Files
swift-mirror/stdlib/public/core/Substring.swift
2025-07-09 17:25:27 -07:00

1388 lines
48 KiB
Swift

//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2025 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
extension String {
// FIXME(strings): at least temporarily remove it to see where it was applied
/// Creates a new string from the given substring.
///
/// - Parameter substring: A substring to convert to a standalone `String`
/// instance.
///
/// - Complexity: O(*n*), where *n* is the length of `substring`.
@inlinable
public init(_ substring: __shared Substring) {
self = String._fromSubstring(substring)
}
}
/// A slice of a string.
///
/// When you create a slice of a string, a `Substring` instance is the result.
/// Operating on substrings is fast and efficient because a substring shares
/// its storage with the original string. The `Substring` type presents the
/// same interface as `String`, so you can avoid or defer any copying of the
/// string's contents.
///
/// The following example creates a `greeting` string, and then finds the
/// substring of the first sentence:
///
/// let greeting = "Hi there! It's nice to meet you! 👋"
/// let endOfSentence = greeting.firstIndex(of: "!")!
/// let firstSentence = greeting[...endOfSentence]
/// // firstSentence == "Hi there!"
///
/// You can perform many string operations on a substring. Here, we find the
/// length of the first sentence and create an uppercase version.
///
/// print("'\(firstSentence)' is \(firstSentence.count) characters long.")
/// // Prints "'Hi there!' is 9 characters long."
///
/// let shoutingSentence = firstSentence.uppercased()
/// // shoutingSentence == "HI THERE!"
///
/// Converting a Substring to a String
/// ==================================
///
/// This example defines a `rawData` string with some unstructured data, and
/// then uses the string's `prefix(while:)` method to create a substring of
/// the numeric prefix:
///
/// let rawInput = "126 a.b 22219 zzzzzz"
/// let numericPrefix = rawInput.prefix(while: { "0"..."9" ~= $0 })
/// // numericPrefix is the substring "126"
///
/// When you need to store a substring or pass it to a function that requires a
/// `String` instance, you can convert it to a `String` by using the
/// `String(_:)` initializer. Calling this initializer copies the contents of
/// the substring to a new string.
///
/// func parseAndAddOne(_ s: String) -> Int {
/// return Int(s, radix: 10)! + 1
/// }
/// _ = parseAndAddOne(numericPrefix)
/// // error: cannot convert value...
/// let incrementedPrefix = parseAndAddOne(String(numericPrefix))
/// // incrementedPrefix == 127
///
/// Alternatively, you can convert the function that takes a `String` to one
/// that is generic over the `StringProtocol` protocol. The following code
/// declares a generic version of the `parseAndAddOne(_:)` function:
///
/// func genericParseAndAddOne<S: StringProtocol>(_ s: S) -> Int {
/// return Int(s, radix: 10)! + 1
/// }
/// let genericallyIncremented = genericParseAndAddOne(numericPrefix)
/// // genericallyIncremented == 127
///
/// You can call this generic function with an instance of either `String` or
/// `Substring`.
///
/// - Important: Don't store substrings longer than you need them to perform a
/// specific operation. A substring holds a reference to the entire storage
/// of the string it comes from, not just to the portion it presents, even
/// when there is no other reference to the original string. Storing
/// substrings may, therefore, prolong the lifetime of string data that is
/// no longer otherwise accessible, which can appear to be memory leakage.
@frozen
public struct Substring: Sendable {
@usableFromInline
internal var _slice: Slice<String>
@_alwaysEmitIntoClient // Swift 5.7
@inline(__always)
internal init(_unchecked slice: Slice<String>) {
self._slice = slice
_invariantCheck()
}
@_alwaysEmitIntoClient // Swift 5.7
@inline(__always)
internal init(_unchecked guts: _StringGuts, bounds: Range<Index>) {
self.init(_unchecked: Slice(base: String(guts), bounds: bounds))
}
@usableFromInline // This used to be @inlinable before 5.7
@available(*, deprecated) // Use `init(_unchecked:)` in new code.
internal init(_ slice: Slice<String>) {
let r = slice._base._guts.validateScalarRange(slice._bounds)
self._slice = Slice(base: slice._base, bounds: r)
_invariantCheck()
}
@inline(__always)
internal init(_ slice: _StringGutsSlice) {
self.init(String(slice._guts)[slice.range])
}
/// Creates an empty substring.
@inlinable @inline(__always)
public init() {
self._slice = Slice()
}
}
extension Substring {
/// Returns the underlying string from which this substring was derived.
@_alwaysEmitIntoClient
public var base: String { return _slice._base }
@inlinable @inline(__always)
internal var _wholeGuts: _StringGuts { _slice._base._guts }
@inlinable @inline(__always)
internal var _offsetRange: Range<Int> { _slice._bounds._encodedOffsetRange }
@_alwaysEmitIntoClient @inline(__always)
internal var _bounds: Range<Index> { _slice._bounds }
}
extension Substring {
internal var _startIsCharacterAligned: Bool {
startIndex._isCharacterAligned
}
}
extension Substring {
#if !INTERNAL_CHECKS_ENABLED
@inlinable @inline(__always) internal func _invariantCheck() {}
#else
@usableFromInline @inline(never) @_effects(releasenone)
internal func _invariantCheck() {
_internalInvariant(endIndex <= _wholeGuts.endIndex)
_internalInvariant(
_wholeGuts.hasMatchingEncoding(startIndex) &&
_wholeGuts.hasMatchingEncoding(endIndex))
_internalInvariant(
startIndex._isScalarAligned && endIndex._isScalarAligned)
self.base._invariantCheck()
}
#endif // INTERNAL_CHECKS_ENABLED
}
extension Substring {
/// Return true if and only if `i` is a valid index in this substring,
/// that is to say, it exactly addresses one of the `Character`s in it.
