Files
swift-mirror/stdlib/public/runtime/Private.h
Doug Gregor 296e14662a Rework runtime entrypoints for isolated conformance checking
Replace the pair of global actor type/conformance we are passing around with
a general "conformance execution context" that could grow new functionality
over time. Add three external symbols to the runtime:

* swift_conformsToProtocolWithExecutionContext: a conforms-to-protocol check
  that also captures the execution context that should be checked before
  using the conformance for anything. The only execution context right now
  is for an isolated conformance.
* swift_isInConformanceExecutionContext: checks whether the function is
  being executed in the given execution context, i.e., running on the
  executor for the given global actor.
* swift_ConformanceExecutionContextSize: the size of the conformance
  execution context. Client code outside of the Swift runtime can allocate
  a pointer-aligned region of memory of this size to use with the runtime
  functions above.
2025-03-07 23:52:20 -08:00

796 lines
31 KiB
C++

//===--- Private.h - Private runtime declarations ---------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Private declarations of the Swift runtime.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_RUNTIME_PRIVATE_H
#define SWIFT_RUNTIME_PRIVATE_H
#include <functional>
#include "swift/Demangling/Demangler.h"
#include "swift/Demangling/TypeLookupError.h"
#include "swift/Runtime/Config.h"
#include "swift/Runtime/Metadata.h"
#include "swift/shims/Visibility.h"
#if defined(__APPLE__) && __has_include(<TargetConditionals.h>)
#include <TargetConditionals.h>
#endif
// Opaque ISAs need to use object_getClass which is in runtime.h
#if SWIFT_OBJC_INTEROP && SWIFT_HAS_OPAQUE_ISAS
#include <objc/runtime.h>
#endif
namespace swift {
class ParsedTypeIdentity;
class TypeReferenceOwnership {
enum : uint8_t {
Weak = 1 << 0,
Unowned = 1 << 1,
Unmanaged = 1 << 2,
};
uint8_t Data;
constexpr TypeReferenceOwnership(uint8_t Data) : Data(Data) {}
public:
constexpr TypeReferenceOwnership() : Data(0) {}
#define REF_STORAGE(Name, ...) \
void set##Name() { Data |= Name; } \
bool is##Name() const { return Data == Name; }
#include "swift/AST/ReferenceStorage.def"
bool isStrong() const { return Data == 0; }
};
/// A struct to return pointer and its size back to Swift
/// as `(UnsafePointer<UInt8>, Int)`.
struct BufferAndSize {
const void *buffer;
intptr_t length; // negative length means error.
};
/// Type information consists of metadata and its ownership info,
/// such information is used by `_typeByMangledName` accessor
/// since we don't represent ownership attributes in the metadata
/// itself related info has to be bundled with it.
class TypeInfo {
MetadataResponse Response;
TypeReferenceOwnership ReferenceOwnership;
public:
TypeInfo()
: Response{nullptr, MetadataState::Abstract}, ReferenceOwnership() {}
TypeInfo(MetadataResponse response, TypeReferenceOwnership ownership)
: Response(response), ReferenceOwnership(ownership) {}
// FIXME: remove this constructor and require a response in all cases.
TypeInfo(const Metadata *type, TypeReferenceOwnership ownership)
: Response{type, MetadataState::Abstract}, ReferenceOwnership(ownership) {}
const Metadata *getMetadata() const { return Response.Value; }
MetadataResponse getResponse() const { return Response; }
operator bool() const { return getMetadata(); }
#define REF_STORAGE(Name, ...) \
bool is##Name() const { return ReferenceOwnership.is##Name(); }
#include "swift/AST/ReferenceStorage.def"
bool isStrong() const { return ReferenceOwnership.isStrong(); }
TypeReferenceOwnership getReferenceOwnership() const {
return ReferenceOwnership;
}
};
#if SWIFT_HAS_ISA_MASKING
SWIFT_RUNTIME_EXPORT
uintptr_t swift_isaMask;
// Hardcode the mask. We have our own copy of the value, as it's hard to work
// out the proper includes from libobjc. The values MUST match the ones from
// libobjc. Debug builds check these values against objc_debug_isa_class_mask
// from libobjc.
