Files
swift-mirror/stdlib/public/runtime/Errors.cpp
Saleem Abdulrasool e9ec50132f runtime: sprinkle some linker pragmas to autolink
This prepares the runtime to be closed with its dependencies when
performing static linking. The pragma ensures that the linker will
automatically pick up the dependent libraries avoiding the need to
explicitly add the dependencies.
2025-01-17 08:58:42 -08:00

550 lines
17 KiB
C++

//===--- Errors.cpp - Error reporting utilities ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Utilities for reporting errors to stderr, system console, and crash logs.
//
//===----------------------------------------------------------------------===//
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <windows.h>
#pragma comment(lib, "User32.Lib")
#include <mutex>
#endif
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#if defined(_WIN32)
#include <io.h>
#endif
#include <stdarg.h>
#include "ImageInspection.h"
#include "swift/Demangling/Demangle.h"
#include "swift/Runtime/Atomic.h"
#include "swift/Runtime/Debug.h"
#include "swift/Runtime/Portability.h"
#include "swift/Runtime/Win32.h"
#include "swift/Threading/Errors.h"
#include "swift/Threading/Mutex.h"
#include "llvm/ADT/StringRef.h"
#if defined(_MSC_VER)
#include <DbgHelp.h>
#else
#include <cxxabi.h>
#endif
#if __has_include(<execinfo.h>)
#include <execinfo.h>
#endif
#if SWIFT_STDLIB_HAS_ASL
#include <asl.h>
#elif defined(__ANDROID__)
#include <android/log.h>
#endif
#if defined(__ELF__)
#include <unwind.h>
#endif
#include <inttypes.h>
#ifdef SWIFT_HAVE_CRASHREPORTERCLIENT
#include <malloc/malloc.h>
#else
static std::atomic<const char *> kFatalErrorMessage;
#endif // SWIFT_HAVE_CRASHREPORTERCLIENT
#include "BacktracePrivate.h"
#include <atomic>
namespace FatalErrorFlags {
enum: uint32_t {
ReportBacktrace = 1 << 0
};
} // end namespace FatalErrorFlags
using namespace swift;
#if SWIFT_STDLIB_SUPPORTS_BACKTRACE_REPORTING && SWIFT_STDLIB_HAS_DLADDR
static bool getSymbolNameAddr(llvm::StringRef libraryName,
const SymbolInfo &syminfo,
std::string &symbolName, uintptr_t &addrOut) {
// If we failed to find a symbol and thus dlinfo->dli_sname is nullptr, we
// need to use the hex address.
bool hasUnavailableAddress = syminfo.getSymbolName() == nullptr;
if (hasUnavailableAddress) {
return false;
}
// Ok, now we know that we have some sort of "real" name. Set the outAddr.
addrOut = uintptr_t(syminfo.getSymbolAddress());
// First lets try to demangle using cxxabi. If this fails, we will try to
// demangle with swift. We are taking advantage of __cxa_demangle actually
// providing failure status instead of just returning the original string like
// swift demangle.
#if defined(_WIN32)
const char *szSymbolName = syminfo.getSymbolName();
// UnDecorateSymbolName() will not fail for Swift symbols, so detect them
// up-front and let Swift handle them.
if (!Demangle::isMangledName(szSymbolName)) {
char szUndName[1024];
DWORD dwResult;
dwResult = _swift_win32_withDbgHelpLibrary([&] (HANDLE hProcess) -> DWORD {
if (!hProcess) {
return 0;
}
DWORD dwFlags = UNDNAME_COMPLETE;
#if !defined(_WIN64)
dwFlags |= UNDNAME_32_BIT_DECODE;
#endif
return UnDecorateSymbolName(szSymbolName, szUndName,
sizeof(szUndName), dwFlags);
});
if (dwResult) {
symbolName += szUndName;
return true;
}
}
#else
int status;
char *demangled =
abi::__cxa_demangle(syminfo.getSymbolName(), 0, 0, &status);
if (status == 0) {
assert(demangled != nullptr &&
"If __cxa_demangle succeeds, demangled should never be nullptr");
symbolName += demangled;
free(demangled);
return true;
}
assert(demangled == nullptr &&
"If __cxa_demangle fails, demangled should be a nullptr");
#endif
// Otherwise, try to demangle with swift. If swift fails to demangle, it will
// just pass through the original output.