///
/// Note that if the start of the substring isn't `Character`-aligned in its
/// base string, then the substring and the base may not share valid indices.
internal func _isValidIndex(_ i: Index) -> Bool {
guard
_wholeGuts.hasMatchingEncoding(i),
i >= startIndex,
i <= endIndex,
_wholeGuts.isOnUnicodeScalarBoundary(i)
else {
return false
}
let c = _wholeGuts.roundDownToNearestCharacter(
i._scalarAligned, in: _bounds)
return i == c
}
}
extension Substring: StringProtocol {
public typealias Index = String.Index
public typealias SubSequence = Substring
@inlinable @inline(__always)
public var startIndex: Index { _slice._startIndex }
@inlinable @inline(__always)
public var endIndex: Index { _slice._endIndex }
public func index(after i: Index) -> Index {
// Note: Prior to Swift 5.7, this method used to be inlinable, forwarding to
// `_slice.base.index(after:)`. Unfortunately, that approach isn't
// compatible with SE-0180, as it allows Unicode scalars outside the
// substring to affect grapheme breaking results within the substring. This
// leads to Collection conformance issues when the `Substring`'s bounds do
// not fall on grapheme boundaries in `base`.
let i = _wholeGuts.validateCharacterIndex(i, in: _bounds)
return _uncheckedIndex(after: i)
}
/// A version of `index(after:)` that assumes that the given index:
///
/// - has the right encoding,
/// - is within bounds, and
/// - is character aligned within this substring.
internal func _uncheckedIndex(after i: Index) -> Index {
_internalInvariant(_wholeGuts.hasMatchingEncoding(i))
_internalInvariant(i._isScalarAligned)
_internalInvariant(i >= startIndex && i < endIndex)
// Note: `i` must be `Character`-aligned within this substring, even if it
// doesn't have the corresponding flag set.
// TODO: known-ASCII fast path, single-scalar-grapheme fast path, etc.
let stride = _characterStride(startingAt: i)
// Make sure a cached stride cannot lead us beyond the substring's end
// index. (This can happen if the substring's end isn't `Character`
// aligned.)
let nextOffset = Swift.min(
i._encodedOffset &+ stride,
endIndex._encodedOffset)
let nextIndex = Index(_encodedOffset: nextOffset)._scalarAligned
let nextStride = _characterStride(startingAt: nextIndex)
var r = Index(
encodedOffset: nextOffset, characterStride: nextStride)._scalarAligned
// Don't set the `_isCharacterAligned` bit in indices of exotic substrings
// whose startIndex isn't aligned on a grapheme cluster boundary. (Their
// grapheme breaks may not match with those in `base`.)
//
// Note that we don't need to care about whether the end index is aligned
// here.
if _startIsCharacterAligned {
r = r._characterAligned
}
return _wholeGuts.markEncoding(r)
}
public func index(before i: Index) -> Index {
// Note: Prior to Swift 5.7, this method used to be inlinable, forwarding to
// `_slice.base.index(before:)`. Unfortunately, that approach isn't
// compatible with SE-0180, as it allows Unicode scalars outside the
// substring to affect grapheme breaking results within the substring. This
// leads to Collection conformance issues when the `Substring`'s bounds do
// not fall on grapheme boundaries in `base`.
let i = _wholeGuts.validateInclusiveCharacterIndex(i, in: _bounds)
// Note: Aligning an index may move it closer towards the `startIndex`, so
// this `i > startIndex` check needs to come after all the
// alignment/validation work.
_precondition(i > startIndex, "Substring index is out of bounds")
return _uncheckedIndex(before: i)
}
/// A version of `index(before:)` that assumes that the given index:
///
/// - has the right encoding,
/// - is within bounds, and
/// - is character aligned within this substring.
internal func _uncheckedIndex(before i: Index) -> Index {
_internalInvariant(_wholeGuts.hasMatchingEncoding(i))
_internalInvariant(i._isScalarAligned)
_internalInvariant(i > startIndex && i <= endIndex)
// Note: `i` must be `Character`-aligned within this substring, even if it
// doesn't have the corresponding flag set.
// TODO: known-ASCII fast path, single-scalar-grapheme fast path, etc.
let priorStride = _characterStride(endingAt: i)
let priorOffset = i._encodedOffset &- priorStride
_internalInvariant(priorOffset >= startIndex._encodedOffset)
var r = Index(
encodedOffset: priorOffset, characterStride: priorStride
)._scalarAligned
// Don't set the `_isCharacterAligned` bit in indices of exotic substrings
// whose startIndex isn't aligned on a grapheme cluster boundary. (Their
// grapheme breaks may not match with those in `base`.)
if _startIsCharacterAligned {
r = r._characterAligned
}
return _wholeGuts.markEncoding(r)
}
public func index(_ i: Index, offsetBy distance: Int) -> Index {
// Note: Prior to Swift 5.7, this method used to be inlinable, forwarding to
// `_slice.base.index(_:offsetBy:)`. Unfortunately, that approach isn't
// compatible with SE-0180, as it allows Unicode scalars outside the
// substring to affect grapheme breaking results within the substring. This
// leads to Collection conformance issues when the `Substring`'s bounds do
// not fall on grapheme boundaries in `base`.
// TODO: known-ASCII and single-scalar-grapheme fast path, etc.
var i = _wholeGuts.validateInclusiveCharacterIndex(i, in: _bounds)
if distance >= 0 {
for _ in stride(from: 0, to: distance, by: 1) {
_precondition(i < endIndex, "String index is out of bounds")
i = _uncheckedIndex(after: i)
}
} else {
for _ in stride(from: 0, to: distance, by: -1) {
_precondition(i > startIndex, "String index is out of bounds")
i = _uncheckedIndex(before: i)
}
}
return i
}
public func index(
_ i: Index, offsetBy distance: Int, limitedBy limit: Index
) -> Index? {
// Note: Prior to Swift 5.7, this method used to be inlinable, forwarding to
// `_slice.base.index(_:offsetBy:limitedBy:)`. Unfortunately, that approach
// isn't compatible with SE-0180, as it allows Unicode scalars outside the
// substring to affect grapheme breaking results within the substring. This
// leads to Collection conformance issues when the `Substring`'s bounds do
// not fall on grapheme boundaries in `base`.
