Files
swift-mirror/stdlib/public/core/StringUTF16View.swift
David Smith 7b78a1d4b4 Avoid StringUTF16View dispatch overhead for some bridged String methods (#83529)
This removes a bunch of overhead on the UTF16 paths in String, as well
as consolidating the complicated bits of the logic in one file.
2025-09-22 17:03:24 -07:00

1059 lines
37 KiB
Swift
Raw Permalink Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===--- StringUTF16.swift ------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
// FIXME(ABI)#71 : The UTF-16 string view should have a custom iterator type to
// allow performance optimizations of linear traversals.
extension String {
/// A view of a string's contents as a collection of UTF-16 code units.
///
/// You can access a string's view of UTF-16 code units by using its `utf16`
/// property. A string's UTF-16 view encodes the string's Unicode scalar
/// values as 16-bit integers.
///
/// let flowers = "Flowers 💐"
/// for v in flowers.utf16 {
/// print(v)
/// }
/// // 70
/// // 108
/// // 111
/// // 119
/// // 101
/// // 114
/// // 115
/// // 32
/// // 55357
/// // 56464
///
/// Unicode scalar values that make up a string's contents can be up to 21
/// bits long. The longer scalar values may need two `UInt16` values for
/// storage. Those "pairs" of code units are called *surrogate pairs*.
///
/// let flowermoji = "💐"
/// for v in flowermoji.unicodeScalars {
/// print(v, v.value)
/// }
/// // 💐 128144
///
/// for v in flowermoji.utf16 {
/// print(v)
/// }
/// // 55357
/// // 56464
///
/// To convert a `String.UTF16View` instance back into a string, use the
/// `String` type's `init(_:)` initializer.
///
/// let favemoji = "My favorite emoji is 🎉"
/// if let i = favemoji.utf16.firstIndex(where: { $0 >= 128 }) {
/// let asciiPrefix = String(favemoji.utf16[..<i])!
/// print(asciiPrefix)
/// }
/// // Prints "My favorite emoji is "
///
/// UTF16View Elements Match NSString Characters
/// ============================================
///
/// The UTF-16 code units of a string's `utf16` view match the elements
/// accessed through indexed `NSString` APIs.
///
/// print(flowers.utf16.count)
/// // Prints "10"
///
/// let nsflowers = flowers as NSString
/// print(nsflowers.length)
/// // Prints "10"
///
/// Unlike `NSString`, however, `String.UTF16View` does not use integer
/// indices. If you need to access a specific position in a UTF-16 view, use
/// Swift's index manipulation methods. The following example accesses the
/// fourth code unit in both the `flowers` and `nsflowers` strings:
///
/// print(nsflowers.character(at: 3))
/// // Prints "119"
///
/// let i = flowers.utf16.index(flowers.utf16.startIndex, offsetBy: 3)
/// print(flowers.utf16[i])
/// // Prints "119"
///
/// Although the Swift overlay updates many Objective-C methods to return
/// native Swift indices and index ranges, some still return instances of
/// `NSRange`. To convert an `NSRange` instance to a range of
/// `String.Index`, use the `Range(_:in:)` initializer, which takes an
/// `NSRange` and a string as arguments.
///
/// let snowy = " Let it snow! "
/// let nsrange = NSRange(location: 3, length: 12)
/// if let range = Range(nsrange, in: snowy) {
/// print(snowy[range])
/// }
/// // Prints "Let it snow!"
@frozen
public struct UTF16View: Sendable {
@usableFromInline
internal var _guts: _StringGuts
@inlinable
internal init(_ guts: _StringGuts) {
self._guts = guts
_invariantCheck()
}
}
}
extension String.UTF16View {
#if !INTERNAL_CHECKS_ENABLED
@inlinable @inline(__always) internal func _invariantCheck() {}
#else
@usableFromInline @inline(never) @_effects(releasenone)
internal func _invariantCheck() {
_internalInvariant(
startIndex.transcodedOffset == 0 && endIndex.transcodedOffset == 0)
}
#endif // INTERNAL_CHECKS_ENABLED
}
extension String.UTF16View: BidirectionalCollection {
public typealias Index = String.Index
/// The position of the first code unit if the `String` is
/// nonempty; identical to `endIndex` otherwise.
@inlinable @inline(__always)
public var startIndex: Index { return _guts.startIndex }
/// The "past the end" position---that is, the position one greater than
/// the last valid subscript argument.
///
/// In an empty UTF-16 view, `endIndex` is equal to `startIndex`.
