mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This change introduces a new compilation target platform to the Swift compiler - visionOS. - Changes to the compiler build infrastrucuture to support building compiler-adjacent artifacts and test suites for the new target. - Addition of the new platform kind definition. - Support for the new platform in language constructs such as compile-time availability annotations or runtime OS version queries. - Utilities to read out Darwin platform SDK info containing platform mapping data. - Utilities to support re-mapping availability annotations from iOS to visionOS (e.g. 'updateIntroducedPlatformForFallback', 'updateDeprecatedPlatformForFallback', 'updateObsoletedPlatformForFallback'). - Additional tests exercising platform-specific availability handling and availability re-mapping fallback code-path. - Changes to existing test suite to accomodate the new platform.
366 lines
10 KiB
Swift
366 lines
10 KiB
Swift
//===--- tgmath.swift.gyb -------------------------------------*- swift -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
import SwiftShims
|
|
|
|
// Generic functions implementable directly on FloatingPoint.
|
|
@_transparent
|
|
@available(swift, deprecated: 4.2/*, obsoleted: 5.1*/, renamed: "abs")
|
|
public func fabs<T: FloatingPoint>(_ x: T) -> T {
|
|
return x.magnitude
|
|
}
|
|
|
|
@_transparent
|
|
public func sqrt<T: FloatingPoint>(_ x: T) -> T {
|
|
return x.squareRoot()
|
|
}
|
|
|
|
@_transparent
|
|
public func fma<T: FloatingPoint>(_ x: T, _ y: T, _ z: T) -> T {
|
|
return z.addingProduct(x, y)
|
|
}
|
|
|
|
@_transparent
|
|
public func remainder<T: FloatingPoint>(_ x: T, _ y: T) -> T {
|
|
return x.remainder(dividingBy: y)
|
|
}
|
|
|
|
@_transparent
|
|
public func fmod<T: FloatingPoint>(_ x: T, _ y: T) -> T {
|
|
return x.truncatingRemainder(dividingBy: y)
|
|
}
|
|
|
|
@_transparent
|
|
public func ceil<T: FloatingPoint>(_ x: T) -> T {
|
|
return x.rounded(.up)
|
|
}
|
|
|
|
@_transparent
|
|
public func floor<T: FloatingPoint>(_ x: T) -> T {
|
|
return x.rounded(.down)
|
|
}
|
|
|
|
@_transparent
|
|
public func round<T: FloatingPoint>(_ x: T) -> T {
|
|
return x.rounded()
|
|
}
|
|
|
|
@_transparent
|
|
public func trunc<T: FloatingPoint>(_ x: T) -> T {
|
|
return x.rounded(.towardZero)
|
|
}
|
|
|
|
@_transparent
|
|
public func scalbn<T: FloatingPoint>(_ x: T, _ n : Int) -> T {
|
|
return T(sign: .plus, exponent: T.Exponent(n), significand: x)
|
|
}
|
|
|
|
@_transparent
|
|
public func modf<T: FloatingPoint>(_ x: T) -> (T, T) {
|
|
// inf/NaN: return canonicalized x, fractional part zero.
|
|
guard x.isFinite else { return (x+0, 0) }
|
|
let integral = trunc(x)
|
|
let fractional = x - integral
|
|
return (integral, fractional)
|
|
}
|
|
|
|
@_transparent
|
|
public func frexp<T: BinaryFloatingPoint>(_ x: T) -> (T, Int) {
|
|
guard x.isFinite else { return (x+0, 0) }
|
|
guard x != 0 else { return (x, 0) }
|
|
// The C stdlib `frexp` uses a different notion of significand / exponent
|
|
// than IEEE 754, so we need to adjust them by a factor of two.
|
|
return (x.significand / 2, Int(x.exponent + 1))
|
|
}
|
|
|
|
%for T in ['Float','Double']:
|
|
@available(swift, deprecated: 4.2, renamed: "scalbn")
|
|
@_transparent
|
|
public func ldexp(_ x: ${T}, _ n : Int) -> ${T} {
|
|
return ${T}(sign: .plus, exponent: n, significand: x)
|
|
}
|
|
|
|
%end
|
|
|
|
// Floating-point properties that are exposed as functions in the C math
|
|
// library. Mark those function names unavailable and direct users to the
|
|
// properties instead.
|
|
@available(*, unavailable, message: "use the floatingPointClass property.")
|
|
public func fpclassify<T: FloatingPoint>(_ value: T) -> Int { fatalError() }
|
|
|
|
@available(*, unavailable, message: "use the isNormal property.")
|
|
public func isnormal<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
|
|
|
|
@available(*, unavailable, message: "use the isFinite property.")
|
|
public func isfinite<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
|
|
|
|
@available(*, unavailable, message: "use the isInfinite property.")
|
|
public func isinf<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
|
|
|
|
@available(*, unavailable, message: "use the isNaN property.")