symbolName = demangleSymbolAsString(
syminfo.getSymbolName(), strlen(syminfo.getSymbolName()),
Demangle::DemangleOptions::SimplifiedUIDemangleOptions());
return true;
}
#endif
void swift::dumpStackTraceEntry(unsigned index, void *framePC,
bool shortOutput) {
#if SWIFT_STDLIB_SUPPORTS_BACKTRACE_REPORTING && SWIFT_STDLIB_HAS_DLADDR
auto syminfo = SymbolInfo::lookup(framePC);
if (!syminfo.has_value()) {
constexpr const char *format = "%-4u %-34s 0x%0.16tx\n";
fprintf(stderr, format, index, "<unknown>",
reinterpret_cast<uintptr_t>(framePC));
return;
}
// If SymbolInfo:lookup succeeded then fileName is non-null. Thus, we find the
// library name here. Avoid using StringRef::rsplit because its definition
// is not provided in the header so that it requires linking with
// libSupport.a.
llvm::StringRef libraryName{syminfo->getFilename()};
#ifdef _WIN32
libraryName = libraryName.substr(libraryName.rfind('\\')).substr(1);
#else
libraryName = libraryName.substr(libraryName.rfind('/')).substr(1);
#endif
// Next we get the symbol name that we are going to use in our backtrace.
std::string symbolName;
// We initialize symbolAddr to framePC so that if we succeed in finding the
// symbol, we get the offset in the function and if we fail to find the symbol
// we just get HexAddr + 0.
uintptr_t symbolAddr = uintptr_t(framePC);
bool foundSymbol =
getSymbolNameAddr(libraryName, syminfo.value(), symbolName, symbolAddr);
ptrdiff_t offset = 0;
if (foundSymbol) {
offset = ptrdiff_t(uintptr_t(framePC) - symbolAddr);
} else {
auto baseAddress = syminfo->getBaseAddress();
offset = ptrdiff_t(uintptr_t(framePC) - uintptr_t(baseAddress));
symbolAddr = uintptr_t(framePC);
symbolName = "<unavailable>";
}
const char *libraryNameStr = libraryName.data();
if (!libraryNameStr)
libraryNameStr = "<unknown>";
// We do not use %p here for our pointers since the format is implementation
// defined. This makes it logically impossible to check the output. Forcing
// hexadecimal solves this issue.
// If the symbol is not available, we print out <unavailable> + offset
// from the base address of where the image containing framePC is mapped.
// This gives enough info to reconstruct identical debugging target after
// this process terminates.
if (shortOutput) {
fprintf(stderr, "%s`%s + %td", libraryNameStr, symbolName.c_str(),
offset);
} else {
constexpr const char *format = "%-4u %-34s 0x%0.16" PRIxPTR " %s + %td\n";
fprintf(stderr, format, index, libraryNameStr, symbolAddr,
symbolName.c_str(), offset);
}
#else
if (shortOutput) {
fprintf(stderr, "<unavailable>");
} else {
constexpr const char *format = "%-4u 0x%0.16tx\n";
fprintf(stderr, format, index, reinterpret_cast<uintptr_t>(framePC));
}
#endif
}
#if defined(__ELF__)
struct UnwindState {
void **current;
void **end;
};
static _Unwind_Reason_Code SwiftUnwindFrame(struct _Unwind_Context *context, void *arg) {
struct UnwindState *state = static_cast<struct UnwindState *>(arg);
if (state->current == state->end) {
return _URC_END_OF_STACK;
}
uintptr_t pc;
#if defined(__arm__)
// ARM r15 is PC. UNW_REG_PC is *not* the same value, and using that will
// result in abnormal behaviour.
_Unwind_VRS_Get(context, _UVRSC_CORE, 15, _UVRSD_UINT32, &pc);
// Clear the ISA bit during the reporting.
pc &= ~(uintptr_t)0x1;
#else
pc = _Unwind_GetIP(context);
#endif
if (pc) {
*state->current++ = reinterpret_cast<void *>(pc);
}
return _URC_NO_REASON;
}
#endif
SWIFT_ALWAYS_INLINE
static bool withCurrentBacktraceImpl(std::function<void(void **, int)> call) {
#if SWIFT_STDLIB_SUPPORTS_BACKTRACE_REPORTING
constexpr unsigned maxSupportedStackDepth = 128;
void *addrs[maxSupportedStackDepth];
#if defined(_WIN32)
int symbolCount = CaptureStackBackTrace(0, maxSupportedStackDepth, addrs, NULL);
#elif defined(__ELF__)
struct UnwindState state = {&addrs[0], &addrs[maxSupportedStackDepth]};
_Unwind_Backtrace(SwiftUnwindFrame, &state);
int symbolCount = state.current - addrs;
#else
int symbolCount = backtrace(addrs, maxSupportedStackDepth);
#endif
call(addrs, symbolCount);
return true;
#else
return false;
#endif
}
SWIFT_NOINLINE
bool swift::withCurrentBacktrace(std::function<void(void **, int)> call) {
return withCurrentBacktraceImpl(call);
}
SWIFT_NOINLINE
void swift::printCurrentBacktrace(unsigned framesToSkip) {
bool success = withCurrentBacktraceImpl([&](void **addrs, int symbolCount) {
for (int i = framesToSkip; i < symbolCount; ++i) {
dumpStackTraceEntry(i - framesToSkip, addrs[i]);
}
});
if (!success)
fprintf(stderr, "<backtrace unavailable>\n");
}
// Report a message to any forthcoming crash log.