@inlinable @inline(__always)
public var endIndex: Index { return _guts.endIndex }
@inline(__always)
internal var _breadcrumbStride: Int { _StringBreadcrumbs.breadcrumbStride }
@inlinable @inline(__always)
public func index(after idx: Index) -> Index {
var idx = _guts.ensureMatchingEncoding(idx)
_precondition(idx._encodedOffset < _guts.count,
"String index is out of bounds")
if _slowPath(_guts.isForeign) { return _foreignIndex(after: idx) }
if _guts.isASCII {
return idx.nextEncoded._scalarAligned._encodingIndependent
}
// For a BMP scalar (1-3 UTF-8 code units), advance past it. For a non-BMP
// scalar, use a transcoded offset first.
// TODO: If transcoded is 1, can we just skip ahead 4?
idx = _utf16AlignNativeIndex(idx)
let len = _guts.fastUTF8ScalarLength(startingAt: idx._encodedOffset)
if len == 4 && idx.transcodedOffset == 0 {
return idx.nextTranscoded._knownUTF8
}
return idx
.strippingTranscoding
.encoded(offsetBy: len)
._scalarAligned
._knownUTF8
}
@inlinable @inline(__always)
public func index(before idx: Index) -> Index {
var idx = _guts.ensureMatchingEncoding(idx)
_precondition(!idx.isZeroPosition && idx <= endIndex,
"String index is out of bounds")
if _slowPath(_guts.isForeign) { return _foreignIndex(before: idx) }
if _guts.isASCII {
return idx.priorEncoded._scalarAligned._encodingIndependent
}
if idx.transcodedOffset != 0 {
_internalInvariant(idx.transcodedOffset == 1)
return idx.strippingTranscoding._scalarAligned._knownUTF8
}
idx = _utf16AlignNativeIndex(idx)
let len = _guts.fastUTF8ScalarLength(endingAt: idx._encodedOffset)
if len == 4 {
// 2 UTF-16 code units comprise this scalar; advance to the beginning and
// start mid-scalar transcoding
return idx.encoded(offsetBy: -len).nextTranscoded._knownUTF8
}
// Single UTF-16 code unit
_internalInvariant((1...3) ~= len)
return idx.encoded(offsetBy: -len)._scalarAligned._knownUTF8
}
@_effects(releasenone)
public func index(_ i: Index, offsetBy n: Int) -> Index {
var i = _guts.ensureMatchingEncoding(i)
_precondition(i <= endIndex, "String index is out of bounds")
if _slowPath(_guts.isForeign) {
return _foreignIndex(i, offsetBy: n)
}
if _guts.isASCII {
return Index(
_encodedOffset: i._encodedOffset + n
)._scalarAligned._encodingIndependent
}
i = _utf16AlignNativeIndex(i)
let threshold = (
i == startIndex ? _breadcrumbStride / 2 : _breadcrumbStride)
if n.magnitude < threshold {
// Do not use breadcrumbs if directly computing the result is expected
// to be cheaper.
return _index(i, offsetBy: n)._knownUTF8
}
let lowerOffset = _nativeGetOffset(for: i)
let result = _nativeGetIndex(for: lowerOffset + n)
return result
}
@_effects(releasenone)
public func index(
_ i: Index, offsetBy n: Int, limitedBy limit: Index
) -> Index? {
var limit = _guts.ensureMatchingEncoding(limit)
guard _fastPath(limit <= endIndex) else { return index(i, offsetBy: n) }
var i = _guts.ensureMatchingEncoding(i)
_precondition(i <= endIndex, "String index is out of bounds")
if _slowPath(_guts.isForeign) {
return _foreignIndex(i, offsetBy: n, limitedBy: limit)
}
if !_guts.isASCII { // We have ASCII fast paths below
limit = _utf16AlignNativeIndex(limit)
i = _utf16AlignNativeIndex(i)
let threshold = (
_breadcrumbStride + (i == startIndex ? 0 : _breadcrumbStride / 2))
if n.magnitude < threshold {
// Do not use breadcrumbs if directly computing the result is expected
// to be cheaper.
return _index(i, offsetBy: n, limitedBy: limit)?._knownUTF8
}
}
let iOffset = _nativeGetOffset(for: i)
let limitOffset = _nativeGetOffset(for: limit)
// If distance < 0, limit has no effect if it is greater than i.
if _slowPath(n < 0 && limit <= i && limitOffset > iOffset + n) {
return nil
}
// If distance > 0, limit has no effect if it is less than i.
if _slowPath(n >= 0 && limit >= i && limitOffset < iOffset + n) {
return nil
}
let result = _nativeGetIndex(for: iOffset + n)
return result
}
@_effects(releasenone)
public func distance(from start: Index, to end: Index) -> Int {
var start = _guts.ensureMatchingEncoding(start)
var end = _guts.ensureMatchingEncoding(end)
// FIXME: This method used to not properly validate indices before 5.7;
// temporarily allow older binaries to keep invoking undefined behavior as
// before.
