mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
OSSA lifetime canonicalization can take a very long time in certain cases in which there are large basic blocks. to mitigate this, add logic to skip walking the liveness boundary for extending liveness to dead ends when there aren't any dead ends in the function. Updates `DeadEndBlocks` with a new `isEmpty` method and cache to determine if there are any dead-end blocks in a given function.
1526 lines
61 KiB
C++
1526 lines
61 KiB
C++
//===-- CanonicalizeOSSALifetime.cpp - Canonicalize OSSA value lifetimes --===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// This top-level API rewrites the extended lifetime of a SILValue:
|
|
///
|
|
/// bool CanonicalizeOSSALifetime::canonicalizeValueLifetime(SILValue def)
|
|
///
|
|
/// Each time it's called on a single OSSA value, `def`, it performs four
|
|
/// steps:
|
|
///
|
|
/// 1. Compute "pruned" liveness of def and its copies, ignoring original
|
|
/// destroys. Initializes `liveness`.
|
|
///
|
|
/// 2. Find the "original" boundary of liveness using
|
|
/// PrunedLiveness::computeBoundary.
|
|
///
|
|
/// 3. (Optional) At Onone, extend liveness up to original extent when possible
|
|
/// without incurring extra copies.
|
|
///
|
|
/// 4. Find the "extended" boundary of liveness by walking out from the boundary
|
|
/// computed by PrunedLiveness out to destroys which aren't separated from
|
|
/// the original destory by "interesting" instructions.
|
|
///
|
|
/// 5. Initializes `consumes` and inserts new destroy_value instructions.
|
|
///
|
|
/// 6. Rewrite `def`s original copies and destroys, inserting new copies where
|
|
/// needed. Deletes original copies and destroys and inserts new copies.
|
|
///
|
|
/// See CanonicalizeOSSALifetime.h for examples.
|
|
///
|
|
/// TODO: Canonicalization currently bails out if any uses of the def has
|
|
/// OperandOwnership::PointerEscape. Once project_box is protected by a borrow
|
|
/// scope and mark_dependence is associated with an end_dependence, those will
|
|
/// no longer be represented as PointerEscapes, and canonicalization will
|
|
/// naturally work everywhere as intended. The intention is to keep the
|
|
/// canonicalization algorithm as simple and robust, leaving the remaining
|
|
/// performance opportunities contingent on fixing the SIL representation.
|
|
///
|
|
/// TODO: Replace BasicBlock SmallDenseMaps with inlined bits;
|
|
/// see BasicBlockDataStructures.h.
|
|
///
|
|
/// TODO: This algorithm would be extraordinarily simple and cheap except for
|
|
/// the following issues:
|
|
///
|
|
/// 1. Liveness is extended by any overlapping begin/end_access scopes. This
|
|
/// avoids calling a destructor within an exclusive access. A simpler
|
|
/// alternative would be to model all end_access instructions as deinit
|
|
/// barriers, but that may significantly limit optimization.
|
|
///
|
|
/// 2. Liveness is extended out to original destroys to avoid spurious changes.
|
|
///
|
|
/// 3. In the Onone mode, liveness is preserved to its previous extent whenever
|
|
/// doing so doesn't incur extra copies compared to what is done in the O mode.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "copy-propagation"
|
|
|
|
#include "swift/SILOptimizer/Utils/CanonicalizeOSSALifetime.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/SIL/InstructionUtils.h"
|
|
#include "swift/SIL/NodeDatastructures.h"
|
|
#include "swift/SIL/OSSALifetimeCompletion.h"
|
|
#include "swift/SIL/OwnershipUtils.h"
|
|
#include "swift/SIL/PrunedLiveness.h"
|
|
#include "swift/SIL/Test.h"
|
|
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/Reachability.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/DebugOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
|
|
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
|
|
using namespace swift;
|
|
using llvm::SmallSetVector;
|
|
|
|
llvm::Statistic swift::NumCopiesAndMovesEliminated = {
|
|
DEBUG_TYPE, "NumCopiesAndMovesEliminated",
|
|
"number of copy_value and move_value instructions removed"};
|
|
|
|
llvm::Statistic swift::NumCopiesGenerated = {
|
|
DEBUG_TYPE, "NumCopiesGenerated",
|
|
"number of copy_value instructions created"};
|
|
|
|
STATISTIC(NumDestroysEliminated,
|
|
"number of destroy_value instructions removed");
|
|
STATISTIC(NumDestroysGenerated, "number of destroy_value instructions created");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: General utilities
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <typename... T, typename... U>
|
|
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
|
|
U &&...args) {
|
|
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
|
|
}
|
|
|
|
/// Is \p instruction a destroy_value whose operand is \p def, or its
|
|
/// transitive copy.