// Per SE-0180, `i` and `limit` are allowed to fall in between grapheme
// breaks, in which case this function must still terminate without trapping
// and return a result that makes sense.
// Note: `limit` is intentionally not scalar (or character-) aligned to
// ensure our behavior exactly matches the documentation above. We do need
// to ensure it has a matching encoding, though. The same goes for `start`,
// which is used to determine whether the limit applies at all.
let limit = _wholeGuts.ensureMatchingEncoding(limit)
let start = _wholeGuts.ensureMatchingEncoding(i)
var i = _wholeGuts.validateInclusiveCharacterIndex(i, in: _bounds)
if distance >= 0 {
for _ in stride(from: 0, to: distance, by: 1) {
guard limit < start || i < limit else { return nil }
_precondition(i < endIndex, "String index is out of bounds")
i = _uncheckedIndex(after: i)
}
guard limit < start || i <= limit else { return nil }
} else {
for _ in stride(from: 0, to: distance, by: -1) {
guard limit > start || i > limit else { return nil }
_precondition(i > startIndex, "String index is out of bounds")
i = _uncheckedIndex(before: i)
}
guard limit > start || i >= limit else { return nil }
}
return i
}
public func distance(from start: Index, to end: Index) -> Int {
// Note: Prior to Swift 5.7, this method used to be inlinable, forwarding to
// `_slice.base.distance(from:to:)`. Unfortunately, that approach isn't
// compatible with SE-0180, as it allows Unicode scalars outside the
// substring to affect grapheme breaking results within the substring. This
// leads to Collection conformance issues when the `Substring`'s bounds do
// not fall on grapheme boundaries in `base`.
// FIXME: Due to the `index(after:)` problem above, this function doesn't
// always return consistent results when the given indices fall between
// grapheme breaks -- swapping `start` and `end` may change the magnitude of
// the result.
let start = _wholeGuts.validateInclusiveCharacterIndex(start, in: _bounds)
let end = _wholeGuts.validateInclusiveCharacterIndex(end, in: _bounds)
// TODO: known-ASCII and single-scalar-grapheme fast path, etc.
// Per SE-0180, `start` and `end` are allowed to fall in between Character
// boundaries, in which case this function must still terminate without
// trapping and return a result that makes sense.
var i = start
var count = 0
if i < end {
while i < end { // Note `<` instead of `==`
count += 1
i = _uncheckedIndex(after: i)
}
} else if i > end {
while i > end { // Note `>` instead of `==`
count -= 1
i = _uncheckedIndex(before: i)
}
}
return count
}
public subscript(i: Index) -> Character {
// Note: SE-0180 requires us not to round `i` down to the nearest whole
// `Character` boundary.
let i = _wholeGuts.validateScalarIndex(i, in: _bounds)
let stride = _characterStride(startingAt: i)
// Don't let the subscript return data outside this substring.
let endOffset = Swift.min(
i._encodedOffset &+ stride,
endIndex._encodedOffset)
return _wholeGuts.errorCorrectedCharacter(
startingAt: i._encodedOffset, endingAt: endOffset)
}
public mutating func replaceSubrange<C>(
_ subrange: Range<Index>,
with newElements: C
) where C: Collection, C.Iterator.Element == Iterator.Element {
_replaceSubrange(subrange, with: newElements)
}
public mutating func replaceSubrange(
_ subrange: Range<Index>, with newElements: Substring
) {
_replaceSubrange(subrange, with: newElements)
}
internal mutating func _replaceSubrange<C: Collection>(
_ subrange: Range<Index>, with newElements: C
) where C.Element == Element {
// Note: SE-0180 requires us to use `subrange` bounds even if they aren't
// `Character` aligned. (We still have to round things down to the nearest
// scalar boundary, though, or we may generate ill-formed encodings.)
let subrange = _wholeGuts.validateScalarRange(subrange, in: _bounds)
// Replacing the range is easy -- we can just reuse `String`'s
// implementation. However, we must also update `startIndex` and `endIndex`
// to keep them valid & pointing to the same positions, which is somewhat
// tricky.
//
// In Swift <=5.6, this used to forward to `Slice.replaceSubrange`, which
// does it by counting elements, i.e., `Character`s. Unfortunately, that is
// prone to return incorrect results in unusual cases, e.g.
//
// - when the substring or the given subrange doesn't start/end on a
// character boundary, or
// - when the beginning/end of the replacement string ends up getting
// merged with the Character preceding/following the replaced range.
//
// The best way to avoid problems in these cases is to lower index
// calculations to Unicode scalars (or below).
_slice._base._guts.mutateSubrangeInSubstring(
subrange: subrange,
startIndex: &_slice._startIndex,
endIndex: &_slice._endIndex,
with: { $0.replaceSubrange(subrange, with: newElements) })
_invariantCheck()
}
/// Creates a string from the given Unicode code units in the specified
/// encoding.
///
/// - Parameters:
/// - codeUnits: A collection of code units encoded in the encoding
/// specified in `sourceEncoding`.
/// - sourceEncoding: The encoding in which `codeUnits` should be
/// interpreted.
@inlinable // specialization
public init<C: Collection, Encoding: _UnicodeEncoding>(
decoding codeUnits: C, as sourceEncoding: Encoding.Type
) where C.Iterator.Element == Encoding.CodeUnit {
self.init(String(decoding: codeUnits, as: sourceEncoding))
}
/// Creates a string from the null-terminated, UTF-8 encoded sequence of
/// bytes at the given pointer.
