalar> = ...
/// while let scalar = normalizer.resume(consuming: &input) {
/// print(scalar)
/// }
///
/// // We could resume again, consuming from another input here.
/// // Finally, when we are done consuming inputs:
///
/// while let scalar = normalizer.flush() {
/// print(scalar)
/// }
/// ```
///
/// The normalizer consumes data from the source as needed,
/// meaning even if a call to `resume` returns a value,
/// that value may have come from the normalizer's internal buffers
/// without consuming the input source at all.
///
/// Be careful to ensure each input source has been fully consumed
/// before moving on to the next source (marked by `resume` returning `nil`).
///
internal mutating func resume(
consuming source: inout some IteratorProtocol<Unicode.Scalar>
) -> Unicode.Scalar? {
resume(consuming: { source.next() })
}
// Intended ABI barrier for resume(consuming: inout some IteratorProtocol<Unicode.Scalar>).
// when it becomes public.
internal mutating func resume(
consuming nextFromSource: () -> Unicode.Scalar?
) -> Unicode.Scalar? {
guard !isTerminated else {
return nil
}
guard !sourceIsAlreadyNFC else {
return nextFromSource()
}
return _resume(consumingNFD: { $0.nfd._resume(consuming: nextFromSource) })
}
/// Marks the end of the text stream and
/// returns the next scalar from the normalizer's internal buffer.
///
/// Once you have finished feeding input data to the normalizer,
/// call `flush` until it returns `nil`.
///
/// ```swift
/// while let scalar = normalizer.flush() {
/// print(scalar)
/// }
/// ```
///
/// After calling `flush`, all future calls to `resume`
/// will immediately return `nil` without consuming from its source.
/// This allows optional chaining to be used to
/// fully normalize a stream:
///
/// ```swift
/// // Normalize the concatenation of inputA and inputB
///
/// while let scalar =
/// normalizer.resume(consuming: &inputA) ??
/// normalizer.resume(consuming: &inputB) ??
/// normalizer.flush()
/// {
/// print(scalar)
/// }
/// ```
///
internal mutating func flush() -> Unicode.Scalar? {
isTerminated = true
guard !sourceIsAlreadyNFC else {
return nil
}
// Process anything remaining from the NFD normalizer.
if let next = _resume(consumingNFD: { $0.nfd._flush() }) {
return next
}
// If we have a leftover composee, make sure to return it.
// We may still have things in the buffer which are not complete segments.
return composee.take() ?? buffer.next()?.scalar
}
}
}
extension Unicode._NFCNormalizer {
@inline(never)
internal mutating func _resume(
consumingNFD nextNFD: (inout Self) -> ScalarAndNormData?
) -> Unicode.Scalar? {
switch state {
case .emittingSegment:
if let buffered = buffer.next() {
return buffered.scalar
}
state = .consuming
fallthrough
case .consuming:
while let current = nextNFD(&self) {
// The first starter in the sequence is our initial 'composee'.
// Any scalars preceding the first starter have nothing to compose with
// and are just emitted directly.
guard let currentComposee = composee else {
guard current.normData.canonicalCombiningClass == .notReordered else {
return current.scalar
}
composee = current.scalar
continue
}
guard let lastBufferedNormData = buffer.last?.normData else {
// The buffer is empty so we have a simple Non-Blocked Pair,
// <composee, current>. Look for an equivalent Primary Composite.
// If 'current' is NFC_QC, we already know there won't be a composite.
guard
!current.normData.isNFCQC,
let composed = compose(currentComposee, andNonNFCQC: current.scalar)
else {
// No Primary Composite found.
// If 'current' is a starter, yield 'composee',
// and begin a new segment with 'current' as the new 'composee'.
// Otherwise, 'current' is a non-composing mark
// that we need to buffer until we are finished composing.
if current.normData.canonicalCombiningClass == .notReordered {
composee = current.scalar
return currentComposee
}
buffer.append(current)
continue
}
// Primary Composite found.
// It becomes our new 'composee' and 'current' is discarded.
composee = composed
continue
}
// We have the sequence <composee, [...buffer contents...], current>.
// Check whether 'current' may compose with 'composee',
// or whether it is blocked by the buffer contents.
//
// Blocking refers to the presence of a scalar X in the buffer
// where CCC(X) == 0 or CCC(X) >= CCC(current).