static void
reportOnCrash(uint32_t flags, const char *message)
{
#ifdef SWIFT_HAVE_CRASHREPORTERCLIENT
char *oldMessage = nullptr;
char *newMessage = nullptr;
oldMessage = std::atomic_load_explicit(
(volatile std::atomic<char *> *)&gCRAnnotations.message,
SWIFT_MEMORY_ORDER_CONSUME);
do {
if (newMessage) {
free(newMessage);
newMessage = nullptr;
}
if (oldMessage) {
swift_asprintf(&newMessage, "%s%s", oldMessage, message);
} else {
newMessage = strdup(message);
}
} while (!std::atomic_compare_exchange_strong_explicit(
(volatile std::atomic<char *> *)&gCRAnnotations.message,
&oldMessage, newMessage,
std::memory_order_release,
SWIFT_MEMORY_ORDER_CONSUME));
#else
const char *previous = nullptr;
char *current = nullptr;
previous =
std::atomic_load_explicit(&kFatalErrorMessage, SWIFT_MEMORY_ORDER_CONSUME);
do {
::free(current);
current = nullptr;
if (previous)
swift_asprintf(&current, "%s%s", current, message);
else
#if defined(_WIN32)
current = ::_strdup(message);
#else
current = ::strdup(message);
#endif
} while (!std::atomic_compare_exchange_strong_explicit(&kFatalErrorMessage,
&previous,
static_cast<const char *>(current),
std::memory_order_release,
SWIFT_MEMORY_ORDER_CONSUME));
#endif // SWIFT_HAVE_CRASHREPORTERCLIENT
}
// Report a message to system console and stderr.
static void
reportNow(uint32_t flags, const char *message)
{
#if defined(_WIN32)
#define STDERR_FILENO 2
_write(STDERR_FILENO, message, strlen(message));
#else
fputs(message, stderr);
fflush(stderr);
#endif
#if SWIFT_STDLIB_HAS_ASL
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
asl_log(nullptr, nullptr, ASL_LEVEL_ERR, "%s", message);
#pragma clang diagnostic pop
#elif defined(__ANDROID__)
__android_log_print(ANDROID_LOG_FATAL, "SwiftRuntime", "%s", message);
#endif
#if SWIFT_STDLIB_SUPPORTS_BACKTRACE_REPORTING
if (flags & FatalErrorFlags::ReportBacktrace) {
fputs("Current stack trace:\n", stderr);
printCurrentBacktrace();
}
#endif
}
SWIFT_NOINLINE SWIFT_RUNTIME_EXPORT void
_swift_runtime_on_report(uintptr_t flags, const char *message,
RuntimeErrorDetails *details) {
// Do nothing. This function is meant to be used by the debugger.
// The following is necessary to avoid calls from being optimized out.
asm volatile("" // Do nothing.
: // Output list, empty.
: "r" (flags), "r" (message), "r" (details) // Input list.
: // Clobber list, empty.
);
}
void swift::_swift_reportToDebugger(uintptr_t flags, const char *message,
RuntimeErrorDetails *details) {
_swift_runtime_on_report(flags, message, details);
}
bool swift::_swift_reportFatalErrorsToDebugger = true;
bool swift::_swift_shouldReportFatalErrorsToDebugger() {
return _swift_reportFatalErrorsToDebugger;
}
/// Report a fatal error to system console, stderr, and crash logs.
/// Does not crash by itself.
void swift::swift_reportError(uint32_t flags,
const char *message) {
#if defined(__APPLE__) && NDEBUG
flags &= ~FatalErrorFlags::ReportBacktrace;
#elif SWIFT_ENABLE_BACKTRACING
// Disable fatalError backtraces if the backtracer is enabled
if (runtime::backtrace::_swift_backtrace_isEnabled()) {
flags &= ~FatalErrorFlags::ReportBacktrace;
}
#endif
reportNow(flags, message);
reportOnCrash(flags, message);
}
// Report a fatal error to system console, stderr, and crash logs, then abort.