|
|
static bool isDestroyOfCopyOf(SILInstruction *instruction, SILValue def) {
|
|
auto *destroy = dyn_cast<DestroyValueInst>(instruction);
|
|
if (!destroy)
|
|
return false;
|
|
auto destroyed = destroy->getOperand();
|
|
while (true) {
|
|
if (destroyed == def)
|
|
return true;
|
|
auto *copy = dyn_cast<CopyValueInst>(destroyed);
|
|
if (!copy)
|
|
break;
|
|
destroyed = copy->getOperand();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Step 1. Compute pruned liveness
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool CanonicalizeOSSALifetime::computeCanonicalLiveness() {
|
|
LLVM_DEBUG(llvm::dbgs() << "Computing canonical liveness from:\n";
|
|
getCurrentDef()->print(llvm::dbgs()));
|
|
SmallVector<unsigned, 8> indexWorklist;
|
|
ValueSet visitedDefs(getCurrentDef()->getFunction());
|
|
auto addDefToWorklist = [&](Def def) {
|
|
if (!visitedDefs.insert(def.value))
|
|
return;
|
|
discoveredDefs.push_back(def);
|
|
indexWorklist.push_back(discoveredDefs.size() - 1);
|
|
};
|
|
discoveredDefs.clear();
|
|
addDefToWorklist(Def::root(getCurrentDef()));
|
|
// Only the first level of reborrows need to be consider. All nested inner
|
|
// adjacent reborrows and phis are encapsulated within their lifetimes.
|
|
SILPhiArgument *arg;
|
|
if ((arg = dyn_cast<SILPhiArgument>(getCurrentDef())) && arg->isPhi()) {
|
|
visitInnerAdjacentPhis(arg, [&](SILArgument *reborrow) {
|
|
addDefToWorklist(Def::reborrow(reborrow));
|
|
return true;
|
|
});
|
|
}
|
|
while (!indexWorklist.empty()) {
|
|
auto index = indexWorklist.pop_back_val();
|
|
auto def = discoveredDefs[index];
|
|
auto value = def.value;
|
|
LLVM_DEBUG(llvm::dbgs() << " Uses of value:\n";
|
|
value->print(llvm::dbgs()));
|
|
|
|
for (Operand *use : value->getUses()) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Use:\n";
|
|
use->getUser()->print(llvm::dbgs()));
|
|
|
|
auto *user = use->getUser();
|
|
// Recurse through copies.
|
|
if (auto *copy = dyn_cast<CopyValueInst>(user)) {
|
|
// Don't recurse through copies of borrowed-froms or reborrows.
|
|
switch (def.kind) {
|
|
case Def::Root:
|
|
case Def::Copy:
|
|
addDefToWorklist(Def::copy(copy));
|
|
break;
|
|
case Def::Reborrow:
|
|
case Def::BorrowedFrom:
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
if (auto *bfi = dyn_cast<BorrowedFromInst>(user)) {
|
|
addDefToWorklist(Def::borrowedFrom(bfi));
|
|
continue;
|
|
}
|
|
// Handle debug_value instructions separately.
|
|
if (pruneDebugMode) {
|
|
if (auto *dvi = dyn_cast<DebugValueInst>(user)) {
|
|
// Only instructions potentially outside current pruned liveness are
|
|
// interesting.
|
|
if (liveness->getBlockLiveness(dvi->getParent())
|
|
!= PrunedLiveBlocks::LiveOut) {
|
|
recordDebugValue(dvi);
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
switch (use->getOperandOwnership()) {
|
|
case OperandOwnership::NonUse:
|
|
break;
|
|
case OperandOwnership::TrivialUse:
|
|
llvm_unreachable("this operand cannot handle ownership");
|
|
|
|
// Conservatively treat a conversion to an unowned value as a pointer
|
|
// escape. Is it legal to canonicalize ForwardingUnowned?