# if TARGET_OS_SIMULATOR && __x86_64__
// Simulators don't currently use isa masking on x86, but we still want to emit
// swift_isaMask and the corresponding code in case that changes. libobjc's
// mask has the bottom bits clear to include pointer alignment, match that
// value here.
# define SWIFT_ISA_MASK 0xfffffffffffffff8ULL
# elif __arm64__
// The ISA mask used when ptrauth is available.
# define SWIFT_ISA_MASK_PTRAUTH 0x007ffffffffffff8ULL
// ARM64 simulators always use the ARM64e mask.
# if __has_feature(ptrauth_calls) || TARGET_OS_SIMULATOR
# define SWIFT_ISA_MASK SWIFT_ISA_MASK_PTRAUTH
# else
# if TARGET_OS_OSX
# define SWIFT_ISA_MASK 0x00007ffffffffff8ULL
# else
# define SWIFT_ISA_MASK 0x0000000ffffffff8ULL
# endif
# endif
# elif __x86_64__
# define SWIFT_ISA_MASK 0x00007ffffffffff8ULL
# else
# error Unknown architecture for masked isa.
# endif
#endif
#if SWIFT_OBJC_INTEROP
bool objectConformsToObjCProtocol(const void *theObject,
ProtocolDescriptorRef protocol);
bool classConformsToObjCProtocol(const void *theClass,
ProtocolDescriptorRef protocol);
#endif
/// Is the given value a valid alignment mask?
static inline bool isAlignmentMask(size_t mask) {
// mask == xyz01111...
// mask+1 == xyz10000...
// mask&(mask+1) == xyz00000...
// So this is nonzero if and only if there any bits set
// other than an arbitrarily long sequence of low bits.
return (mask & (mask + 1)) == 0;
}
/// Is the given value an Objective-C tagged pointer?
static inline bool isObjCTaggedPointer(const void *object) {
#if SWIFT_OBJC_INTEROP
return (((uintptr_t) object) & heap_object_abi::ObjCReservedBitsMask);
#else
assert(!(((uintptr_t) object) & heap_object_abi::ObjCReservedBitsMask));
return false;
#endif
}
static inline bool isObjCTaggedPointerOrNull(const void *object) {
return object == nullptr || isObjCTaggedPointer(object);
}
/// Return the class of an object which is known to be an allocated
/// heap object.
/// Note, in this case, the object may or may not have a non-pointer ISA.
/// Masking, or otherwise, may be required to get a class pointer.
static inline const ClassMetadata *_swift_getClassOfAllocated(const void *object) {
#if SWIFT_OBJC_INTEROP && SWIFT_HAS_OPAQUE_ISAS
// The ISA is opaque so masking it will not return a pointer. We instead
// need to call the objc runtime to get the class.
id idObject = reinterpret_cast<id>(const_cast<void *>(object));
return reinterpret_cast<const ClassMetadata*>(object_getClass(idObject));
#else
// Load the isa field.
uintptr_t bits = *reinterpret_cast<const uintptr_t*>(object);
#if SWIFT_HAS_ISA_MASKING
// Apply the mask.
bits &= SWIFT_ISA_MASK;
#endif
// The result is a class pointer.
return reinterpret_cast<const ClassMetadata *>(bits);
#endif
}
/// Return the class of an object which is known to be an allocated
/// heap object.
/// Note, in this case, the object is known to have a pointer ISA, and no
/// masking is required to convert from non-pointer to pointer ISA.
static inline const ClassMetadata *
_swift_getClassOfAllocatedFromPointer(const void *object) {
// Load the isa field.
uintptr_t bits = *reinterpret_cast<const uintptr_t*>(object);
// The result is a class pointer.
return reinterpret_cast<const ClassMetadata *>(bits);
}
#if SWIFT_OBJC_INTEROP && SWIFT_HAS_OPAQUE_ISAS
/// Return whether this object is of a class which uses non-pointer ISAs.
static inline bool _swift_isNonPointerIsaObjCClass(const void *object) {
// Load the isa field.
uintptr_t bits = *reinterpret_cast<const uintptr_t*>(object);
// If the low bit is set, then we are definitely an objc object.