|
|
public func isnan<T: FloatingPoint>(_ value: T) -> Bool { fatalError() }
|
|
|
|
@available(*, unavailable, message: "use the sign property.")
|
|
public func signbit<T: FloatingPoint>(_ value: T) -> Int { fatalError() }
|
|
|
|
@available(swift, deprecated: 4.2/*, obsoleted: 5.1*/, message: "use the exponent property.")
|
|
public func ilogb<T: BinaryFloatingPoint>(_ x: T) -> Int {
|
|
return Int(x.exponent)
|
|
}
|
|
|
|
%{
|
|
|
|
# Don't need 64-bit (Double/CDouble) overlays. The ordinary C imports work fine.
|
|
overlayFloatBits = [32, 80]
|
|
allFloatBits = [32, 64, 80]
|
|
|
|
def floatName(bits):
|
|
if bits == 32:
|
|
return 'Float'
|
|
if bits == 64:
|
|
return 'Double'
|
|
if bits == 80:
|
|
return 'Float80'
|
|
|
|
def cFloatName(bits):
|
|
if bits == 32:
|
|
return 'CFloat'
|
|
if bits == 64:
|
|
return 'CDouble'
|
|
if bits == 80:
|
|
return 'CLongDouble'
|
|
|
|
def cFuncSuffix(bits):
|
|
if bits == 32:
|
|
return 'f'
|
|
if bits == 64:
|
|
return ''
|
|
if bits == 80:
|
|
return 'l'
|
|
|
|
# Each of the following lists is ordered to match math.h
|
|
|
|
# (T) -> T
|
|
# These functions do not have a corresponding LLVM intrinsic
|
|
UnaryFunctions = [
|
|
'acos', 'asin', 'atan', 'tan',
|
|
'acosh', 'asinh', 'atanh', 'cosh', 'sinh', 'tanh',
|
|
'expm1',
|
|
'log1p', 'logb',
|
|
'cbrt', 'erf', 'erfc', 'tgamma',
|
|
]
|
|
|
|
# These functions have a corresponding LLVM intrinsic
|
|
# We call this intrinsic via the Builtin method so keep this list in
|
|
# sync with core/BuiltinMath.swift.gyb
|
|
UnaryIntrinsicFunctions = [
|
|
'cos', 'sin',
|
|
'exp', 'exp2',
|
|
'log', 'log10', 'log2',
|
|
'nearbyint', 'rint',
|
|
]
|
|
|
|
# (T, T) -> T
|
|
BinaryFunctions = [
|
|
'atan2', 'hypot', 'pow',
|
|
'copysign', 'nextafter', 'fdim', 'fmax', 'fmin'
|
|
]
|
|
|
|
# These functions have special implementations.
|
|
OtherFunctions = [
|
|
'scalbn', 'lgamma', 'remquo', 'nan', 'jn', 'yn'
|
|
]
|
|
|
|
# These functions are imported correctly as-is.
|
|
OkayFunctions = ['j0', 'j1', 'y0', 'y1']
|
|
|
|
# These functions are not supported for various reasons.
|
|
UnhandledFunctions = [
|
|
'math_errhandling', 'scalbln',
|
|
'lrint', 'lround', 'llrint', 'llround', 'nexttoward',
|
|
'isgreater', 'isgreaterequal', 'isless', 'islessequal',
|
|
'islessgreater', 'isunordered', '__exp10',
|
|
'__sincos', '__cospi', '__sinpi', '__tanpi', '__sincospi'
|
|
]
|
|
|
|
|
|
def AllFloatTypes():
|
|
for bits in allFloatBits:
|
|
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
|
|
|
|
def OverlayFloatTypes():
|
|
for bits in overlayFloatBits:
|
|
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits)
|
|
|
|
def TypedUnaryFunctions():
|
|
for ufunc in UnaryFunctions:
|
|
for bits in overlayFloatBits:
|
|
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), ufunc
|
|
|
|
def TypedUnaryIntrinsicFunctions():
|
|
for ufunc in UnaryIntrinsicFunctions:
|
|
for bits in allFloatBits:
|
|
yield floatName(bits), ufunc
|
|
|
|
def TypedBinaryFunctions():
|
|
for bfunc in BinaryFunctions:
|
|
for bits in overlayFloatBits:
|
|
yield floatName(bits), cFloatName(bits), cFuncSuffix(bits), bfunc
|
|
|
|
}%
|
|
|
|
// Unary functions
|
|
// Note these do not have a corresponding LLVM intrinsic
|
|
% for T, CT, f, ufunc in TypedUnaryFunctions():
|
|
% if T == 'Float80':
|
|
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS))))
|
|
% end
|
|
@_transparent
|
|
public func ${ufunc}(_ x: ${T}) -> ${T} {
|
|
return ${T}(${ufunc}${f}(${CT}(x)))
|
|
}
|
|
% if T == 'Float80':
|
|
#endif
|
|
% end
|
|
|
|
% end
|
|
|
|
#if os(macOS) || os(iOS) || os(tvOS) || os(watchOS) || os(visionOS)
|
|
// Unary intrinsic functions
|
|
// Note these have a corresponding LLVM intrinsic
|
|
% for T, ufunc in TypedUnaryIntrinsicFunctions():
|
|
% if T == 'Float80':
|
|
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS))))
|
|
% end
|
|
@_transparent
|
|
public func ${ufunc}(_ x: ${T}) -> ${T} {
|
|
return _${ufunc}(x)
|
|
}
|
|
% if T == 'Float80':
|
|
#endif
|
|
% end
|
|
|
|
% end
|
|
#else
|
|
// FIXME: As of now, we cannot declare 64-bit (Double/CDouble) overlays here.