_precondition(
ifLinkedOnOrAfter: .v5_7_0,
start._encodedOffset <= _guts.count,
"String index is out of bounds")
_precondition(
ifLinkedOnOrAfter: .v5_7_0,
end._encodedOffset <= _guts.count,
"String index is out of bounds")
if _slowPath(_guts.isForeign) {
return _foreignDistance(from: start, to: end)
}
let utf8Distance = end._encodedOffset - start._encodedOffset
if _guts.isASCII {
return utf8Distance
}
let threshold = (start == startIndex || end == startIndex
? _breadcrumbStride / 2
: _breadcrumbStride)
if utf8Distance.magnitude < threshold {
// Do not use breadcrumbs if directly computing the result is expected to
// be cheaper. The conservative threshold above assumes that each UTF-16
// code unit will map to a single UTF-8 code unit, i.e., the worst
// possible (a.k.a. most compact) case with all ASCII scalars.
// FIXME: Figure out if a more optimistic threshold would work better.
start = _utf16AlignNativeIndex(start)
end = _utf16AlignNativeIndex(end)
guard start <= end else {
return -_utf16Distance(from: end, to: start)
}
return _utf16Distance(from: start, to: end)
}
let lower = _nativeGetOffset(for: start)
let upper = _nativeGetOffset(for: end)
return upper &- lower
}
@inlinable
public var count: Int {
if _slowPath(_guts.isForeign) {
return _foreignCount()
}
return _nativeGetOffset(for: endIndex)
}
internal func _indexRange(
for offsets: Range<Int>,
from start: Index
) -> Range<Index> {
_internalInvariant(_guts.hasMatchingEncoding(start))
if _slowPath(_guts.isForeign) {
let lower = self.index(start, offsetBy: offsets.lowerBound)
let upper = _foreignIndex(lower, offsetBy: offsets.count)
return unsafe Range(uncheckedBounds: (lower, upper))
}
if _guts.isASCII {
let lower = self.index(start, offsetBy: offsets.lowerBound)
let upper = self.index(lower, offsetBy: offsets.count)
return unsafe Range(uncheckedBounds: (lower, upper))
}
if offsets.count < _breadcrumbStride / 2 {
let lower = self.index(start, offsetBy: offsets.lowerBound)
let upper = _index(lower, offsetBy: offsets.count)._knownUTF8
return unsafe Range(uncheckedBounds: (lower, upper))
}
let bias = _nativeGetOffset(for: start)
let lower = (
offsets.lowerBound - bias <= _breadcrumbStride / 2
? _index(start, offsetBy: offsets.lowerBound)
: _nativeGetIndex(for: bias + offsets.lowerBound))
let upper = _nativeGetIndex(for: bias + offsets.upperBound)
return unsafe Range(uncheckedBounds: (lower, upper))
}
internal func _offsetRange(
for range: Range<Index>,
from start: Index
) -> Range<Int> {
var lower = _guts.ensureMatchingEncoding(range.lowerBound)
var upper = _guts.ensureMatchingEncoding(range.upperBound)
_internalInvariant(_guts.hasMatchingEncoding(start))
_precondition(
ifLinkedOnOrAfter: .v5_7_0,
lower._encodedOffset <= _guts.count,
"String index is out of bounds")
_precondition(
ifLinkedOnOrAfter: .v5_7_0,
upper._encodedOffset <= _guts.count,
"String index is out of bounds")
if _slowPath(_guts.isForeign) {
let lowerOffset = _foreignDistance(from: start, to: lower)
let distance = _foreignDistance(from: lower, to: upper)
return unsafe Range(uncheckedBounds: (lowerOffset, lowerOffset + distance))
}
let utf8Distance = upper._encodedOffset - lower._encodedOffset
if _guts.isASCII {
let lowerOffset = lower._encodedOffset - start._encodedOffset
return unsafe Range(uncheckedBounds: (lowerOffset, lowerOffset + utf8Distance))
}
if utf8Distance.magnitude <= _breadcrumbStride / 2 {
lower = _utf16AlignNativeIndex(lower)
upper = _utf16AlignNativeIndex(upper)
let lowerOffset = distance(from: start, to: lower)
let distance = _utf16Distance(from: lower, to: upper)
return unsafe Range(uncheckedBounds: (lowerOffset, lowerOffset + distance))
}
let bias = _nativeGetOffset(for: start)
let utf8StartOffset = lower._encodedOffset - start._encodedOffset
let lowerOffset = (
utf8StartOffset <= _breadcrumbStride / 2
? _utf16Distance(from: start, to: lower)
: _nativeGetOffset(for: lower) - bias)
let upperOffset = _nativeGetOffset(for: upper) - bias
return unsafe Range(uncheckedBounds: (lowerOffset, upperOffset))
}
/// Accesses the code unit at the given position.