// FIXME: Use a variable for this.
return bits & 1;
}
#endif
SWIFT_LIBRARY_VISIBILITY
const ClassMetadata *_swift_getClass(const void *object);
SWIFT_LIBRARY_VISIBILITY
bool usesNativeSwiftReferenceCounting(const ClassMetadata *theClass);
static inline
bool objectUsesNativeSwiftReferenceCounting(const void *object) {
assert(!isObjCTaggedPointerOrNull(object));
#if SWIFT_OBJC_INTEROP && SWIFT_HAS_OPAQUE_ISAS
// Fast path for opaque ISAs. We don't want to call
// _swift_getClassOfAllocated as that will call object_getClass.
// Instead we can look at the bits in the ISA and tell if its a
// non-pointer opaque ISA which means it is definitely an ObjC
// object and doesn't use native swift reference counting.
if (_swift_isNonPointerIsaObjCClass(object))
return false;
return usesNativeSwiftReferenceCounting(_swift_getClassOfAllocatedFromPointer(object));
#else
return usesNativeSwiftReferenceCounting(_swift_getClassOfAllocated(object));
#endif
}
/// Get the superclass pointer value used for Swift root classes.
/// Note that this function may return a nullptr on non-objc platforms,
/// where there is no common root class. rdar://problem/18987058
const ClassMetadata *getRootSuperclass();
/// Check if a class has a formal superclass in the AST.
static inline
bool classHasSuperclass(const ClassMetadata *c) {
return (c->Superclass && c->Superclass != getRootSuperclass());
}
/// Replace entries of a freshly-instantiated value witness table with more
/// efficient common implementations where applicable.
///
/// All information is taken from the passed-in layout rather than the VWT.
/// This is so that we can delay "publishing" the flags in the actual
/// value witness table until all required changes have been made.
///
/// For instance, if the value witness table represents a POD type, this will
/// insert POD value witnesses into the table. The vwtable's flags must have
/// been initialized before calling this function.
///
/// Returns true if common value witnesses were used, false otherwise.
void installCommonValueWitnesses(const TypeLayout &layout,
ValueWitnessTable *vwtable);
const Metadata *
_matchMetadataByMangledTypeName(const llvm::StringRef metadataNameRef,
const Metadata *metadata,
const TypeContextDescriptor *ntd);
bool
_contextDescriptorMatchesMangling(const ContextDescriptor *context,
Demangle::NodePointer node);
const ContextDescriptor *
_searchConformancesByMangledTypeName(Demangle::NodePointer node);
SWIFT_RUNTIME_EXPORT
Demangle::NodePointer _swift_buildDemanglingForMetadata(const Metadata *type,
Demangle::Demangler &Dem);
/// Build the demangling for the generic type that's created by specializing
/// the given type context descriptor with the given arguments.
Demangle::NodePointer
_buildDemanglingForGenericType(const TypeContextDescriptor *description,
const void *const *arguments,
Demangle::Demangler &Dem);
/// Callback used to provide the substitution of a generic parameter
/// (described by depth/index) to its metadata.
///
/// The return type here is a lie; it's actually a MetadataPackOrValue.
using SubstGenericParameterFn =
std::function<const void *(unsigned depth, unsigned index)>;
/// Callback used to provide the substitution of a generic parameter
/// (described by the ordinal, or "flat index") to its metadata. The index may
/// be "full" or it may be only relative to key arguments. The call is
/// provided both indexes and may use the one it requires.
///
/// The return type here is a lie; it's actually a MetadataPackOrValue.
using SubstGenericParameterOrdinalFn =
std::function<const void *(unsigned fullOrdinal, unsigned keyOrdinal)>;
/// Callback used to provide the substitution of a witness table based on
/// its index into the enclosing generic environment.
using SubstDependentWitnessTableFn =
std::function<const WitnessTable *(const Metadata *type, unsigned index)>;
/// A pointer to type metadata or a heap-allocated metadata pack.