SWIFT_NORETURN void swift::fatalErrorv(uint32_t flags, const char *format,
va_list args) {
char *log;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuninitialized"
swift_vasprintf(&log, format, args);
#pragma GCC diagnostic pop
swift_reportError(flags, log);
abort();
}
// Report a fatal error to system console, stderr, and crash logs, then abort.
SWIFT_NORETURN void swift::fatalError(uint32_t flags, const char *format, ...) {
va_list args;
va_start(args, format);
fatalErrorv(flags, format, args);
}
// Report a warning to system console and stderr.
void
swift::warningv(uint32_t flags, const char *format, va_list args)
{
char *log;
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuninitialized"
swift_vasprintf(&log, format, args);
#pragma GCC diagnostic pop
reportNow(flags, log);
free(log);
}
// Report a warning to system console and stderr.
void
swift::warning(uint32_t flags, const char *format, ...)
{
va_list args;
va_start(args, format);
warningv(flags, format, args);
}
/// Report a warning to the system console and stderr. This is exported,
/// unlike the swift::warning() function above.
void swift::swift_reportWarning(uint32_t flags, const char *message) {
warning(flags, "%s", message);
}
#if !defined(SWIFT_HAVE_CRASHREPORTERCLIENT)
std::atomic<const char *> *swift::swift_getFatalErrorMessageBuffer() {
return &kFatalErrorMessage;
}
#endif
// Crash when a deleted method is called by accident.
SWIFT_RUNTIME_EXPORT SWIFT_NORETURN void swift_deletedMethodError() {
swift::fatalError(/* flags = */ 0,
"Fatal error: Call of deleted method\n");
}
// Crash due to a retain count overflow.
// FIXME: can't pass the object's address from InlineRefCounts without hacks
void swift::swift_abortRetainOverflow() {
swift::fatalError(FatalErrorFlags::ReportBacktrace,
"Fatal error: Object was retained too many times");
}
// Crash due to an unowned retain count overflow.
// FIXME: can't pass the object's address from InlineRefCounts without hacks
void swift::swift_abortUnownedRetainOverflow() {
swift::fatalError(FatalErrorFlags::ReportBacktrace,
"Fatal error: Object's unowned reference was retained too many times");
}
// Crash due to a weak retain count overflow.
// FIXME: can't pass the object's address from InlineRefCounts without hacks
void swift::swift_abortWeakRetainOverflow() {
swift::fatalError(FatalErrorFlags::ReportBacktrace,
"Fatal error: Object's weak reference was retained too many times");
}
// Crash due to retain of a dead unowned reference.
// FIXME: can't pass the object's address from InlineRefCounts without hacks
void swift::swift_abortRetainUnowned(const void *object) {
if (object) {
swift::fatalError(FatalErrorFlags::ReportBacktrace,
"Fatal error: Attempted to read an unowned reference but "
"object %p was already deallocated", object);
} else {
swift::fatalError(FatalErrorFlags::ReportBacktrace,
"Fatal error: Attempted to read an unowned reference but "
"the object was already deallocated");
}
}
/// Halt due to enabling an already enabled dynamic replacement().
void swift::swift_abortDynamicReplacementEnabling() {
swift::fatalError(FatalErrorFlags::ReportBacktrace,
"Fatal error: trying to enable a dynamic replacement "
"that is already enabled");
}
/// Halt due to disabling an already disabled dynamic replacement().
void swift::swift_abortDynamicReplacementDisabling() {
swift::fatalError(FatalErrorFlags::ReportBacktrace,
"Fatal error: trying to disable a dynamic replacement "
"that is already disabled");
}
/// Halt due to trying to use unicode data on platforms that don't have it.
void swift::swift_abortDisabledUnicodeSupport() {
swift::fatalError(FatalErrorFlags::ReportBacktrace,
"Unicode normalization data is disabled on this platform");
}
#if defined(_WIN32)
// On Windows, exceptions may be swallowed in some cases and the
// process may not terminate as expected on crashes. For example,
// illegal instructions used by llvm.trap. Disable the exception
// swallowing so that the error handling works as expected.
__attribute__((__constructor__))
static void ConfigureExceptionPolicy() {
BOOL Suppress = FALSE;
SetUserObjectInformationA(GetCurrentProcess(),
UOI_TIMERPROC_EXCEPTION_SUPPRESSION,
&Suppress, sizeof(Suppress));
}
#endif