///
/// - Parameter nullTerminatedUTF8: A pointer to a sequence of contiguous,
/// UTF-8 encoded bytes ending just before the first zero byte.
public init(cString nullTerminatedUTF8: UnsafePointer<CChar>) {
unsafe self.init(String(cString: nullTerminatedUTF8))
}
/// Creates a string from the null-terminated sequence of bytes at the given
/// pointer.
///
/// - Parameters:
/// - nullTerminatedCodeUnits: A pointer to a sequence of contiguous code
/// units in the encoding specified in `sourceEncoding`, ending just
/// before the first zero code unit.
/// - sourceEncoding: The encoding in which the code units should be
/// interpreted.
@inlinable // specialization
public init<Encoding: _UnicodeEncoding>(
decodingCString nullTerminatedCodeUnits: UnsafePointer<Encoding.CodeUnit>,
as sourceEncoding: Encoding.Type
) {
unsafe self.init(
String(decodingCString: nullTerminatedCodeUnits, as: sourceEncoding))
}
/// Calls the given closure with a pointer to the contents of the string,
/// represented as a null-terminated sequence of UTF-8 code units.
///
/// The pointer passed as an argument to `body` is valid only during the
/// execution of `withCString(_:)`. Do not store or return the pointer for
/// later use.
///
/// - Parameter body: A closure with a pointer parameter that points to a
/// null-terminated sequence of UTF-8 code units. If `body` has a return
/// value, that value is also used as the return value for the
/// `withCString(_:)` method. The pointer argument is valid only for the
/// duration of the method's execution.
/// - Returns: The return value, if any, of the `body` closure parameter.
@inlinable // specialization
public func withCString<Result>(
_ body: (UnsafePointer<CChar>) throws -> Result) rethrows -> Result {
// TODO(String performance): Detect when we cover the rest of a nul-
// terminated String, and thus can avoid a copy.
return try unsafe String(self).withCString(body)
}
/// Calls the given closure with a pointer to the contents of the string,
/// represented as a null-terminated sequence of code units.
///
/// The pointer passed as an argument to `body` is valid only during the
/// execution of `withCString(encodedAs:_:)`. Do not store or return the
/// pointer for later use.
///
/// - Parameters:
/// - body: A closure with a pointer parameter that points to a
/// null-terminated sequence of code units. If `body` has a return
/// value, that value is also used as the return value for the
/// `withCString(encodedAs:_:)` method. The pointer argument is valid
/// only for the duration of the method's execution.
/// - targetEncoding: The encoding in which the code units should be
/// interpreted.
/// - Returns: The return value, if any, of the `body` closure parameter.
@inlinable // specialization
public func withCString<Result, TargetEncoding: _UnicodeEncoding>(
encodedAs targetEncoding: TargetEncoding.Type,
_ body: (UnsafePointer<TargetEncoding.CodeUnit>) throws -> Result
) rethrows -> Result {
// TODO(String performance): Detect when we cover the rest of a nul-
// terminated String, and thus can avoid a copy.
return try unsafe String(self).withCString(encodedAs: targetEncoding, body)
}
}
extension Substring {
/// Return the length of the extended grapheme cluster that begins at `i`.
///
/// This method assumes that `i` starts a new grapheme cluster; it does not
/// verify that this is actually the case. If it isn't, then the return value
/// reflects grapheme breaking results as if the string started at `i`,
/// ignoring every preceding scalar.
///
/// - Parameter `i`: An index within the bounds of this substring.
internal func _characterStride(startingAt i: Index) -> Int {
_internalInvariant(i._isScalarAligned)
_internalInvariant(i._encodedOffset <= _wholeGuts.count)
// If the index has a character stride, it reflects the stride assuming that
// it addresses a `Character` boundary, which is exactly what we want.
if let d = i.characterStride { return d }
if i._encodedOffset == endIndex._encodedOffset { return 0 }
// If we don't have cached information, we can simply invoke the
// forward-only grapheme breaking algorithm. Note that this ignores the
// Substring bounds; this is okay because this method never looks back at
// preceding scalars, so it will place the boundary at the right position in
// the substring. The reported stride may go above the end index, but that
// case is handled in the caller.
return _wholeGuts._opaqueCharacterStride(startingAt: i._encodedOffset)
}
/// Return the length of the extended grapheme cluster that ends with, or
/// includes, `i`.
///
/// This method does not assume that `i` addresses a grapheme cluster
/// boundary; it looks back as far as necessary within the substring to find
/// the right boundary location, stopping at the start index to prevent
/// results that are inconsistent with `_characterStride(startingAt:)`.
///
/// - Parameter `i`: An index within the bounds of this substring.
internal func _characterStride(endingAt i: Index) -> Int {
// Implicit precondition: `i` must be `Character`-aligned within this
// substring, even if it doesn't have the corresponding flag set.
_internalInvariant(i._isScalarAligned)
_internalInvariant(i._encodedOffset <= _wholeGuts.count)
if i == startIndex { return 0 }
return _wholeGuts._opaqueCharacterStride(
endingAt: i._encodedOffset, in: _offsetRange)
}
}
#if SWIFT_ENABLE_REFLECTION
extension Substring: CustomReflectable {
public var customMirror: Mirror { return String(self).customMirror }
}
#endif
extension Substring: CustomStringConvertible {
@inlinable @inline(__always)
public var description: String { return String(self) }
}
extension Substring: CustomDebugStringConvertible {
public var debugDescription: String { return String(self).debugDescription }
}
extension Substring: LosslessStringConvertible {
public init(_ content: String) {
let range = unsafe Range(
_uncheckedBounds: (content.startIndex, content.endIndex)
)
self.init(_unchecked: Slice(base: content, bounds: range))
}
}
extension Substring {
@frozen
public struct UTF8View: Sendable {
@usableFromInline
internal var _slice: Slice<String.UTF8View>
/// Creates an instance that slices `base` at `_bounds`.