struct SWIFT_RUNTIME_LIBRARY_VISIBILITY MetadataPackOrValue {
const void *Ptr;
MetadataPackOrValue() : Ptr(nullptr) {}
explicit MetadataPackOrValue(const void *ptr) : Ptr(ptr) {}
explicit MetadataPackOrValue(intptr_t value)
: Ptr(reinterpret_cast<const void *>(value)) {}
explicit MetadataPackOrValue(MetadataResponse response) : Ptr(response.Value) {}
explicit MetadataPackOrValue(MetadataPackPointer ptr) : Ptr(ptr.getPointer()) {
if (ptr.getLifetime() != PackLifetime::OnHeap)
fatalError(0, "Cannot have an on-stack pack here\n");
}
explicit operator bool() const { return Ptr != nullptr; }
bool isNull() const {
return !Ptr;
}
bool isMetadataOrNull() const {
return (reinterpret_cast<uintptr_t>(Ptr) & 1) == 0;
}
bool isMetadata() const {
return Ptr && isMetadataOrNull();
}
bool isMetadataPack() const {
return Ptr && (reinterpret_cast<uintptr_t>(Ptr) & 1) == 1;
}
const Metadata *getMetadata() const {
if (isMetadata())
return reinterpret_cast<const Metadata *>(Ptr);
fatalError(0, "Expected metadata but got a metadata pack\n");
}
const Metadata *getMetadataOrNull() const {
if (isMetadataOrNull())
return reinterpret_cast<const Metadata *>(Ptr);
fatalError(0, "Expected metadata but got a metadata pack\n");
}
MetadataPackPointer getMetadataPack() const {
if (isMetadataPack())
return MetadataPackPointer(Ptr);
fatalError(0, "Expected a metadata pack but got metadata\n");
}
intptr_t getValue() const {
return reinterpret_cast<intptr_t>(Ptr);
}
};
/// Function object that produces substitutions for the generic parameters
/// that occur within a mangled name, using the generic arguments from
/// the given metadata.
///
/// Use with \c _getTypeByMangledName to decode potentially-generic
/// types.
class SWIFT_RUNTIME_LIBRARY_VISIBILITY SubstGenericParametersFromMetadata {
/// Whether the source is metadata (vs. a generic environment);
enum class SourceKind {
Metadata,
Environment,
Shape,
};
const SourceKind sourceKind;
union {
const TargetContextDescriptor<InProcess> *baseContext;
const TargetGenericEnvironment<InProcess> *environment;
const TargetExtendedExistentialTypeShape<InProcess> *shape;
};
/// The generic arguments.
const void * const *genericArgs;
/// An element in the descriptor path.
struct PathElement {
/// The generic parameters local to this element.
llvm::ArrayRef<GenericParamDescriptor> localGenericParams;
/// The total number of generic parameters.
unsigned numTotalGenericParams;
/// The number of key parameters in the parent.
unsigned numKeyGenericParamsInParent;
/// The number of key parameters locally introduced here.
unsigned numKeyGenericParamsHere;
/// Whether this context has any non-key generic parameters.
bool hasNonKeyGenericParams;
};
/// Information about the generic context descriptors that make up \c
/// descriptor, from the outermost to the innermost.
mutable llvm::SmallVector<PathElement, 8> descriptorPath;
/// The number of key generic parameters.
mutable unsigned numKeyGenericParameters = 0;
/// The number of pack shape classes.
mutable unsigned numShapeClasses = 0;
/// Builds the descriptor path.
///
/// \returns a pair containing the number of key generic parameters in
/// the path up to this point.
unsigned buildDescriptorPath(const ContextDescriptor *context,
Demangler &demangler) const;
/// Builds a path from the generic environment.
unsigned buildEnvironmentPath(
const TargetGenericEnvironment<InProcess> *environment) const;
unsigned buildShapePath(
const TargetExtendedExistentialTypeShape<InProcess> *shape) const;
// Set up the state we need to compute substitutions.
void setup() const;
public:
/// Produce substitutions entirely from the given metadata.
explicit SubstGenericParametersFromMetadata(const Metadata *base)
: sourceKind(SourceKind::Metadata),
baseContext(base->getTypeContextDescriptor()),
genericArgs(base ? (const void *const *)base->getGenericArgs()
: nullptr) {}
/// Produce substitutions from the given instantiation arguments for the
/// given context.