|
|
case OperandOwnership::ForwardingUnowned:
|
|
case OperandOwnership::PointerEscape:
|
|
LLVM_DEBUG(llvm::dbgs() << " Value escaped! Giving up\n");
|
|
return false;
|
|
case OperandOwnership::InstantaneousUse:
|
|
case OperandOwnership::UnownedInstantaneousUse:
|
|
case OperandOwnership::BitwiseEscape:
|
|
liveness->updateForUse(user, /*lifetimeEnding*/ false);
|
|
break;
|
|
case OperandOwnership::ForwardingConsume:
|
|
recordConsumingUse(use);
|
|
liveness->updateForUse(user, /*lifetimeEnding*/ true);
|
|
break;
|
|
case OperandOwnership::DestroyingConsume:
|
|
if (isDestroyOfCopyOf(user, getCurrentDef())) {
|
|
destroys.insert(user);
|
|
} else {
|
|
// destroy_value of a transitive copy of the currentDef does not
|
|
// force pruned liveness (but store etc. does).
|
|
|
|
// Even though this instruction is a DestroyingConsume of its operand,
|
|
// if it's a destroy_value whose operand is not a transitive copy of
|
|
// currentDef, then it's just ending an implicit borrow of currentDef,
|
|
// not consuming it.
|
|
auto lifetimeEnding = !isa<DestroyValueInst>(user);
|
|
liveness->updateForUse(user, lifetimeEnding);
|
|
}
|
|
recordConsumingUse(use);
|
|
break;
|
|
case OperandOwnership::Borrow:
|
|
if (liveness->updateForBorrowingOperand(use)
|
|
!= InnerBorrowKind::Contained) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Inner borrow can't be contained! Giving up\n");
|
|
return false;
|
|
}
|
|
break;
|
|
case OperandOwnership::InteriorPointer:
|
|
case OperandOwnership::AnyInteriorPointer:
|
|
if (liveness->checkAndUpdateInteriorPointer(use) !=
|
|
AddressUseKind::NonEscaping) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Inner address use is escaping! Giving up\n");
|
|
return false;
|
|
}
|
|
break;
|
|
case OperandOwnership::GuaranteedForwarding:
|
|
case OperandOwnership::EndBorrow:
|
|
// Guaranteed values are exposed by inner adjacent reborrows. If user is
|
|
// a guaranteed phi (GuaranteedForwarding), then the owned lifetime
|
|
// either dominates it or its lifetime ends at an outer adjacent
|
|
// reborrow. Only instructions that end the reborrow lifetime should
|
|
// actually affect liveness of the outer owned value.
|
|
liveness->updateForUse(user, /*lifetimeEnding*/ false);
|
|
break;
|
|
case OperandOwnership::Reborrow:
|
|
BranchInst *branch = cast<BranchInst>(user);
|
|
// This is a cheap variation on visitEnclosingDef. We already know that
|
|
// getCurrentDef() is the enclosing def for this use. If the reborrow's
|
|
// has a enclosing def is an outer adjacent phi then this branch must
|
|
// consume getCurrentDef() as the outer phi operand.
|
|
if (is_contained(branch->getOperandValues(), getCurrentDef())) {
|
|
// An adjacent phi consumes the value being reborrowed. Although this
|
|
// use doesn't end the lifetime, this branch does end the lifetime by
|
|
// consuming the owned value.
|
|
liveness->updateForUse(branch, /*lifetimeEnding*/ true);
|
|
break;
|
|
}
|
|
// No adjacent phi consumes the value. This use is not lifetime ending.
|
|
liveness->updateForUse(branch, /*lifetimeEnding*/ false);
|
|
// This branch reborrows a guaranteed phi whose lifetime is dependent on
|
|
// currentDef. Uses of the reborrowing phi extend liveness.
|
|
auto *reborrow = PhiOperand(use).getValue();
|
|
addDefToWorklist(Def::reborrow(reborrow));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Extend liveness to the availability boundary of currentDef. Even if a copy
|
|
/// is consumed on a path to the dead-end, if the def stays live through to the
|
|
/// dead-end, its lifetime must not be shrunk back from it (eventually we'll
|
|
/// support shrinking it back to deinit barriers).
|
|
///
|
|
/// Example:
|
|
/// %def is lexical
|
|
/// %copy = copy_value %def
|
|
/// consume %copy
|
|
/// apply %foo() // deinit barrier
|
|
/// // Must extend lifetime of %def up to this point per language rules.
|
|
/// unreachable
|
|
void CanonicalizeOSSALifetime::extendLexicalLivenessToDeadEnds() {
|
|
// TODO: OSSALifetimeCompletion: Once lifetimes are always complete, delete
|
|
// this method.