@inlinable
internal init(_ base: String.UTF8View, _bounds: Range<Index>) {
_slice = Slice(base: base, bounds: _bounds)
}
@_alwaysEmitIntoClient @inline(__always)
internal var _wholeGuts: _StringGuts { _slice._base._guts }
@_alwaysEmitIntoClient @inline(__always)
internal var _base: String.UTF8View { _slice._base }
@_alwaysEmitIntoClient @inline(__always)
internal var _bounds: Range<Index> { _slice._bounds }
}
}
extension Substring.UTF8View: BidirectionalCollection {
public typealias Index = String.UTF8View.Index
public typealias Indices = String.UTF8View.Indices
public typealias Element = String.UTF8View.Element
public typealias SubSequence = Substring.UTF8View
@inlinable
public var startIndex: Index { _slice._startIndex }
@inlinable
public var endIndex: Index { _slice._endIndex }
@inlinable
public subscript(index: Index) -> Element {
let index = _wholeGuts.ensureMatchingEncoding(index)
_precondition(index >= startIndex && index < endIndex,
"String index is out of bounds")
return _base[_unchecked: index]
}
@inlinable
public var indices: Indices { return _slice.indices }
@inlinable
public func index(after i: Index) -> Index {
// Note: deferred bounds check
return _base.index(after: i)
}
@inlinable
public func formIndex(after i: inout Index) {
// Note: deferred bounds check
_base.formIndex(after: &i)
}
@inlinable
public func index(_ i: Index, offsetBy n: Int) -> Index {
// Note: deferred bounds check
return _base.index(i, offsetBy: n)
}
@inlinable
public func index(
_ i: Index, offsetBy n: Int, limitedBy limit: Index
) -> Index? {
// Note: deferred bounds check
return _base.index(i, offsetBy: n, limitedBy: limit)
}
@inlinable
public func distance(from start: Index, to end: Index) -> Int {
return _base.distance(from: start, to: end)
}
@_alwaysEmitIntoClient
@inlinable
public func withContiguousStorageIfAvailable<R>(
_ body: (UnsafeBufferPointer<Element>) throws -> R
) rethrows -> R? {
return try unsafe _slice.withContiguousStorageIfAvailable(body)
}
@inlinable
public func _failEarlyRangeCheck(_ index: Index, bounds: Range<Index>) {
// FIXME: This probably ought to ensure that all three indices have matching
// encodings.
_base._failEarlyRangeCheck(index, bounds: bounds)
}
@inlinable
public func _failEarlyRangeCheck(
_ range: Range<Index>, bounds: Range<Index>
) {
// FIXME: This probably ought to ensure that all three indices have matching
// encodings.
_base._failEarlyRangeCheck(range, bounds: bounds)
}
@inlinable
public func index(before i: Index) -> Index {
// Note: deferred bounds check
return _base.index(before: i)
}
@inlinable
public func formIndex(before i: inout Index) {
// Note: deferred bounds check
_base.formIndex(before: &i)
}
@inlinable
public subscript(r: Range<Index>) -> Substring.UTF8View {
// FIXME(strings): tests.
let r = _wholeGuts.validateSubscalarRange(r, in: _bounds)
return Substring.UTF8View(_slice.base, _bounds: r)
}
}
@available(SwiftStdlib 6.2, *)
extension Substring.UTF8View {
@lifetime(borrow self)
private borrowing func _underlyingSpan() -> Span<UTF8.CodeUnit> {
#if _runtime(_ObjC)
// handle non-UTF8 Objective-C bridging cases here
if !_wholeGuts.isFastUTF8, _wholeGuts._object.hasObjCBridgeableObject {
let base: String.UTF8View = self._base
let first = base._foreignDistance(from: base.startIndex, to: startIndex)
let count = base._foreignDistance(from: startIndex, to: endIndex)
let span = base._underlyingSpan().extracting(first..<(first &+ count))
return unsafe _overrideLifetime(span, borrowing: self)
}
#endif // _runtime(_ObjC)
let first = _slice._startIndex._encodedOffset
let end = _slice._endIndex._encodedOffset
if _wholeGuts.isSmall {
let a = Builtin.addressOfBorrow(self)
let offset = first &+ (2 &* MemoryLayout<String.Index>.stride)
let start = unsafe UnsafePointer<UTF8.CodeUnit>(a).advanced(by: offset)
let span = unsafe Span(_unsafeStart: start, count: end &- first)
return unsafe _overrideLifetime(span, borrowing: self)
}
let isFastUTF8 = _wholeGuts.isFastUTF8
_precondition(isFastUTF8, "Substring must be contiguous UTF8")
var span = unsafe Span(_unsafeElements: _wholeGuts._object.fastUTF8)
span = span.extracting(first..<end)
return unsafe _overrideLifetime(span, borrowing: self)
}
#if !(os(watchOS) && _pointerBitWidth(_32))
/// A span over the UTF8 code units that make up this substring.
///
/// - Note: In the case of bridged UTF16 String instances (on Apple
/// platforms,) this property needs to transcode the code units every time
/// it is called.
/// For example, if `string` has the bridged UTF16 representation,
/// for word in string.split(separator: " ") {
/// useSpan(word.span)
/// }
/// is accidentally quadratic because of this issue. A workaround is to
/// explicitly convert the string into its native UTF8 representation:
/// var nativeString = consume string
/// nativeString.makeContiguousUTF8()
/// for word in nativeString.split(separator: " ") {
/// useSpan(word.span)
/// }
/// This second option has linear time complexity, as expected.
///
/// Returns: a `Span` over the UTF8 code units of this Substring.