explicit SubstGenericParametersFromMetadata(const ContextDescriptor *base,
const void *const *args)
: sourceKind(SourceKind::Metadata), baseContext(base),
genericArgs(args) {}
/// Produce substitutions from the given instantiation arguments for the
/// given generic environment.
explicit SubstGenericParametersFromMetadata(
const TargetGenericEnvironment<InProcess> *environment,
const void *const *arguments)
: sourceKind(SourceKind::Environment), environment(environment),
genericArgs(arguments) {}
explicit SubstGenericParametersFromMetadata(
const TargetExtendedExistentialTypeShape<InProcess> *shape,
const void *const *arguments)
: sourceKind(SourceKind::Shape), shape(shape), genericArgs(arguments) {}
const void * const *getGenericArgs() const { return genericArgs; }
MetadataPackOrValue getMetadata(unsigned depth, unsigned index) const;
MetadataPackOrValue getMetadataKeyArgOrdinal(unsigned ordinal) const;
const WitnessTable *getWitnessTable(const Metadata *type,
unsigned index) const;
};
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreturn-type-c-linkage"
/// Retrieve the type metadata described by the given demangled type name.
///
/// \p substGenericParam Function that provides generic argument metadata
/// given a particular generic parameter specified by depth/index.
/// \p substWitnessTable Function that provides witness tables given a
/// particular dependent conformance index.
SWIFT_RUNTIME_EXPORT SWIFT_CC(swift)
TypeLookupErrorOr<TypeInfo> swift_getTypeByMangledNode(
MetadataRequest request,
Demangler &demangler,
Demangle::NodePointer node,
const void * const *arguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable);
/// Retrieve the type metadata described by the given type name.
///
/// \p substGenericParam Function that provides generic argument metadata
/// given a particular generic parameter specified by depth/index.
/// \p substWitnessTable Function that provides witness tables given a
/// particular dependent conformance index.
SWIFT_RUNTIME_EXPORT SWIFT_CC(swift)
TypeLookupErrorOr<TypeInfo> swift_getTypeByMangledName(
MetadataRequest request,
StringRef typeName,
const void * const *arguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable);
/// Retrieve the type metadata pack described by the given type name.
///
/// \p substGenericParam Function that provides generic argument metadata
/// given a particular generic parameter specified by depth/index.
/// \p substWitnessTable Function that provides witness tables given a
/// particular dependent conformance index.
SWIFT_RUNTIME_LIBRARY_VISIBILITY
TypeLookupErrorOr<MetadataPackPointer> getTypePackByMangledName(
StringRef typeName,
const void * const *arguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable);
/// Retrieve the type value described by the given type name.
///
/// \p substGenericParam Function that provides generic argument metadata
/// given a particular generic parameter specified by depth/index.
/// \p substWitnessTable Function that provides witness tables given a
/// particular dependent conformance index.
SWIFT_RUNTIME_LIBRARY_VISIBILITY
TypeLookupErrorOr<intptr_t> getTypeValueByMangledName(
StringRef typeName,
const void * const *arguments,
SubstGenericParameterFn substGenericParam,
SubstDependentWitnessTableFn substWitnessTable);
#pragma clang diagnostic pop
/// Gather generic parameter counts from a context descriptor.
///
/// \returns true if the innermost descriptor is generic.
bool _gatherGenericParameterCounts(const ContextDescriptor *descriptor,
llvm::SmallVectorImpl<unsigned> &genericParamCounts,
Demangler &BorrowFrom);
/// Map depth/index to a flat index.
std::optional<unsigned>
_depthIndexToFlatIndex(unsigned depth, unsigned index,
llvm::ArrayRef<unsigned> paramCounts);
/// Gathers all of the written generic parameters needed for
/// '_gatherGenericParameters'. This takes a list of key arguments and fills
/// in the generic arguments with all generic arguments.
///
/// \returns true if the operation succeeded.
bool _gatherWrittenGenericParameters(
const TypeContextDescriptor *descriptor,
llvm::ArrayRef<const void *> keyArgs,
llvm::SmallVectorImpl<MetadataPackOrValue> &genericArgs,
Demangle::Demangler &Dem);
/// Check the given generic requirements using the given set of generic
/// arguments, collecting the key arguments (e.g., witness tables) for
/// the caller.