|
|
SmallVector<SILBasicBlock *, 32> directDiscoverdBlocks;
|
|
SSAPrunedLiveness directLiveness(function, &directDiscoverdBlocks);
|
|
directLiveness.initializeDef(getCurrentDef());
|
|
directLiveness.computeSimple();
|
|
OSSALifetimeCompletion::visitAvailabilityBoundary(
|
|
getCurrentDef(), directLiveness, [&](auto *unreachable, auto end) {
|
|
if (end == OSSALifetimeCompletion::LifetimeEnd::Boundary) {
|
|
recordUnreachableLifetimeEnd(unreachable);
|
|
}
|
|
unreachable->visitPriorInstructions([&](auto *inst) {
|
|
liveness->extendToNonUse(inst);
|
|
return true;
|
|
});
|
|
});
|
|
}
|
|
|
|
/// Extend liveness to the copy-extended availability boundary of currentDef.
|
|
/// Prevents destroys from being inserted between borrows of (copies of) the
|
|
/// def and dead-ends.
|
|
///
|
|
/// Example:
|
|
/// %def need not be lexical
|
|
/// %c = copy_value %def
|
|
/// %sb = store_borrow %c to %addr
|
|
/// // Must extend lifetime of %def up to this point. Otherwise, a
|
|
/// // destroy_value could be inserted within a borrow scope or interior
|
|
/// // pointer use.
|
|
/// unreachable
|
|
void CanonicalizeOSSALifetime::extendLivenessToDeadEnds() {
|
|
// TODO: OSSALifetimeCompletion: Once lifetimes are always complete, delete
|
|
// this method.
|
|
SmallVector<SILBasicBlock *, 32> discoveredBlocks(this->discoveredBlocks);
|
|
SSAPrunedLiveness completeLiveness(*liveness, &discoveredBlocks);
|
|
|
|
for (auto destroy : destroys) {
|
|
if (liveness->isWithinBoundary(destroy, /*deadEndBlocks=*/nullptr))
|
|
continue;
|
|
completeLiveness.updateForUse(destroy, /*lifetimeEnding*/ true);
|
|
}
|
|
|
|
// Demote consuming uses within complete liveness to non-consuming uses.
|
|
//
|
|
// OSSALifetimeCompletion considers the lifetime of a single value. Such
|
|
// lifetimes never continue beyond consumes.
|
|
std::optional<llvm::SmallPtrSet<SILInstruction *, 8>> lastUsers;
|
|
auto isConsumeOnBoundary = [&](SILInstruction *instruction) -> bool {
|
|
if (!lastUsers) {
|
|
// Avoid computing lastUsers if possible.
|
|
auto *function = getCurrentDef()->getFunction();
|
|
auto *deadEnds = deadEndBlocksAnalysis->get(function);
|
|
llvm::SmallVector<SILBasicBlock *, 8> completeConsumingBlocks(
|
|
consumingBlocks.getArrayRef());
|
|
for (auto &block : *function) {
|
|
if (!deadEnds->isDeadEnd(&block))
|
|
continue;
|
|
completeConsumingBlocks.push_back(&block);
|
|
}
|
|
PrunedLivenessBoundary boundary;
|
|
liveness->computeBoundary(boundary, completeConsumingBlocks);
|
|
|
|
lastUsers.emplace();
|
|
for (auto *lastUser : boundary.lastUsers) {
|
|
lastUsers->insert(lastUser);
|
|
}
|
|
}
|
|
return lastUsers->contains(instruction);
|
|
};
|
|
for (auto pair : liveness->getAllUsers()) {
|
|
if (!pair.second.isEnding())
|
|
continue;
|
|
auto *instruction = pair.first;
|
|
if (isConsumeOnBoundary(instruction))
|
|
continue;
|
|
// Demote instruction's lifetime-ending-ness to non-lifetime-ending.