///
/// Complexity: O(1) for native UTF8 Strings, O(n) for bridged UTF16 Strings.
@available(SwiftStdlib 6.2, *)
public var span: Span<UTF8.CodeUnit> {
@lifetime(borrow self)
borrowing get {
_underlyingSpan()
}
}
/// A span over the UTF8 code units that make up this substring.
///
/// - Note: In the case of bridged UTF16 String instances (on Apple
/// platforms,) this property needs to transcode the code units every time
/// it is called.
/// For example, if `string` has the bridged UTF16 representation,
/// for word in string.split(separator: " ") {
/// useSpan(word.span)
/// }
/// is accidentally quadratic because of this issue. A workaround is to
/// explicitly convert the string into its native UTF8 representation:
/// var nativeString = consume string
/// nativeString.makeContiguousUTF8()
/// for word in nativeString.split(separator: " ") {
/// useSpan(word.span)
/// }
/// This second option has linear time complexity, as expected.
///
/// Returns: a `Span` over the UTF8 code units of this Substring.
///
/// Complexity: O(1) for native UTF8 Strings, O(n) for bridged UTF16 Strings.
@available(SwiftStdlib 6.2, *)
public var _span: Span<UTF8.CodeUnit>? {
@_alwaysEmitIntoClient @inline(__always)
@lifetime(borrow self)
borrowing get {
span
}
}
#else // !(os(watchOS) && _pointerBitWidth(_32))
@available(watchOS, unavailable)
public var span: Span<UTF8.CodeUnit> {
fatalError("\(#function) unavailable on 32-bit watchOS")
}
/// A span over the UTF8 code units that make up this substring.
///
/// - Note: In the case of bridged UTF16 String instances (on Apple
/// platforms,) this property needs to transcode the code units every time
/// it is called.
/// For example, if `string` has the bridged UTF16 representation,
/// for word in string.split(separator: " ") {
/// useSpan(word.span)
/// }
/// is accidentally quadratic because of this issue. A workaround is to
/// explicitly convert the string into its native UTF8 representation:
/// var nativeString = consume string
/// nativeString.makeContiguousUTF8()
/// for word in nativeString.split(separator: " ") {
/// useSpan(word.span)
/// }
/// This second option has linear time complexity, as expected.
///
/// Returns: a `Span` over the UTF8 code units of this Substring, or `nil`
/// if the Substring does not have a contiguous representation.
///
/// Complexity: O(1) for native UTF8 Strings, O(n) for bridged UTF16 Strings.
@available(SwiftStdlib 6.2, *)
public var _span: Span<UTF8.CodeUnit>? {
@lifetime(borrow self)
borrowing get {
if _wholeGuts.isSmall,
_wholeGuts.count > _SmallString.contiguousCapacity() {
// substring is spannable only when the whole string is spannable.
return nil
}
return _underlyingSpan()
}
}
#endif // !(os(watchOS) && _pointerBitWidth(_32))
}
extension Substring {
@inlinable
public var utf8: UTF8View {
get {
// No need for index validation
UTF8View(base.utf8, _bounds: _bounds)
}
set {
self = Substring(newValue)
}
}
/// Creates a Substring having the given content.
///
/// - Complexity: O(1)
public init(_ content: UTF8View) {
// Note: We can trust that `content`'s bounds are valid, but they may not be
// scalar aligned.
let lower = content._wholeGuts.scalarAlign(content.startIndex)
let upper = content._wholeGuts.scalarAlign(content.endIndex)
let bounds = unsafe Range(_uncheckedBounds: (lower, upper))
self.init(_unchecked: content._wholeGuts, bounds: bounds)
}
}
extension String {
/// Creates a String having the given content.
///
/// If `codeUnits` is an ill-formed code unit sequence, the result is `nil`.
///
/// - Complexity: O(N), where N is the length of the resulting `String`'s
/// UTF-8 representation.
public init?(_ codeUnits: Substring.UTF8View) {
let guts = codeUnits._wholeGuts
guard guts.isOnUnicodeScalarBoundary(codeUnits.startIndex),
guts.isOnUnicodeScalarBoundary(codeUnits.endIndex) else {
return nil
}
self = String(Substring(codeUnits))
}
}
extension Substring {
@frozen
public struct UTF16View: Sendable {
@usableFromInline
internal var _slice: Slice<String.UTF16View>
/// Creates an instance that slices `base` at `_bounds`.
@inlinable
internal init(_ base: String.UTF16View, _bounds: Range<Index>) {
_slice = Slice(base: base, bounds: _bounds)
}
@_alwaysEmitIntoClient @inline(__always)
internal var _wholeGuts: _StringGuts { _slice._base._guts }
@_alwaysEmitIntoClient @inline(__always)
internal var _base: String.UTF16View { _slice._base }
@_alwaysEmitIntoClient @inline(__always)
internal var _bounds: Range<Index> { _slice._bounds }
}
}
extension Substring.UTF16View: BidirectionalCollection {
public typealias Index = String.UTF16View.Index
public typealias Indices = String.UTF16View.Indices
public typealias Element = String.UTF16View.Element
public typealias SubSequence = Substring.UTF16View
@inlinable
public var startIndex: Index { _slice._startIndex }
@inlinable
public var endIndex: Index { _slice._endIndex }
@inlinable
public subscript(index: Index) -> Element {
let index = _wholeGuts.ensureMatchingEncoding(index)
_precondition(index >= startIndex && index < endIndex,
"String index is out of bounds")
return _base[_unchecked: index]
}
@inlinable
public var indices: Indices { return _slice.indices }
@inlinable
public func index(after i: Index) -> Index {
// Note: deferred bounds check
return _base.index(after: i)
}
@inlinable
public func formIndex(after i: inout Index) {
// Note: deferred bounds check
_base.formIndex(after: &i)
}
@inlinable
public func index(_ i: Index, offsetBy n: Int) -> Index {
// Note: deferred bounds check
return _base.index(i, offsetBy: n)
}
@inlinable
public func index(
_ i: Index, offsetBy n: Int, limitedBy limit: Index
) -> Index? {
// Note: deferred bounds check
return _base.index(i, offsetBy: n, limitedBy: limit)
}
@inlinable
public func distance(from start: Index, to end: Index) -> Int {
return _base.distance(from: start, to: end)
}
@inlinable
public func _failEarlyRangeCheck(_ index: Index, bounds: Range<Index>) {
// FIXME: This probably ought to ensure that all three indices have matching
// encodings.