///
/// The following example uses the subscript to print the value of a
/// string's first UTF-16 code unit.
///
/// let greeting = "Hello, friend!"
/// let i = greeting.utf16.startIndex
/// print("First character's UTF-16 code unit: \(greeting.utf16[i])")
/// // Prints "First character's UTF-16 code unit: 72"
///
/// - Parameter position: A valid index of the view. `position` must be
/// less than the view's end index.
@inlinable @inline(__always)
public subscript(idx: Index) -> UTF16.CodeUnit {
let idx = _guts.ensureMatchingEncoding(idx)
_precondition(idx._encodedOffset < _guts.count,
"String index is out of bounds")
return self[_unchecked: idx]
}
@_alwaysEmitIntoClient @inline(__always)
internal subscript(_unchecked idx: Index) -> UTF16.CodeUnit {
if _fastPath(_guts.isFastUTF8) {
let scalar = _guts.fastUTF8Scalar(
startingAt: _guts.scalarAlign(idx)._encodedOffset)
return scalar.utf16[idx.transcodedOffset]
}
return _foreignSubscript(position: idx)
}
internal subscript(nativeNonASCIIOffset offset: Int) -> UTF16.CodeUnit {
@_effects(releasenone) get {
let threshold = _breadcrumbStride / 2
// Do not use breadcrumbs if directly computing the result is expected
// to be cheaper
let idx = offset < threshold ?
_index(startIndex, offsetBy: offset)._knownUTF8 :
_nativeGetIndex(for: offset)
_precondition(idx._encodedOffset < _guts.count,
"String index is out of bounds")
let scalar = _guts.fastUTF8Scalar(
startingAt: _guts.scalarAlign(idx)._encodedOffset)
return scalar.utf16[idx.transcodedOffset]
}
}
}
extension String.UTF16View {
@frozen
public struct Iterator: IteratorProtocol, Sendable {
@usableFromInline
internal var _guts: _StringGuts
@usableFromInline
internal var _position: Int = 0
@usableFromInline
internal var _end: Int
// If non-nil, return this value for `next()` (and set it to nil).
//
// This is set when visiting a non-BMP scalar: the leading surrogate is
// returned, this field is set with the value of the trailing surrogate, and
// `_position` is advanced to the start of the next scalar.
@usableFromInline
internal var _nextIsTrailingSurrogate: UInt16? = nil
@inlinable
internal init(_ guts: _StringGuts) {
self._end = guts.count
self._guts = guts
}
@inlinable
public mutating func next() -> UInt16? {
if _slowPath(_nextIsTrailingSurrogate != nil) {
let trailing = self._nextIsTrailingSurrogate._unsafelyUnwrappedUnchecked
self._nextIsTrailingSurrogate = nil
return trailing
}
guard _fastPath(_position < _end) else { return nil }
let (scalar, len) = _guts.errorCorrectedScalar(startingAt: _position)
_position &+= len
if _slowPath(scalar.value > UInt16.max) {
self._nextIsTrailingSurrogate = scalar.utf16[1]
return scalar.utf16[0]
}
return UInt16(truncatingIfNeeded: scalar.value)
}
}
@inlinable
public __consuming func makeIterator() -> Iterator {
return Iterator(_guts)
}
}
extension String.UTF16View: CustomStringConvertible {
@inlinable @inline(__always)
public var description: String { return String(_guts) }
}
extension String.UTF16View: CustomDebugStringConvertible {
public var debugDescription: String {
return "StringUTF16(\(self.description.debugDescription))"
}
}
extension String {
/// A UTF-16 encoding of `self`.
@inlinable
public var utf16: UTF16View {
@inline(__always) get { return UTF16View(_guts) }
@inline(__always) set { self = String(newValue._guts) }
}
/// Creates a string corresponding to the given sequence of UTF-16 code units.
@inlinable @inline(__always)
@available(swift, introduced: 4.0)
public init(_ utf16: UTF16View) {
self.init(utf16._guts)
}
}
// Index conversions
extension String.UTF16View.Index {
/// Creates an index in the given UTF-16 view that corresponds exactly to the
/// specified string position.
///
/// If the index passed as `sourcePosition` represents either the start of a
/// Unicode scalar value or the position of a UTF-16 trailing surrogate,
/// then the initializer succeeds. If `sourcePosition` does not have an
/// exact corresponding position in `target`, then the result is `nil`. For
/// example, an attempt to convert the position of a UTF-8 continuation byte
/// results in `nil`.
///
/// The following example finds the position of a space in a string and then
/// converts that position to an index in the string's `utf16` view.
///
/// let cafe = "Café 🍵"
///
/// let stringIndex = cafe.firstIndex(of: "é")!