|
|
completeLiveness.updateForUse(pair.first, /*lifetimeEnding=*/false);
|
|
}
|
|
|
|
OSSALifetimeCompletion::visitAvailabilityBoundary(
|
|
getCurrentDef(), completeLiveness, [&](auto *unreachable, auto end) {
|
|
if (end == OSSALifetimeCompletion::LifetimeEnd::Boundary) {
|
|
recordUnreachableLifetimeEnd(unreachable);
|
|
}
|
|
unreachable->visitPriorInstructions([&](auto *inst) {
|
|
liveness->extendToNonUse(inst);
|
|
return true;
|
|
});
|
|
});
|
|
}
|
|
|
|
void CanonicalizeOSSALifetime::extendLivenessToDeinitBarriers() {
|
|
SmallVector<SILInstruction *, 8> ends;
|
|
if (endingLifetimeAtExplicitEnds()) {
|
|
visitExtendedUnconsumedBoundary(
|
|
explicitLifetimeEnds,
|
|
[&ends](auto *instruction, auto lifetimeEnding) {
|
|
instruction->visitSubsequentInstructions([&](auto *next) {
|
|
ends.push_back(next);
|
|
return true;
|
|
});
|
|
});
|
|
} else {
|
|
for (auto destroy : destroys) {
|
|
if (destroy->getOperand(0) != getCurrentDef())
|
|
continue;
|
|
ends.push_back(destroy);
|
|
}
|
|
}
|
|
|
|
auto *def = getCurrentDef()->getDefiningInstruction();
|
|
using InitialBlocks = ArrayRef<SILBasicBlock *>;
|
|
auto *defBlock = getCurrentDef()->getParentBlock();
|
|
auto initialBlocks = defBlock ? InitialBlocks(defBlock) : InitialBlocks();
|
|
ReachableBarriers barriers;
|
|
findBarriersBackward(ends, initialBlocks, *getCurrentDef()->getFunction(),
|
|
barriers, [&](auto *inst) {
|
|
if (inst == def)
|
|
return true;
|
|
if (!isDeinitBarrier(inst, calleeAnalysis))
|
|
return false;
|
|
// For the most part, instructions that are deinit
|
|
// barriers in the abstract are also deinit barriers
|
|
// for the purposes of canonicalizing def's lifetime.
|
|
//
|
|
// There is an important exception: transferring an
|
|
// owned lexical lifetime into a callee. If the
|
|
// instruction is a full apply which consumes def,
|
|
// then it isn't a deinit barrier. Keep looking for
|
|
// barriers above it.
|
|
auto apply = FullApplySite::isa(inst);
|
|
if (!apply)
|
|
return true;
|
|
return liveness->isInterestingUser(inst) !=
|
|
PrunedLiveness::IsInterestingUser::
|
|
LifetimeEndingUse;
|
|
});
|
|
for (auto *barrier : barriers.instructions) {
|
|
liveness->extendToNonUse(barrier);
|
|
}
|
|
for (auto *barrier : barriers.phis) {
|
|
for (auto *predecessor : barrier->getPredecessorBlocks()) {
|
|
liveness->extendToNonUse(predecessor->getTerminator());
|
|
}
|
|
}
|
|
for (auto *edge : barriers.edges) {
|
|
auto *predecessor = edge->getSinglePredecessorBlock();
|
|
assert(predecessor);
|
|
liveness->extendToNonUse(&predecessor->back());
|
|
}
|
|
// Ignore barriers.initialBlocks. If the collection is non-empty, it
|
|
// contains the def-block. Its presence means that no barriers were found
|
|
// between lifetime ends and def. In that case, no new instructions need to
|
|
// be added to liveness.
|
|
}
|
|
|
|
// Return true if \p inst is an end_access whose access scope overlaps the end
|
|
// of the pruned live range. This means that a hoisted destroy might execute
|
|
// within the access scope which previously executed outside the access scope.
|
|
//
|
|
// Not overlapping (ignored):
|
|
//
|
|
// %def
|
|
// use %def // pruned liveness ends here
|
|
// begin_access // access scope unrelated to def
|
|
// end_access
|
|
//
|
|
// Overlapping (must extend pruned liveness):
|
|
//
|
|
// %def
|
|
// begin_access // access scope unrelated to def
|
|
// use %def // pruned liveness ends here
|
|
// end_access
|
|
//
|
|
// Overlapping (must extend pruned liveness):
|
|
//
|
|
// begin_access // access scope unrelated to def
|
|
// %def
|
|
// use %def // pruned liveness ends here
|
|
// end_access
|
|
//
|
|
bool CanonicalizeOSSALifetime::
|
|
endsAccessOverlappingPrunedBoundary(SILInstruction *inst) {
|
|
if (isa<EndUnpairedAccessInst>(inst)) {
|
|
return true;
|
|
}
|
|
auto *endAccess = dyn_cast<EndAccessInst>(inst);
|
|
if (!endAccess) {
|
|
return false;
|
|
}
|
|
auto *beginAccess = endAccess->getBeginAccess();
|
|
SILBasicBlock *beginBB = beginAccess->getParent();
|
|
switch (liveness->getBlockLiveness(beginBB)) {
|
|
case PrunedLiveBlocks::LiveOut:
|
|
// Found partial overlap of the form:
|
|
// currentDef
|
|
// beginAccess
|
|
// br...
|
|
// bb...