_base._failEarlyRangeCheck(index, bounds: bounds)
}
@inlinable
public func _failEarlyRangeCheck(
_ range: Range<Index>, bounds: Range<Index>
) {
// FIXME: This probably ought to ensure that all three indices have matching
// encodings.
_base._failEarlyRangeCheck(range, bounds: bounds)
}
@inlinable
public func index(before i: Index) -> Index {
// Note: deferred bounds check
return _base.index(before: i)
}
@inlinable
public func formIndex(before i: inout Index) {
// Note: deferred bounds check
_base.formIndex(before: &i)
}
@inlinable
public subscript(r: Range<Index>) -> Substring.UTF16View {
let r = _wholeGuts.validateSubscalarRange(r, in: _bounds)
return Substring.UTF16View(_slice.base, _bounds: r)
}
}
extension Substring {
@inlinable
public var utf16: UTF16View {
get {
// No need for index validation
UTF16View(base.utf16, _bounds: _bounds)
}
set {
self = Substring(newValue)
}
}
/// Creates a Substring having the given content.
///
/// - Complexity: O(1)
public init(_ content: UTF16View) {
// Note: We can trust that `content`'s bounds are valid, but they may not be
// scalar aligned.
let lower = content._wholeGuts.scalarAlign(content.startIndex)
let upper = content._wholeGuts.scalarAlign(content.endIndex)
let bounds = unsafe Range(_uncheckedBounds: (lower, upper))
self.init(_unchecked: content._wholeGuts, bounds: bounds)
}
}
extension String {
/// Creates a String having the given content.
///
/// If `codeUnits` is an ill-formed code unit sequence, the result is `nil`.
///
/// - Complexity: O(N), where N is the length of the resulting `String`'s
/// UTF-16.
public init?(_ codeUnits: Substring.UTF16View) {
let guts = codeUnits._wholeGuts
guard guts.isOnUnicodeScalarBoundary(codeUnits.startIndex),
guts.isOnUnicodeScalarBoundary(codeUnits.endIndex) else {
return nil
}
self = String(Substring(codeUnits))
}
}
extension Substring {
@frozen
public struct UnicodeScalarView: Sendable {
@usableFromInline
internal var _slice: Slice<String.UnicodeScalarView>
/// Creates an instance that slices `base` at `_bounds`.
@_alwaysEmitIntoClient
internal init(
_unchecked base: String.UnicodeScalarView, bounds: Range<Index>
) {
_slice = Slice(base: base, bounds: bounds)
_invariantCheck()
}
/// Creates an instance that slices `base` at `_bounds`.
@usableFromInline // This used to be inlinable before 5.7
@available(*, deprecated, message: "Use `init(_unchecked:bounds)` in new code")
internal init(_ base: String.UnicodeScalarView, _bounds: Range<Index>) {
let start = base._guts.scalarAlign(_bounds.lowerBound)
let end = base._guts.scalarAlign(_bounds.upperBound)
_slice = Slice(
base: base, bounds: unsafe Range(_uncheckedBounds: (start, end))
)
}
}
}
extension Substring.UnicodeScalarView {
@_alwaysEmitIntoClient @inline(__always)
internal var _wholeGuts: _StringGuts { _slice._base._guts }
@inline(__always)
internal var _offsetRange: Range<Int> { _slice._bounds._encodedOffsetRange }
@_alwaysEmitIntoClient
@inline(__always)
internal var _bounds: Range<Index> { _slice._bounds }
}
extension Substring.UnicodeScalarView {
#if !INTERNAL_CHECKS_ENABLED
@_alwaysEmitIntoClient @inline(__always)
internal func _invariantCheck() {}
#else
@_alwaysEmitIntoClient
@inline(never) @_effects(releasenone)
internal func _invariantCheck() {
_internalInvariant(endIndex <= _wholeGuts.endIndex)
_internalInvariant(
_wholeGuts.hasMatchingEncoding(startIndex) &&
_wholeGuts.hasMatchingEncoding(endIndex))
_internalInvariant(
startIndex._isScalarAligned && endIndex._isScalarAligned)
_slice._base._invariantCheck()
}
#endif // INTERNAL_CHECKS_ENABLED
}
extension Substring.UnicodeScalarView: BidirectionalCollection {
public typealias Index = String.UnicodeScalarView.Index
public typealias Indices = String.UnicodeScalarView.Indices
public typealias Element = String.UnicodeScalarView.Element
public typealias SubSequence = Substring.UnicodeScalarView
//
// Plumb slice operations through
//
@inlinable @inline(__always)
public var startIndex: Index { _slice._startIndex }
@inlinable @inline(__always)
public var endIndex: Index { _slice._endIndex }
@inlinable
public subscript(index: Index) -> Element {
let index = _wholeGuts.validateScalarIndex(index, in: _bounds)
return _wholeGuts.errorCorrectedScalar(startingAt: index._encodedOffset).0
}
@inlinable
public var indices: Indices {
return _slice.indices
}
@inlinable
public func index(after i: Index) -> Index {
_slice._base.index(after: i)
}
@inlinable
public func formIndex(after i: inout Index) {
_slice._base.formIndex(after: &i)
}
@inlinable
public func index(_ i: Index, offsetBy n: Int) -> Index {
_slice._base.index(i, offsetBy: n)
}
@inlinable
public func index(
_ i: Index, offsetBy n: Int, limitedBy limit: Index
) -> Index? {
_slice._base.index(i, offsetBy: n, limitedBy: limit)
}
@inlinable
public func distance(from start: Index, to end: Index) -> Int {
_slice._base.distance(from: start, to: end)
}
@inlinable
public func _failEarlyRangeCheck(_ index: Index, bounds: Range<Index>) {
_slice._base._failEarlyRangeCheck(index, bounds: bounds)
}
@inlinable
public func _failEarlyRangeCheck(
_ range: Range<Index>, bounds: Range<Index>
) {
_slice._base._failEarlyRangeCheck(range, bounds: bounds)
}
@inlinable
public func index(before i: Index) -> Index {
_slice._base.index(before: i)
}
@inlinable
public func formIndex(before i: inout Index) {
_slice._base.formIndex(before: &i)
}
public subscript(r: Range<Index>) -> Substring.UnicodeScalarView {
// Note: This used to be inlinable until Swift 5.7
let r = _wholeGuts.validateScalarRange(r, in: _bounds)
return Substring.UnicodeScalarView(_unchecked: _slice._base, bounds: r)
}
}
extension Substring {
@inlinable
public var unicodeScalars: UnicodeScalarView {
get {
// No need to validate any indices.