/// let utf16Index = String.Index(stringIndex, within: cafe.utf16)!
///
/// print(String(cafe.utf16[...utf16Index])!)
/// // Prints "Café"
///
/// - Parameters:
/// - idx: A position in at least one of the views of the string
/// shared by `target`.
/// - target: The `UTF16View` in which to find the new position.
public init?(
_ idx: String.Index, within target: String.UTF16View
) {
// As a special exception, we allow `idx` to be an UTF-16 index when `self`
// is a UTF-8 string (or vice versa), to preserve compatibility with
// (broken) code that keeps using indices from a bridged string after
// converting the string to a native representation. Such indices are
// invalid, but returning nil here can break code that appeared to work fine
// for ASCII strings in Swift releases prior to 5.7.
let idx = target._guts.ensureMatchingEncoding(idx)
guard idx._encodedOffset <= target._guts.count else { return nil }
if _slowPath(target._guts.isForeign) {
guard idx._foreignIsWithin(target) else { return nil }
} else { // fast UTF-8
guard (
// If the transcoded offset is non-zero, then `idx` addresses a trailing
// surrogate, so its encoding offset is on a scalar boundary, and it's a
// valid UTF-16 index.
idx.transcodedOffset != 0
/// Otherwise we need to reject indices that aren't scalar aligned.
|| target._guts.isOnUnicodeScalarBoundary(idx)
) else { return nil }
}
self = idx
}
/// Returns the position in the given view of Unicode scalars that
/// corresponds exactly to this index.
///
/// This index must be a valid index of `String(unicodeScalars).utf16`.
///
/// This example first finds the position of a space (UTF-16 code point `32`)
/// in a string's `utf16` view and then uses this method to find the same
/// position in the string's `unicodeScalars` view.
///
/// let cafe = "Café 🍵"
/// let i = cafe.utf16.firstIndex(of: 32)!
/// let j = i.samePosition(in: cafe.unicodeScalars)!
/// print(String(cafe.unicodeScalars[..<j]))
/// // Prints "Café"
///
/// - Parameter unicodeScalars: The view to use for the index conversion.
/// This index must be a valid index of at least one view of the string
/// shared by `unicodeScalars`.
/// - Returns: The position in `unicodeScalars` that corresponds exactly to
/// this index. If this index does not have an exact corresponding
/// position in `unicodeScalars`, this method returns `nil`. For example,
/// an attempt to convert the position of a UTF-16 trailing surrogate
/// returns `nil`.
public func samePosition(
in unicodeScalars: String.UnicodeScalarView
) -> String.UnicodeScalarIndex? {
return String.UnicodeScalarIndex(self, within: unicodeScalars)
}
}
#if SWIFT_ENABLE_REFLECTION
// Reflection
extension String.UTF16View: CustomReflectable {
/// Returns a mirror that reflects the UTF-16 view of a string.
public var customMirror: Mirror {
return Mirror(self, unlabeledChildren: self)
}
}
#endif
// Slicing
extension String.UTF16View {
public typealias SubSequence = Substring.UTF16View
public subscript(r: Range<Index>) -> Substring.UTF16View {
let r = _guts.validateSubscalarRange(r)
return Substring.UTF16View(self, _bounds: r)
}
}
// Foreign string support
extension String.UTF16View {
@usableFromInline @inline(never)
@_effects(releasenone)
internal func _foreignIndex(after i: Index) -> Index {
_internalInvariant(_guts.isForeign)
return i.strippingTranscoding.nextEncoded._knownUTF16
}
@usableFromInline @inline(never)
@_effects(releasenone)
internal func _foreignIndex(before i: Index) -> Index {
_internalInvariant(_guts.isForeign)
return i.strippingTranscoding.priorEncoded._knownUTF16
}
@usableFromInline @inline(never)
@_effects(releasenone)
internal func _foreignSubscript(position i: Index) -> UTF16.CodeUnit {
_internalInvariant(_guts.isForeign)
return _guts.foreignErrorCorrectedUTF16CodeUnit(at: i.strippingTranscoding)
}
@usableFromInline @inline(never)
@_effects(releasenone)
internal func _foreignDistance(from start: Index, to end: Index) -> Int {
_internalInvariant(_guts.isForeign)
// Ignore transcoded offsets, i.e. scalar align if-and-only-if from a
// transcoded view
return end._encodedOffset - start._encodedOffset
}
@usableFromInline @inline(never)
@_effects(releasenone)
internal func _foreignIndex(
_ i: Index, offsetBy n: Int, limitedBy limit: Index
) -> Index? {
_internalInvariant(_guts.isForeign)
let l = limit._encodedOffset - i._encodedOffset
if n > 0 ? l >= 0 && l < n : l <= 0 && n < l {
return nil
}
let offset = i._encodedOffset &+ n
_precondition(offset >= 0 && offset <= _guts.count,
"String index is out of bounds")
return Index(_encodedOffset: offset)._knownUTF16
}
@usableFromInline @inline(never)
@_effects(releasenone)
internal func _foreignIndex(_ i: Index, offsetBy n: Int) -> Index {
_internalInvariant(_guts.isForeign)
let offset = i._encodedOffset &+ n
_precondition(offset >= 0 && offset <= _guts.count,
"String index is out of bounds")
return Index(_encodedOffset: offset)._knownUTF16
}
@usableFromInline @inline(never)
@_effects(releasenone)
internal func _foreignCount() -> Int {
_internalInvariant(_guts.isForeign)
return endIndex._encodedOffset - startIndex._encodedOffset
}
// Align a native UTF-8 index to a valid UTF-16 position. If there is a
// transcoded offset already, this is already a valid UTF-16 position
// (referring to the second surrogate) and returns `idx`. Otherwise, this will
// scalar-align the index. This is needed because we may be passed a
// non-scalar-aligned index from the UTF8View.
