Files
swift-mirror/stdlib/public/core/NFD.swift

384 lines
12 KiB
Swift

//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
extension Sequence where Element == Unicode.Scalar {
internal var _internalNFD: Unicode._InternalNFD<Self> {
Unicode._InternalNFD(self)
}
}
extension Unicode {
/// The contents of the source sequence, in Normalization Form D.
///
/// Normalization to NFD preserves canonical equivalence.
///
internal struct _InternalNFD<Source> where Source: Sequence<Unicode.Scalar> {
internal let source: Source
internal init(_ source: Source) {
self.source = source
}
}
}
extension Unicode._InternalNFD: Sequence {
internal consuming func makeIterator() -> Iterator {
Iterator(source: source.makeIterator())
}
internal struct Iterator: IteratorProtocol {
internal var source: Source.Iterator
internal var normalizer: Unicode._NFDNormalizer
internal init(source: Source.Iterator) {
self.source = source
self.normalizer = Unicode._NFDNormalizer()
}
internal mutating func next() -> Unicode.Scalar? {
normalizer.resume(consuming: &source) ?? normalizer.flush()
}
}
}
extension Unicode._InternalNFD: Sendable where Source: Sendable {}
extension Unicode._InternalNFD.Iterator: Sendable where Source.Iterator: Sendable {}
extension Unicode {
/// A stateful normalizer, producing a single logical stream
/// of normalized text from chunked inputs.
///
/// To use the normalizer, first create an instance.
/// Next, feed it a chunk of a text stream using the `resume(consuming:)`
/// function. The normalizer will consume from the stream and buffer
/// it as needed, so continue feeding the same source until
/// it returns `nil`, indicating that the source was exhausted.
///
/// ```swift
/// var normalizer = Unicode.NFDNormalizer()
///
/// var input: some IteratorProtocol<Unicode.Scalar> = ...
/// while let scalar = normalizer.resume(consuming: &input) {
/// print(scalar)
/// }
///
/// // assert(input.next() == nil)
/// ```
///
/// You may continue consuming sources until you reach the end
/// of the logical text stream. Once you reach the end,
/// call `flush()` to drain any remaining content
/// from the normalizer's buffers.
///
/// ```swift
/// while let scalar = normalizer.flush() {
/// print(scalar)
/// }
/// ```
///
/// The chunks of input text do not need to be aligned on any normalization
/// boundary. The normalizer state has value semantics, so it is possible
/// to copy and store and is inherently thread-safe.
///
internal struct _NFDNormalizer: Sendable {
internal enum State {
case emittingSegment
case consuming
case terminated
}
internal var state = State.consuming
internal var buffer = Unicode._NormDataBuffer()
internal var pendingStarter = Optional<ScalarAndNormData>.none
internal var bufferIsSorted = false
/// Creates a new normalizer.
///
internal init() { }
/// Resume normalizing the text stream.
///
/// Each call to `resume` returns the next scalar in the normalized output,
/// consuming elements from the given source as necessary.
///
/// If the normalizer returns `nil`, the source was exhausted.
/// One a source is exhausted, you may:
///
/// - Call `resume` again some time later with a different source
/// to continue processing the same logical text stream, or
///
/// - Call `flush` in order to mark the end of the stream
/// and consume data remaining in the normalizer's internal buffers.
///
/// Typical usage looks like the following:
///
/// ```swift
/// var normalizer = Unicode.NFDNormalizer()
///
/// var input: some IteratorProtocol<Unicode.Scalar> = ...
/// while let scalar = normalizer.resume(consuming: &input) {
/// print(scalar)
/// }
///
/// // We could resume again, consuming from another input here.
/// // Finally, when we are done consuming inputs:
///
/// while let scalar = normalizer.flush() {
/// print(scalar)
/// }
/// ```
///
/// The normalizer consumes data from the source as needed,
/// meaning even if a call to `resume` returns a value,
/// that value may have come from the normalizer's internal buffers
/// without consuming the input source at all.
///
/// Be careful to ensure each input source has been fully consumed
/// before moving on to the next source (marked by `resume` returning `nil`).
///
internal mutating func resume(
consuming source: inout some IteratorProtocol<Unicode.Scalar>
) -> Unicode.Scalar? {
resume(consuming: { source.next() })
}
// Intended ABI barrier for resume(consuming: inout some IteratorProtocol<Unicode.Scalar>).
// when it becomes public.
internal mutating func resume(
consuming nextFromSource: () -> Unicode.Scalar?
) -> Unicode.Scalar? {
_resume(consuming: nextFromSource)?.scalar
}
/// Marks the end of the text stream and
/// returns the next scalar from the normalizer's internal buffer.
///
/// Once you have finished feeding input data to the normalizer,
/// call `flush` until it returns `nil`.
///
/// ```swift
/// while let scalar = normalizer.flush() {
/// print(scalar)
/// }
/// ```
///
/// After calling `flush`, all future calls to `resume`
/// will immediately return `nil` without consuming from its source.
/// This allows optional chaining to be used to
/// fully normalize a stream:
///
/// ```swift
/// // Normalize the concatenation of inputA and inputB
///
/// while let scalar =
/// normalizer.resume(consuming: &inputA) ??
/// normalizer.resume(consuming: &inputB) ??
/// normalizer.flush()
/// {
/// print(scalar)
/// }
/// ```
internal mutating func flush() -> Unicode.Scalar? {
_flush()?.scalar
}
}
}
extension Unicode._NFDNormalizer {
@inline(never)
internal mutating func _resume(
consuming nextFromSource: () -> Unicode.Scalar?