///
/// \param genericParams The generic parameters corresponding to the
/// arguments.
///
/// \param requirements The set of requirements to evaluate.
///
/// \param extraArguments The extra arguments determined while checking
/// generic requirements (e.g., those that need to be
/// passed to an instantiation function) will be added to this vector.
///
/// \param context When non-NULL, receives any information about the
/// execution context that is required to use this conformance.
///
/// \returns the error if an error occurred, None otherwise.
std::optional<TypeLookupError> _checkGenericRequirements(
llvm::ArrayRef<GenericParamDescriptor> genericParams,
llvm::ArrayRef<GenericRequirementDescriptor> requirements,
llvm::SmallVectorImpl<const void *> &extraArguments,
SubstGenericParameterFn substGenericParam,
SubstGenericParameterOrdinalFn substGenericParamOrdinal,
SubstDependentWitnessTableFn substWitnessTable,
ConformanceExecutionContext *context);
/// A helper function which avoids performing a store if the destination
/// address already contains the source value. This is useful when
/// "initializing" memory that might have been initialized to the correct
/// value statically. In such a case, the compiler might have gone so far
/// as to map the entire object readonly, or we might just want to avoid
/// dirtying memory unnecessarily.
template <class T>
static void assignUnlessEqual(T &dest, T newValue) {
if (dest != newValue)
dest = newValue;
}
#if defined(__CYGWIN__)
void _swift_once_f(uintptr_t *predicate, void *context,
void (*function)(void *));
#endif
static inline const Metadata *getMetadataForClass(const ClassMetadata *c) {
#if SWIFT_OBJC_INTEROP
return swift_getObjCClassMetadata(c);
#else
return c;
#endif
}
template <>
inline const ClassMetadata *Metadata::getClassObject() const {
switch (getKind()) {
case MetadataKind::Class: {
// Native Swift class metadata is also the class object.
return static_cast<const ClassMetadata *>(this);
}
#if SWIFT_OBJC_INTEROP
case MetadataKind::ObjCClassWrapper: {
// Objective-C class objects are referenced by their Swift metadata wrapper.
auto wrapper = static_cast<const ObjCClassWrapperMetadata *>(this);
return wrapper->Class;
}
#endif
// Other kinds of types don't have class objects.
default:
return nullptr;
}
}
SWIFT_RETURNS_NONNULL SWIFT_NODISCARD
void *allocateMetadata(size_t size, size_t align);
// Compare two pieces of metadata that should be identical. Returns true if
// they are, false if they are not equal. Dumps the metadata contents to
// stderr if they are not equal.
bool compareGenericMetadata(const Metadata *original,
const Metadata *newMetadata);
Demangle::NodePointer
_buildDemanglingForContext(const ContextDescriptor *context,
llvm::ArrayRef<NodePointer> demangledGenerics,
Demangle::Demangler &Dem);
/// Symbolic reference resolver that produces the demangling tree for the
/// referenced context.
class ResolveToDemanglingForContext {
Demangle::Demangler &Dem;
public:
explicit ResolveToDemanglingForContext(Demangle::Demangler &Dem)
: Dem(Dem) {}
Demangle::NodePointer operator()(Demangle::SymbolicReferenceKind kind,
Demangle::Directness isIndirect,
int32_t offset,
const void *base);
};
/// Symbolic reference resolver that resolves the absolute addresses of
/// symbolic references but leaves them as references.
class ResolveAsSymbolicReference {
Demangle::Demangler &Dem;
public:
explicit ResolveAsSymbolicReference(Demangle::Demangler &Dem)
: Dem(Dem) {}
Demangle::NodePointer operator()(Demangle::SymbolicReferenceKind kind,
Demangle::Directness isIndirect,
int32_t offset,
const void *base);
};
/// Demangler resolver that turns resolved symbolic references into their
/// demangling trees.
class ExpandResolvedSymbolicReferences {
Demangle::Demangler &Dem;
public:
explicit ExpandResolvedSymbolicReferences(Demangle::Demangler &Dem)
: Dem(Dem) {}
Demangle::NodePointer operator()(Demangle::SymbolicReferenceKind kind,
const void *resolvedReference);
};
/// Is the given type imported from a C tag type?