@_alwaysEmitIntoClient // Swift 5.1
@inline(__always)
internal func _utf16AlignNativeIndex(_ idx: String.Index) -> String.Index {
_internalInvariant(!_guts.isForeign)
guard idx.transcodedOffset == 0 else { return idx }
return _guts.scalarAlign(idx)
}
}
extension String.Index {
@usableFromInline @inline(never) // opaque slow-path
@_effects(releasenone)
internal func _foreignIsWithin(_ target: String.UTF16View) -> Bool {
_internalInvariant(target._guts.isForeign)
// If we're transcoding, we're a UTF-8 view index, not UTF-16.
return self.transcodedOffset == 0
}
}
// Breadcrumb-aware acceleration
extension _StringGuts {
@inline(__always)
fileprivate func _useBreadcrumbs(forEncodedOffset offset: Int) -> Bool {
return hasBreadcrumbs && offset >= _StringBreadcrumbs.breadcrumbStride
}
}
extension String.UTF16View {
#if SWIFT_STDLIB_ENABLE_VECTOR_TYPES
@inline(__always)
internal func _utf16Length<U: SIMD, S: SIMD>(
readPtr: inout UnsafeRawPointer,
endPtr: UnsafeRawPointer,
unsignedSIMDType: U.Type,
signedSIMDType: S.Type
) -> Int where U.Scalar == UInt8, S.Scalar == Int8 {
var utf16Count = 0
while unsafe readPtr + MemoryLayout<U>.stride < endPtr {
//Find the number of continuations (0b10xxxxxx)
let sValue = unsafe readPtr.loadUnaligned(as: S.self)
let continuations = S.zero.replacing(with: S.one, where: sValue .< -65 + 1)
//Find the number of 4 byte code points (0b11110xxx)
let uValue = unsafe readPtr.loadUnaligned(as: U.self)
let fourBytes = unsafe S.zero.replacing(
with: S.one,
where: unsafeBitCast(
uValue .>= 0b11110000,
to: SIMDMask<S.MaskStorage>.self
)
)
utf16Count &+= U.scalarCount + Int((fourBytes &- continuations).wrappedSum())
unsafe readPtr += MemoryLayout<U>.stride
}
return utf16Count
}
#endif
internal func _utf16Distance(from start: Index, to end: Index) -> Int {
_internalInvariant(end.transcodedOffset == 0 || end.transcodedOffset == 1)
return unsafe (end.transcodedOffset - start.transcodedOffset) + _guts.withFastUTF8(
range: start._encodedOffset ..< end._encodedOffset
) { utf8 in
let rawBuffer = UnsafeRawBufferPointer(utf8)
guard rawBuffer.count > 0 else { return 0 }
var utf16Count = 0
var readPtr = unsafe rawBuffer.baseAddress.unsafelyUnwrapped
let initialReadPtr = unsafe readPtr
let endPtr = unsafe readPtr + rawBuffer.count
//eat leading continuations
while unsafe readPtr < endPtr {
let byte = unsafe readPtr.load(as: UInt8.self)
if !UTF8.isContinuation(byte) {
break
}
unsafe readPtr += 1
}
#if SWIFT_STDLIB_ENABLE_VECTOR_TYPES
// TODO: Currently, using SIMD sizes above SIMD8 is slower
// Once that's fixed we should go up to SIMD64 here
unsafe utf16Count &+= _utf16Length(
readPtr: &readPtr,
endPtr: endPtr,
unsignedSIMDType: SIMD8<UInt8>.self,
signedSIMDType: SIMD8<Int8>.self
)
//TO CONSIDER: SIMD widths <8 here
//back up to the start of the current scalar if we may have a trailing
//incomplete scalar
if unsafe utf16Count > 0 && UTF8.isContinuation(readPtr.load(as: UInt8.self)) {
while unsafe readPtr > initialReadPtr && UTF8.isContinuation(readPtr.load(as: UInt8.self)) {
unsafe readPtr -= 1
}
//The trailing scalar may be incomplete, subtract it out and check below
let byte = unsafe readPtr.load(as: UInt8.self)
let len = _utf8ScalarLength(byte)
utf16Count &-= len == 4 ? 2 : 1
if unsafe readPtr == initialReadPtr {
//if we backed up all the way and didn't hit a non-continuation, then
//we don't have any complete scalars, and we should bail.