UnicodeScalarView(_unchecked: base.unicodeScalars, bounds: _bounds)
}
set {
self = Substring(newValue)
}
}
/// Creates a Substring having the given content.
///
/// - Complexity: O(1)
public init(_ content: UnicodeScalarView) {
// No need to validate any indices.
let slice = Slice(base: String(content._wholeGuts), bounds: content._bounds)
self.init(_unchecked: slice)
}
}
extension String {
/// Creates a String having the given content.
///
/// - Complexity: O(N), where N is the length of the resulting `String`'s
/// UTF-16.
public init(_ content: Substring.UnicodeScalarView) {
self = String(Substring(content))
}
}
extension Substring.UnicodeScalarView: RangeReplaceableCollection {
@inlinable
public init() { _slice = Slice.init() }
public mutating func replaceSubrange<C: Collection>(
_ subrange: Range<Index>, with replacement: C
) where C.Element == Element {
let subrange = _wholeGuts.validateScalarRange(subrange, in: _bounds)
// Replacing the range is easy -- we can just reuse `String`'s
// implementation. However, we must also update `startIndex` and `endIndex`
// to keep them valid & pointing to the same positions, which is somewhat
// tricky.
//
// In Swift <=5.6, this used to forward to `Slice.replaceSubrange`, which
// (incorrectly) assumes that indices before the replaced subrange are
// preserved after the mutation. (This isn't true for strings, esp. when the
// original value is UTF-16 encoded.)
_slice._base._guts.mutateSubrangeInSubstring(
subrange: subrange,
startIndex: &_slice._startIndex,
endIndex: &_slice._endIndex,
with: { $0.replaceSubrange(subrange, with: replacement) })
_invariantCheck()
}
}
extension Substring: RangeReplaceableCollection {
@_specialize(where S == String)
@_specialize(where S == Substring)
@_specialize(where S == Array<Character>)
public init<S: Sequence>(_ elements: S)
where S.Element == Character {
if let str = elements as? String {
self.init(str)
return
}
if let subStr = elements as? Substring {
self = subStr
return
}
self.init(String(elements))
}
@inlinable // specialize
public mutating func append<S: Sequence>(contentsOf elements: S)
where S.Element == Character {
var string = String(self)
self = Substring() // Keep unique storage if possible
string.append(contentsOf: elements)
self = Substring(string)
}
}
extension Substring {
public func lowercased() -> String {
return String(self).lowercased()
}
public func uppercased() -> String {
return String(self).uppercased()
}
public func filter(
_ isIncluded: (Element) throws -> Bool
) rethrows -> String {
return try String(self.lazy.filter(isIncluded))
}
}
extension Substring: TextOutputStream {
public mutating func write(_ other: String) {
append(contentsOf: other)
}
}
extension Substring: TextOutputStreamable {
@inlinable // specializable
public func write<Target: TextOutputStream>(to target: inout Target) {
target.write(String(self))
}
}
extension Substring: ExpressibleByUnicodeScalarLiteral {
@inlinable
public init(unicodeScalarLiteral value: String) {
self.init(value)
}
}
extension Substring: ExpressibleByExtendedGraphemeClusterLiteral {
@inlinable
public init(extendedGraphemeClusterLiteral value: String) {
self.init(value)
}
}
extension Substring: ExpressibleByStringLiteral {
@inlinable
public init(stringLiteral value: String) {
self.init(value)
}
}
// String/Substring Slicing
extension String {
@available(swift, introduced: 4)
public subscript(r: Range<Index>) -> Substring {
var r = _guts.validateScalarRange(r)
// Older binaries may generate `startIndex` without the
// `_isCharacterAligned` flag. Compensate for that here so that substrings
// that start at the beginning will never get the sad path in
// `index(after:)`. Note that we don't need to do this for `upperBound` and
// we don't need to compare against the `endIndex` -- those aren't nearly as
// critical.
if r.lowerBound._encodedOffset == 0 {
r = unsafe Range(_uncheckedBounds:
(r.lowerBound._characterAligned, r.upperBound))
}
return Substring(_unchecked: Slice(base: self, bounds: r))
}
}
extension Substring {
@available(swift, introduced: 4)
public subscript(r: Range<Index>) -> Substring {
let r = _wholeGuts.validateScalarRange(r, in: _bounds)
return Substring(_unchecked: Slice(base: base, bounds: r))
}
}