|
|
// use
|
|
// endAccess
|
|
return true;
|
|
case PrunedLiveBlocks::LiveWithin:
|
|
// Check for partial overlap of this form where beginAccess and the last use
|
|
// are in the same block:
|
|
// currentDef
|
|
// beginAccess
|
|
// use
|
|
// endAccess
|
|
if (std::find_if(std::next(beginAccess->getIterator()), beginBB->end(),
|
|
[this](SILInstruction &nextInst) {
|
|
return liveness->isInterestingUser(&nextInst)
|
|
!= PrunedLiveness::NonUser;
|
|
})
|
|
!= beginBB->end()) {
|
|
// An interesting use after the beginAccess means overlap.
|
|
return true;
|
|
}
|
|
return false;
|
|
case PrunedLiveBlocks::Dead:
|
|
// Check for partial overlap of this form where beginAccess and currentDef
|
|
// are in different blocks:
|
|
// beginAccess
|
|
// br...
|
|
// bb...
|
|
// currentDef
|
|
// endAccess
|
|
//
|
|
// Since beginAccess is not within the canonical live range, its access
|
|
// scope overlaps only if there is a path from beginAccess to currentDef
|
|
// that does not pass through endAccess. endAccess is dominated by
|
|
// both currentDef and begin_access. Therefore, such a path only exists if
|
|
// beginAccess dominates currentDef.
|
|
return domTree->properlyDominates(beginAccess->getParent(),
|
|
getCurrentDef()->getParentBlock());
|
|
}
|
|
llvm_unreachable("covered switch");
|
|
}
|
|
|
|
// Find all overlapping access scopes and extend pruned liveness to cover them:
|
|
//
|
|
// This may also unnecessarily, but conservatively extend liveness over some
|
|
// originally overlapping access, such as:
|
|
//
|
|
// begin_access // access scope unrelated to def
|
|
// %def
|
|
// use %def
|
|
// destroy %def
|
|
// end_access
|
|
//
|
|
// Or:
|
|
//
|
|
// %def
|
|
// begin_access // access scope unrelated to def
|
|
// use %def
|
|
// destroy %def
|
|
// end_access
|
|
//
|
|
// To minimize unnecessary lifetime extension, only search for end_access
|
|
// within dead blocks that are backward reachable from an original destroy.
|
|
//
|
|
// Note that lifetime extension is iterative because adding a new liveness use
|
|
// may create new overlapping access scopes. This can happen because there is no
|
|
// guarantee of strict stack discipline across unrelated access. For example:
|
|
//
|
|
// %def
|
|
// begin_access A
|
|
// use %def // Initial pruned lifetime boundary
|
|
// begin_access B
|
|
// end_access A // Lifetime boundary after first extension
|
|
// end_access B // Lifetime boundary after second extension
|
|
// destroy %def
|
|
//
|
|
// If the lifetime extension did not iterate, then def would be destroyed within
|
|
// B's access scope when originally it was destroyed outside that scope.
|
|
void CanonicalizeOSSALifetime::extendLivenessThroughOverlappingAccess() {
|
|
this->accessBlocks = accessBlockAnalysis->get(getCurrentDef()->getFunction());
|
|
|
|
// Visit each original consuming use or destroy as the starting point for a
|
|
// backward CFG traversal. This traversal must only visit blocks within the
|
|
// original extended lifetime.
|
|
bool changed = true;
|
|
while (changed) {
|
|
changed = false;
|
|
// The blocks in which we may have to extend liveness over access scopes.
|
|
//
|
|
// It must be populated first so that we can test membership during the loop
|
|
// (see findLastConsume).
|
|
BasicBlockSetVector blocksToVisit(getCurrentDef()->getFunction());
|
|
for (auto *block : consumingBlocks) {
|
|
blocksToVisit.insert(block);
|
|
}
|
|
for (auto iterator = blocksToVisit.begin(); iterator != blocksToVisit.end();
|
|
++iterator) {
|
|
auto *bb = *iterator;
|
|
// If the block isn't dead, then we won't need to extend liveness within
|
|
// any of its predecessors (though we may within it).
|
|
if (liveness->getBlockLiveness(bb) != PrunedLiveBlocks::Dead)
|
|
continue;
|
|
// Continue searching upward to find the pruned liveness boundary.
|
|
for (auto *predBB : bb->getPredecessorBlocks()) {
|
|
blocksToVisit.insert(predBB);
|
|
}
|
|
}
|
|
for (auto *bb : blocksToVisit) {
|
|
auto blockLiveness = liveness->getBlockLiveness(bb);
|
|
// Ignore blocks within pruned liveness.