return 0
}
}
#endif
//trailing bytes
while unsafe readPtr < endPtr {
let byte = unsafe readPtr.load(as: UInt8.self)
let len = _utf8ScalarLength(byte)
// if we don't have enough bytes left, we don't have a complete scalar,
// so don't add it to the count.
if unsafe readPtr + len <= endPtr {
utf16Count &+= len == 4 ? 2 : 1
}
unsafe readPtr += len
}
return utf16Count
}
}
/// Return the UTF-16 offset corresponding to `idx`, measured from the
/// start of this string, which must be a native UTF-8 string.
///
/// - Complexity: This measures the UTF-16 distance of `idx` from its nearest
/// breadcrumb index (rounding down), so on average it needs to look at
/// `breadcrumbStride / 2` UTF-16 code units. (In addition to the O(log(n))
/// cost of looking up the nearest breadcrumb, and the amortizable O(n)
/// cost of generating the breadcrumbs in the first place.)
@usableFromInline
@_effects(releasenone)
internal func _nativeGetOffset(for idx: Index) -> Int {
_internalInvariant(idx._encodedOffset <= _guts.count)
if _guts.isASCII {
_internalInvariant(idx.transcodedOffset == 0)
return idx._encodedOffset
}
// Trivial and common: start
if idx == startIndex { return 0 }
let idx = _utf16AlignNativeIndex(idx)
guard _guts._useBreadcrumbs(forEncodedOffset: idx._encodedOffset) else {
return _utf16Distance(from: startIndex, to: idx)
}
let breadcrumbs = unsafe _guts.loadUnmanagedBreadcrumbs()
// Simple and common: endIndex aka `length`.
if idx == endIndex {
return unsafe breadcrumbs._withUnsafeGuaranteedRef { $0.utf16Length }
}
return unsafe breadcrumbs._withUnsafeGuaranteedRef { crumbs in
// Otherwise, find the nearest lower-bound breadcrumb and count from there
// FIXME: Starting from the upper-bound crumb when that is closer would
// cut the average cost of the subsequent iteration by 50%.
let (crumb, crumbOffset) = crumbs.getBreadcrumb(forIndex: idx)
return crumbOffset + _utf16Distance(from: crumb, to: idx)
}
}
/// Return the index at the given UTF-16 offset, measured from the
/// start of this string, which must be a native UTF-8 string.
///
/// - Complexity: This iterates UTF-16 code units starting from the
/// nearest breadcrumb to `offset` (rounding down), so on
/// average it needs to look at `breadcrumbStride / 2` UTF-16 code
/// units. (In addition to the O(1) cost of looking up the nearest
/// breadcrumb, and the amortizable O(n) cost of generating the
/// breadcrumbs in the first place.)
@usableFromInline
@_effects(releasenone)
internal func _nativeGetIndex(for offset: Int) -> Index {
_precondition(offset >= 0, "String index is out of bounds")
// Trivial and common: start
if offset == 0 { return startIndex }
if _guts.isASCII {
return Index(
_encodedOffset: offset
)._scalarAligned._encodingIndependent
}
guard _guts._useBreadcrumbs(forEncodedOffset: offset) else {
return _index(startIndex, offsetBy: offset)._knownUTF8
}
// Simple and common: endIndex aka `length`.
let breadcrumbs = unsafe _guts.loadUnmanagedBreadcrumbs()
let utf16Count = unsafe breadcrumbs._withUnsafeGuaranteedRef { $0.utf16Length }
if offset == utf16Count { return endIndex }
// Otherwise, find the nearest lower-bound breadcrumb and advance that
// FIXME: Starting from the upper-bound crumb when that is closer would cut
// the average cost of the subsequent iteration by 50%.
let (crumb, remaining) = unsafe breadcrumbs._withUnsafeGuaranteedRef {
$0.getBreadcrumb(forOffset: offset)
}
_internalInvariant(crumb._canBeUTF8 && crumb._encodedOffset <= _guts.count)
if remaining == 0 { return crumb }
return unsafe _guts.withFastUTF8 { utf8 in
var readIdx = crumb._encodedOffset
let readEnd = utf8.count
_internalInvariant(readIdx < readEnd)
var utf16I = 0
let utf16End: Int = remaining
// Adjust for sub-scalar initial transcoding: If we're starting the scan
// at a trailing surrogate, then we set our starting count to be -1 so as
// offset counting the leading surrogate.