bool _isCImportedTagType(const TypeContextDescriptor *type,
const ParsedTypeIdentity &identity);
/// The execution context for a conformance, containing any additional
/// checking that has to be done in context to determine whether a given
/// conformance is available.
struct ConformanceExecutionContext {
/// The global actor to which this conformance is isolated, or NULL for
/// a nonisolated conformances.
const Metadata *globalActorIsolationType = nullptr;
/// When the conformance is global-actor-isolated, this is the conformance
/// of globalActorIsolationType to GlobalActor.
const WitnessTable *globalActorIsolationWitnessTable = nullptr;
};
/// Check whether a type conforms to a protocol.
///
/// \param value - can be null, in which case the question should
/// be answered abstractly if possible
/// \param conformance - if non-null, and the protocol requires a
/// witness table, and the type implements the protocol, the witness
/// table will be placed here
/// \param context - when non-NULL, receives any information about the
/// required execution context for this conformance.
bool _conformsToProtocol(
const OpaqueValue *value,
const Metadata *type,
ProtocolDescriptorRef protocol,
const WitnessTable **conformance,
ConformanceExecutionContext *context);
/// Check whether a type conforms to a value within the currently-executing
/// context.
///
/// This is equivalent to a _conformsToProtocol check followed by runtime
/// checking for global actor isolation, if needed.
bool _conformsToProtocolInContext(
const OpaqueValue *value,
const Metadata *type,
ProtocolDescriptorRef protocol,
const WitnessTable **conformance);
/// Construct type metadata for the given protocol.
const Metadata *
_getSimpleProtocolTypeMetadata(const ProtocolDescriptor *protocol);
/// Given a type that we know can be used with the given conformance, find
/// the superclass that introduced the conformance.
const Metadata *findConformingSuperclass(
const Metadata *type,
const ProtocolConformanceDescriptor *conformance);
/// Determine whether the given type conforms to the given Swift protocol,
/// returning the appropriate protocol conformance descriptor when it does.
const ProtocolConformanceDescriptor *
swift_conformsToSwiftProtocol(const Metadata * const type,
const ProtocolDescriptor *protocol,
StringRef module);
/// Retrieve an associated type witness from the given witness table.
///
/// \param wtable The witness table.
/// \param conformingType Metadata for the conforming type.
/// \param reqBase "Base" requirement used to compute the witness index
/// \param assocType Associated type descriptor.
///
/// \returns metadata for the associated type witness.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
MetadataResponse swift_getAssociatedTypeWitnessSlow(
MetadataRequest request,
WitnessTable *wtable,
const Metadata *conformingType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocType);
/// Retrieve an associated conformance witness table from the given witness
/// table.
///
/// \param wtable The witness table.
/// \param conformingType Metadata for the conforming type.
/// \param assocType Metadata for the associated type.
/// \param reqBase "Base" requirement used to compute the witness index
/// \param assocConformance Associated conformance descriptor.
///
/// \returns corresponding witness table.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
const WitnessTable *swift_getAssociatedConformanceWitnessSlow(
WitnessTable *wtable,
const Metadata *conformingType,
const Metadata *assocType,
const ProtocolRequirement *reqBase,
const ProtocolRequirement *assocConformance);
RelativeWitnessTable *
lookThroughOptionalConditionalWitnessTable(const RelativeWitnessTable *wtable);
#if SWIFT_OBJC_INTEROP
/// Returns a retained Quick Look representation object an Obj-C object.
SWIFT_CC(swift) SWIFT_RUNTIME_STDLIB_INTERNAL
id _quickLookObjectForPointer(void *value);
#endif
/// Hook function that calls into the concurrency library to check whether
/// we are currently executing the given global actor.
SWIFT_RUNTIME_LIBRARY_VISIBILITY
extern bool (* __ptrauth_swift_is_global_actor_function SWIFT_CC(swift)
_swift_task_isCurrentGlobalActorHook)(
const Metadata *, const WitnessTable *);
} // end namespace swift
#endif /* SWIFT_RUNTIME_PRIVATE_H */