|
|
// Since CoreFoundation also exports libc functions, they will conflict with
|
|
// Swift overlays when building Foundation. For now, just like normal
|
|
// UnaryFunctions, we define overlays only for OverlayFloatTypes.
|
|
% for ufunc in UnaryIntrinsicFunctions:
|
|
% for T, CT, f in OverlayFloatTypes():
|
|
% if T == 'Float80':
|
|
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS))))
|
|
% end
|
|
@_transparent
|
|
public func ${ufunc}(_ x: ${T}) -> ${T} {
|
|
return ${T}(${ufunc}${f}(${CT}(x)))
|
|
}
|
|
% if T == 'Float80':
|
|
#endif
|
|
% end
|
|
% end
|
|
% end
|
|
#endif
|
|
|
|
// Binary functions
|
|
|
|
% for T, CT, f, bfunc in TypedBinaryFunctions():
|
|
% if T == 'Float80':
|
|
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS))))
|
|
% end
|
|
@_transparent
|
|
public func ${bfunc}(_ lhs: ${T}, _ rhs: ${T}) -> ${T} {
|
|
return ${T}(${bfunc}${f}(${CT}(lhs), ${CT}(rhs)))
|
|
}
|
|
% if T == 'Float80':
|
|
#endif
|
|
% end
|
|
|
|
% end
|
|
|
|
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
|
|
% for T, CT, f in AllFloatTypes():
|
|
% if T == 'Float80':
|
|
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || os(OpenBSD) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS))))
|
|
% else:
|
|
// lgamma not available on Windows, apparently?
|
|
#if !os(Windows)
|
|
% end
|
|
@_transparent
|
|
public func lgamma(_ x: ${T}) -> (${T}, Int) {
|
|
var sign = Int32(0)
|
|
let value = lgamma${f}_r(${CT}(x), &sign)
|
|
return (${T}(value), Int(sign))
|
|
}
|
|
#endif
|
|
|
|
% end
|
|
|
|
% # This is AllFloatTypes not OverlayFloatTypes because of the tuple return.
|
|
% for T, CT, f in AllFloatTypes():
|
|
% if T == 'Float80':
|
|
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS))))
|
|
% end
|
|
@_transparent
|
|
public func remquo(_ x: ${T}, _ y: ${T}) -> (${T}, Int) {
|
|
var quo = Int32(0)
|
|
let rem = remquo${f}(${CT}(x), ${CT}(y), &quo)
|
|
return (${T}(rem), Int(quo))
|
|
}
|
|
% if T == 'Float80':
|
|
#endif
|
|
% end
|
|
|
|
% end
|
|
|
|
% for T, CT, f in OverlayFloatTypes():
|
|
% if T == 'Float80':
|
|
#if (arch(i386) || arch(x86_64)) && !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS))))
|
|
% end
|
|
@available(swift, deprecated: 4.2/*, obsoleted: 5.1*/, message:
|
|
"use ${T}(nan: ${T}.RawSignificand).")
|
|
@_transparent
|
|
@_unavailableInEmbedded
|
|
public func nan(_ tag: String) -> ${T} {
|
|
return ${T}(nan${f}(tag))
|
|
}
|
|
% if T == 'Float80':
|
|
#endif
|
|
% end
|
|
|
|
% end
|
|
|
|
% # These C functions only support double. The overlay fixes the Int parameter.
|
|
@_transparent
|
|
public func jn(_ n: Int, _ x: Double) -> Double {
|
|
#if os(Windows)
|
|
return _jn(Int32(n), x)
|
|
#else
|
|
return jn(Int32(n), x)
|
|
#endif
|
|
}
|
|
|
|
@_transparent
|
|
public func yn(_ n: Int, _ x: Double) -> Double {
|
|
#if os(Windows)
|
|
return _yn(Int32(n), x)
|
|
#else
|
|
return yn(Int32(n), x)
|
|
#endif
|
|
}
|
|
|
|
% end
|
|
|
|
// ${'Local Variables'}:
|
|
// eval: (read-only-mode 1)
|
|
// End:
|