|
|
if (blockLiveness == PrunedLiveBlocks::LiveOut) {
|
|
continue;
|
|
}
|
|
if (blockLiveness == PrunedLiveBlocks::Dead) {
|
|
// Otherwise, ignore dead blocks with no nonlocal end_access.
|
|
if (!accessBlocks->containsNonLocalEndAccess(bb)) {
|
|
continue;
|
|
}
|
|
}
|
|
bool blockHasUse = (blockLiveness == PrunedLiveBlocks::LiveWithin);
|
|
// Find the latest partially overlapping access scope, if one exists:
|
|
// use %def // pruned liveness ends here
|
|
// end_access
|
|
|
|
// Whether to look for the last consume in the block.
|
|
//
|
|
// We need to avoid extending liveness over end_accesses that occur after
|
|
// original liveness ended.
|
|
bool findLastConsume =
|
|
consumingBlocks.contains(bb)
|
|
&& llvm::none_of(bb->getSuccessorBlocks(), [&](auto *successor) {
|
|
return blocksToVisit.contains(successor)
|
|
&& liveness->getBlockLiveness(successor)
|
|
== PrunedLiveBlocks::Dead;
|
|
});
|
|
for (auto &inst : llvm::reverse(*bb)) {
|
|
if (findLastConsume) {
|
|
findLastConsume = !destroys.contains(&inst);
|
|
continue;
|
|
}
|
|
// Stop at the latest use. An earlier end_access does not overlap.
|
|
if (blockHasUse
|
|
&& liveness->isInterestingUser(&inst) != PrunedLiveness::NonUser) {
|
|
break;
|
|
}
|
|
if (endsAccessOverlappingPrunedBoundary(&inst)) {
|
|
liveness->extendToNonUse(&inst);
|
|
changed = true;
|
|
break;
|
|
}
|
|
}
|
|
// If liveness changed, might as well restart CFG traversal.
|
|
if (changed) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Step 2. Find the "original" (unextended) boundary determined by the
|
|
// liveness built up in step 1.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void CanonicalizeOSSALifetime::findOriginalBoundary(
|
|
PrunedLivenessBoundary &boundary) {
|
|
assert(boundary.lastUsers.size() == 0 && boundary.boundaryEdges.size() == 0 &&
|
|
boundary.deadDefs.size() == 0);
|
|
liveness->computeBoundary(boundary, consumingBlocks.getArrayRef());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Step 3. (Optional) Maximize lifetimes.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// At -Onone, there are some conflicting goals:
|
|
/// On the one hand: good debugging experience.
|
|
/// (1) do not shorten value's lifetime
|
|
/// On the other: demonstrate semantics.
|
|
/// (2) consume value at same places it will be consumed at -O
|
|
/// (3) ensure there are no more copies than there would be at -O
|
|
///
|
|
/// (2) and (3) are equivalent--extra (compared to -O) copies arise from failing
|
|
/// to end lifetimes at consuming uses (which then need their own copies).
|
|
///
|
|
/// We achieve (2) and (3) always. We achieve (1) where possible.
|
|
///
|
|
/// Conceptually, the strategy is the following:
|
|
/// - Collect the blocks in which the value was live before canonicalization.
|
|
/// These are the "original" live blocks (originalLiveBlocks).
|
|
/// [Color these blocks green.]
|
|
/// - From within that collection, collect the blocks which contain a _final_
|
|
/// consuming, non-destroy use, and their iterative successors.
|
|
/// These are the "consumed" blocks (consumedAtExitBlocks).
|
|
/// [Color these blocks red.]
|
|
/// - Extend liveness down to the boundary between originalLiveBlocks and
|
|
/// consumedAtExitBlocks blocks.
|
|
/// [Extend liveness down to the boundary between green blocks and red.]
|
|
/// - In particular, in regions of originalLiveBlocks which have no boundary
|
|
/// with consumedAtExitBlocks, liveness should be extended to its original
|
|
/// extent.
|
|
/// [Extend liveness down to the boundary between green blocks and uncolored.]
|
|
void CanonicalizeOSSALifetime::visitExtendedUnconsumedBoundary(
|
|
ArrayRef<SILInstruction *> consumes,
|
|
llvm::function_ref<void(SILInstruction *, PrunedLiveness::LifetimeEnding)>
|
|
visitor) {
|
|
auto currentDef = getCurrentDef();
|
|
|
|
#ifndef NDEBUG
|
|
for (auto *consume : consumes) {
|
|
assert(!liveness->isWithinBoundary(consume, /*deadEndBlocks=*/nullptr));
|
|
}
|
|
#endif
|
|
|
|
// First, collect the blocks that were _originally_ live. We can't use
|
|
// liveness here because it doesn't include blocks that occur before a
|
|
// destroy_value.