//
// Example:
//
// - "a\u{0305}\u{0300}b" (a̅̀b) => NFC "a\u{0305}\u{0300}b" (a̅̀b)
// - "a\u{0300}\u{0305}b" (à̅b) => NFC "\u{00E0}\u{0305}b" (à̅b)
// ^^^ ^^^
//
// These strings contain two combining marks with the same combining
// class: U+0305 COMBINING OVERLINE and U+0300 COMBINING GRAVE ACCENT.
// Because these marks have the same class, they cannot be reordered
// (their existing order is important). In one ordering, the accent
// appears above the overline, and in the other the order is reversed.
//
// It turns out, there is no composite for <"a", overline>,
// but there is one for <"a", grave accent>: the
// U+00E0 LATIN SMALL LETTER A WITH GRAVE we see in the second example.
//
// Despite the overline not composing, it would be wrong
// if the grave accent could squeeze ahead of it
// via composition with the "a".
// So the presence of the overline must block the composition.
_internalInvariant(
lastBufferedNormData.canonicalCombiningClass != .notReordered,
"We never buffer starters"
)
// Since we consume an NFD stream
// the buffer contents are already in canonical order,
// and 'lastBufferedNormData' has the highest CCC in the buffer.
_internalInvariant(
lastBufferedNormData.canonicalCombiningClass <= current.normData.canonicalCombiningClass
|| current.normData.canonicalCombiningClass == .notReordered,
"NFD stream not in canonical order"
)
guard lastBufferedNormData.canonicalCombiningClass < current.normData.canonicalCombiningClass else {
// 'current' is blocked from composing with 'composee'.
//
// If 'current' is a starter, yield 'composee',
// emit the segment that we have in the buffer,
// and begin a new segment with 'current' as the new 'composee'.
// Otherwise, 'current' is a non-composing mark
// that we need to buffer until we are finished composing.
if current.normData.canonicalCombiningClass == .notReordered {
composee = current.scalar
state = .emittingSegment
return currentComposee
}
buffer.append(current)
continue
}
_internalInvariant(current.normData.canonicalCombiningClass != .notReordered)
// Look for a Primary Composite equivalent to <composee, current>.
// If 'current' is NFC_QC, we already know there won't be any composite.
guard
!current.normData.isNFCQC,
let composed = compose(currentComposee, andNonNFCQC: current.scalar)
else {
// No Primary Composite found.
// We know 'current' is not a starter, so it is a non-composing mark
// that we need to buffer until we are finished composing.
buffer.append(current)
continue
}
// Primary Composite found.
// It becomes our new 'composee', and 'current' is discarded.
composee = composed
}
// NFD source is exhausted.
return nil
}
}
private func compose(
_ x: Unicode.Scalar,
andNonNFCQC y: Unicode.Scalar
) -> Unicode.Scalar? {
if let hangul = composeHangul(x, and: y) {
return hangul
}
// Otherwise, lookup the composition.
let composition = _swift_stdlib_getComposition(x.value, y.value)
guard composition != .max else {
return nil
}
return Unicode.Scalar(_value: composition)
}
@inline(never)
private func composeHangul(
_ x: Unicode.Scalar,
and y: Unicode.Scalar
) -> Unicode.Scalar? {
// L = Hangul leading consonants
let L: (base: UInt32, count: UInt32) = (base: 0x1100, count: 19)
// V = Hangul vowels
let V: (base: UInt32, count: UInt32) = (base: 0x1161, count: 21)
// T = Hangul tail consonants
let T: (base: UInt32, count: UInt32) = (base: 0x11A7, count: 28)
// N = Number of precomposed Hangul syllables that start with the same
// leading consonant. (There is no base for N).
let N: (base: UInt32, count: UInt32) = (base: 0x0, count: 588)
// S = Hangul precomposed syllables
let S: (base: UInt32, count: UInt32) = (base: 0xAC00, count: 11172)
switch (x.value, y.value) {
// Check for Hangul (L, V) -> LV compositions.
case (L.base ..< L.base &+ L.count, V.base ..< V.base &+ V.count):
let lIdx = x.value &- L.base
let vIdx = y.value &- V.base
let lvIdx = lIdx &* N.count &+ vIdx &* T.count
let s = S.base &+ lvIdx
return Unicode.Scalar(_value: s)
// Check for Hangul (LV, T) -> LVT compositions.
case (S.base ..< S.base &+ S.count, T.base &+ 1 ..< T.base &+ T.count):
if (x.value &- S.base) % T.count == 0 {
return Unicode.Scalar(_value: x.value &+ y.value &- T.base)
} else {
fallthrough
}
default:
return nil
}
}
}