if crumb.transcodedOffset != 0 {
utf16I = -1
}
while true {
_precondition(readIdx < readEnd, "String index is out of bounds")
let len = unsafe _utf8ScalarLength(utf8[_unchecked: readIdx])
let utf16Len = len == 4 ? 2 : 1
utf16I &+= utf16Len
if utf16I >= utf16End {
// Uncommon: final sub-scalar transcoded offset
if _slowPath(utf16I > utf16End) {
_internalInvariant(utf16Len == 2)
return Index(
encodedOffset: readIdx, transcodedOffset: 1
)._knownUTF8
}
return Index(
_encodedOffset: readIdx &+ len
)._scalarAligned._knownUTF8
}
readIdx &+= len
}
fatalError()
}
}
// See _nativeCopy(into:alignedRange:), except this uses un-verified UTF16
// offsets instead of aligned indexes
internal func _nativeCopy(
into buffer: UnsafeMutableBufferPointer<UInt16>,
offsetRange range: Range<Int>
) {
let alignedRange = _indexRange(for: range, from: startIndex)
_precondition(alignedRange.lowerBound._encodedOffset <= _guts.count &&
alignedRange.upperBound._encodedOffset <= _guts.count,
"String index is out of bounds")
unsafe _nativeCopy(
into: buffer,
alignedRange: alignedRange.lowerBound ..< alignedRange.upperBound)
}
// Copy (i.e. transcode to UTF-16) our contents into a buffer. `alignedRange`
// means that the indices are part of the UTF16View.indices -- they are either
// scalar-aligned or transcoded (e.g. derived from the UTF-16 view). They do
// not need to go through an alignment check.
internal func _nativeCopy(
into buffer: UnsafeMutableBufferPointer<UInt16>,
alignedRange range: Range<String.Index>
) {
_internalInvariant(_guts.isFastUTF8)
_internalInvariant(
range.lowerBound == _utf16AlignNativeIndex(range.lowerBound))
_internalInvariant(
range.upperBound == _utf16AlignNativeIndex(range.upperBound))
if _slowPath(range.isEmpty) { return }
let isASCII = _guts.isASCII
return unsafe _guts.withFastUTF8 { utf8 in
var writeIdx = 0
let writeEnd = buffer.count
var readIdx = range.lowerBound._encodedOffset
let readEnd = range.upperBound._encodedOffset
if isASCII {
_internalInvariant(range.lowerBound.transcodedOffset == 0)
_internalInvariant(range.upperBound.transcodedOffset == 0)
while readIdx < readEnd {
unsafe _internalInvariant(utf8[readIdx] < 0x80)
unsafe buffer[_unchecked: writeIdx] = unsafe UInt16(
truncatingIfNeeded: utf8[_unchecked: readIdx])
readIdx &+= 1
writeIdx &+= 1
}
return
}
// Handle mid-transcoded-scalar initial index
if _slowPath(range.lowerBound.transcodedOffset != 0) {
_internalInvariant(range.lowerBound.transcodedOffset == 1)
let (scalar, len) = unsafe _decodeScalar(utf8, startingAt: readIdx)
// Note: this is intentionally not using the _unchecked subscript.
// (We rely on debug assertions to catch out of bounds access.)
unsafe buffer[writeIdx] = scalar.utf16[1]
readIdx &+= len
writeIdx &+= 1
}
// Transcode middle
while readIdx < readEnd {
let (scalar, len) = unsafe _decodeScalar(utf8, startingAt: readIdx)
unsafe buffer[writeIdx] = scalar.utf16[0]
readIdx &+= len
writeIdx &+= 1
if _slowPath(scalar.utf16.count == 2) {
// Note: this is intentionally not using the _unchecked subscript.
// (We rely on debug assertions to catch out of bounds access.)
unsafe buffer[writeIdx] = scalar.utf16[1]
writeIdx &+= 1
}
}
// Handle mid-transcoded-scalar final index
if _slowPath(range.upperBound.transcodedOffset == 1) {
_internalInvariant(writeIdx < writeEnd)
let (scalar, _) = unsafe _decodeScalar(utf8, startingAt: readIdx)
_internalInvariant(scalar.utf16.count == 2)
// Note: this is intentionally not using the _unchecked subscript.
// (We rely on debug assertions to catch out of bounds access.)
unsafe buffer[writeIdx] = scalar.utf16[0]
writeIdx &+= 1
}
_internalInvariant(writeIdx <= writeEnd)
}
}
}