Files
swift-mirror/test/SILOptimizer/funcsig_explode_heuristic_inline.sil
Erik Eckstein 7cceaff5f3 SIL: don't print operand types in textual SIL
Type annotations for instruction operands are omitted, e.g.

```
  %3 = struct $S(%1, %2)
```

Operand types are redundant anyway and were only used for sanity checking in the SIL parser.

But: operand types _are_ printed if the definition of the operand value was not printed yet.
This happens:

* if the block with the definition appears after the block where the operand's instruction is located

* if a block or instruction is printed in isolation, e.g. in a debugger

The old behavior can be restored with `-Xllvm -sil-print-types`.
This option is added to many existing test files which check for operand types in their check-lines.
2024-11-21 18:49:52 +01:00

91 lines
4.8 KiB
Plaintext

// RUN: %target-sil-opt -sil-print-types -enable-objc-interop -enable-sil-verify-all -sil-inline-generics -inline -function-signature-opts -enable-expand-all %s | %FileCheck %s
sil_stage canonical
import Builtin
//////////////////
// Declarations //
//////////////////
class Klass {}
struct LargeNonTrivialStructOneNonTrivialField {
var k1: Klass
var k2: Klass
var x1: Builtin.Int32
var x2: Builtin.Int32
var x3: Builtin.Int32
var x4: Builtin.Int32
}
sil @consuming_user : $@convention(thin) (@owned Klass) -> ()
sil @guaranteed_user : $@convention(thin) (@guaranteed Klass) -> ()
// This test makes sure that if we have two non-trivial values that are live and
// one is always dead and the other is a value that we have a release for, we
// can get rid of the first argument and FSO the other. Test here that we
// explode it appropriately and do a partial o2g even though we aren't reducing
// the number of non-trivial uses.
// CHECK-LABEL: sil @caller1 : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> () {
// CHECK: bb0([[ARG:%.*]] : $LargeNonTrivialStructOneNonTrivialField):
// CHECK: [[FUNC:%.*]] = function_ref @partial_o2g : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> ()
// CHECK: apply [[FUNC]]([[ARG]]) : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> ()
// CHECK: } // end sil function 'caller1'
sil @caller1 : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> () {
bb0(%0 : $LargeNonTrivialStructOneNonTrivialField):
%1 = function_ref @partial_o2g : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> ()
apply %1(%0) : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> ()
%9999 = tuple()
return %9999 : $()
}
// If we have two non-trivial values that are live and one is always dead and
// the other is kept alive due to a release, we can get rid of both since FSO
// reruns with o2g. Test here that we explode it appropriately and do a partial
// o2g even though we aren't reducing the number of non-trivial uses.
sil hidden [noinline] @partial_o2g : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> () {
bb0(%0 : $LargeNonTrivialStructOneNonTrivialField):
%1 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k1
%2 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k2
%3 = function_ref @consuming_user : $@convention(thin) (@owned Klass) -> ()
apply %3(%2) : $@convention(thin) (@owned Klass) -> ()
%4 = function_ref @guaranteed_user : $@convention(thin) (@guaranteed Klass) -> ()
apply %4(%1) :$@convention(thin) (@guaranteed Klass) -> ()
release_value %1 : $Klass
%9999 = tuple()
return %9999 : $()
}
// CHECK-LABEL: sil @caller2 : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> () {
// CHECK: bb0([[ARG:%.*]] : $LargeNonTrivialStructOneNonTrivialField):
// CHECK: [[FIELD1:%.*]] = struct_extract [[ARG]] : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k2
// CHECK: [[FIELD2:%.*]] = struct_extract [[ARG]] : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k1
// CHECK: [[FUNC:%.*]] = function_ref @$s23partiallydead_after_o2gTf4x_nTf4dn_n : $@convention(thin) (@owned Klass) -> ()
// CHECK: apply [[FUNC]]([[FIELD1]]) : $@convention(thin) (@owned Klass) -> ()
// CHECK: release_value [[FIELD2]]
// CHECK: } // end sil function 'caller2'
sil @caller2 : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> () {
bb0(%0 : $LargeNonTrivialStructOneNonTrivialField):
%1 = function_ref @partiallydead_after_o2g : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> ()
apply %1(%0) : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> ()
%9999 = tuple()
return %9999 : $()
}
// If we have two non-trivial values that are live and one is always dead and
// the other is kept alive due to a release, we can get rid of both since FSO
// reruns with o2g. Test here that we explode it appropriately and do a partial
// o2g even though we aren't reducing the number of non-trivial uses.
sil hidden [noinline] @partiallydead_after_o2g : $@convention(thin) (@owned LargeNonTrivialStructOneNonTrivialField) -> () {
bb0(%0 : $LargeNonTrivialStructOneNonTrivialField):
%1 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k1
%2 = struct_extract %0 : $LargeNonTrivialStructOneNonTrivialField, #LargeNonTrivialStructOneNonTrivialField.k2
%3 = function_ref @consuming_user : $@convention(thin) (@owned Klass) -> ()
apply %3(%2) : $@convention(thin) (@owned Klass) -> ()
release_value %1 : $Klass
%9999 = tuple()
return %9999 : $()
}