) -> ScalarAndNormData? {
switch state {
case .emittingSegment:
_internalInvariant(
pendingStarter != nil,
"Must find next segment starter before emitting buffered segment"
)
_internalInvariant(
bufferIsSorted,
"Buffered segment must be sorted before being emitted"
)
if let buffered = buffer.next() {
return buffered
}
bufferIsSorted = false
state = .consuming
fallthrough
case .consuming:
while let (scalar, normData) = takePendingOrConsume(nextFromSource) {
// If this scalar is a starter, stash it and emit the decomposed segment
// we have in the buffer. The buffer must be sorted first.
if normData.canonicalCombiningClass == .notReordered, !buffer.isEmpty {
pendingStarter = (scalar, normData)
buffer.sort()
bufferIsSorted = true
state = .emittingSegment
return buffer.next()
}
// If this scalar is NFD_QC, it does not need to be decomposed.
if normData.isNFDQC {
// If the scalar is a starter its CCC is 0,
// so it does not need to be sorted and can be emitted directly.
if normData.canonicalCombiningClass == .notReordered {
return (scalar, normData)
}
buffer.append((scalar, normData))
continue
}
// Otherwise, append the scalar's decomposition to the buffer.
decomposeNonNFDQC((scalar, normData))
}
// Source is exhausted.
return nil
case .terminated:
return nil
}
}
internal mutating func _flush() -> ScalarAndNormData? {
state = .terminated
if !bufferIsSorted {
buffer.sort()
bufferIsSorted = true
}
// The buffer contains the decomposed segment *prior to*
// any pending starter we might have.
return buffer.next() ?? pendingStarter.take()
}
@inline(__always)
private mutating func takePendingOrConsume(
_ nextFromSource: () -> Unicode.Scalar?
) -> ScalarAndNormData? {
if let pendingStarter = pendingStarter.take() {
return pendingStarter
} else if let nextScalar = nextFromSource() {
return (nextScalar, Unicode._NormData(nextScalar))
} else {
return nil
}
}
private mutating func decomposeNonNFDQC(
_ scalarInfo: ScalarAndNormData
) {
// Handle Hangul decomposition algorithmically.
// S.base = 0xAC00
// S.count = 11172
// S.base + S.count - 1 = 0xD7A3
if (0xAC00 ... 0xD7A3).contains(scalarInfo.scalar.value) {
decomposeHangul(scalarInfo.scalar)
return
}
// Otherwise, we need to lookup the decomposition (if there is one).
decomposeSlow(scalarInfo)
}
@inline(never)
private mutating func decomposeHangul(_ scalar: Unicode.Scalar) {
// L = Hangul leading consonants
let L: (base: UInt32, count: UInt32) = (base: 0x1100, count: 19)
// V = Hangul vowels
let V: (base: UInt32, count: UInt32) = (base: 0x1161, count: 21)
// T = Hangul tail consonants
let T: (base: UInt32, count: UInt32) = (base: 0x11A7, count: 28)
// N = Number of precomposed Hangul syllables that start with the same
// leading consonant. (There is no base for N).
let N: (base: UInt32, count: UInt32) = (base: 0x0, count: 588)
// S = Hangul precomposed syllables
let S: (base: UInt32, count: UInt32) = (base: 0xAC00, count: 11172)
let sIdx = scalar.value &- S.base
let lIdx = sIdx / N.count
let l = Unicode.Scalar(_value: L.base &+ lIdx)
// Hangul leading consonants, L, always have normData of 0.
// CCC = 0, NFC_QC = Yes, NFD_QC = Yes
buffer.append((scalar: l, normData: .init(rawValue: 0)))
let vIdx = (sIdx % N.count) / T.count
let v = Unicode.Scalar(_value: V.base &+ vIdx)
// Hangul vowels, V, always have normData of 4.
// CCC = 0, NFC_QC = Maybe, NFD_QC = Yes
buffer.append((scalar: v, normData: .init(rawValue: 4)))
let tIdx = sIdx % T.count
if tIdx != 0 {
let t = Unicode.Scalar(_value: T.base &+ tIdx)
// Hangul tail consonants, T, always have normData of 4.
// CCC = 0, NFC_QC = Maybe, NFD_QC = Yes
buffer.append((scalar: t, normData: .init(rawValue: 4)))
}
}
@inline(never)
private mutating func decomposeSlow(
_ original: ScalarAndNormData
) {
// Look into the decomposition perfect hash table.
let decompEntry = Unicode._DecompositionEntry(original.scalar)
// If this is not our original scalar, then we have no decomposition for this
// scalar, so just emit itself. This is required because perfect hashing
// does not know the original set of keys that it used to create itself, so
// we store the original scalar in our decomposition entry to ensure that
// scalars that hash to the same index don't succeed.
guard original.scalar == decompEntry.hashedScalar else {
buffer.append(original)
return
}
var utf8 = unsafe decompEntry.utf8
while utf8.count > 0 {
let (scalar, len) = unsafe _decodeScalar(utf8, startingAt: 0)
unsafe utf8 = unsafe UnsafeBufferPointer(rebasing: utf8[len...])
// Fast path: Because this will be emitted into the completed NFD buffer,
// we don't need to look at NFD_QC anymore which lets us do a larger
// latiny check for NFC_QC and CCC (0xC0 vs. 0x300).
let normData = Unicode._NormData(scalar, fastUpperbound: 0x300)
buffer.append((scalar, normData))
}
}
}