|
|
BasicBlockSet originalLiveBlocks(currentDef->getFunction());
|
|
{
|
|
// Some of the work here was already done by computeCanonicalLiveness.
|
|
// Specifically, it already discovered all blocks containing (transitive)
|
|
// uses and blocks that appear between them and the def.
|
|
//
|
|
// Seed the set with what it already discovered.
|
|
for (auto *discoveredBlock : liveness->getDiscoveredBlocks())
|
|
originalLiveBlocks.insert(discoveredBlock);
|
|
|
|
// Start the walk from the consuming blocks (which includes destroys as well
|
|
// as the other consuming uses).
|
|
BasicBlockWorklist worklist(currentDef->getFunction());
|
|
for (auto *consumingBlock : consumingBlocks) {
|
|
worklist.push(consumingBlock);
|
|
}
|
|
|
|
// Walk backwards from consuming blocks.
|
|
while (auto *block = worklist.pop()) {
|
|
if (!originalLiveBlocks.insert(block))
|
|
continue;
|
|
for (auto *predecessor : block->getPredecessorBlocks()) {
|
|
// If the block was discovered by liveness, we already added it to the
|
|
// set.
|
|
if (originalLiveBlocks.contains(predecessor))
|
|
continue;
|
|
worklist.pushIfNotVisited(predecessor);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Second, collect the blocks which contain a _final_ consuming use and their
|
|
// iterative successors within the originalLiveBlocks.
|
|
BasicBlockSet consumedAtExitBlocks(currentDef->getFunction());
|
|
// The subset of consumedAtExitBlocks which do not contain a _final_ consuming
|
|
// use, i.e. the subset that is dead.
|
|
StackList<SILBasicBlock *> consumedAtEntryBlocks(currentDef->getFunction());
|
|
{
|
|
// Start the forward walk from blocks which contain _final_ non-destroy
|
|
// consumes. These are just the instructions on the boundary which aren't
|
|
// destroys.
|
|
BasicBlockWorklist worklist(currentDef->getFunction());
|
|
for (auto *instruction : consumes) {
|
|
if (destroys.contains(instruction))
|
|
continue;
|
|
if (liveness->isInterestingUser(instruction)
|
|
!= PrunedLiveness::IsInterestingUser::LifetimeEndingUse)
|
|
continue;
|
|
worklist.push(instruction->getParent());
|
|
}
|
|
while (auto *block = worklist.pop()) {
|
|
consumedAtExitBlocks.insert(block);
|
|
for (auto *successor : block->getSuccessorBlocks()) {
|
|
if (!originalLiveBlocks.contains(successor))
|
|
continue;
|
|
worklist.pushIfNotVisited(successor);
|
|
consumedAtEntryBlocks.push_back(successor);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Third, find the blocks on the boundary between the originalLiveBlocks
|
|
// blocks and the consumedAtEntryBlocks blocks. Extend liveness "to the end"
|
|
// of these blocks.
|
|
for (auto *block : consumedAtEntryBlocks) {
|
|
for (auto *predecessor : block->getPredecessorBlocks()) {
|
|
if (consumedAtExitBlocks.contains(predecessor))
|
|
continue;
|
|
// Add "the instruction(s) before the terminator" of the predecessor to
|
|
// liveness.
|
|
predecessor->getTerminator()->visitPriorInstructions([&](auto *inst) {
|
|
visitor(inst, PrunedLiveness::LifetimeEnding::Value::NonUse);
|
|
return true;
|
|
});
|
|
}
|
|
}
|
|
|
|
// Finally, preserve the destroys which weren't in the consumed region in
|
|
// place: hoisting such destroys would not avoid copies.
|
|
for (auto *destroy : destroys) {
|
|
auto *block = destroy->getParent();
|
|
// If the destroy is in a consumed block or a final consuming block,
|
|
// hoisting it would avoid a copy.
|
|
if (consumedAtExitBlocks.contains(block))
|
|
continue;
|
|
visitor(destroy, PrunedLiveness::LifetimeEnding::Value::Ending);
|
|
}
|
|
}
|
|
|
|
void CanonicalizeOSSALifetime::extendUnconsumedLiveness(
|
|
PrunedLivenessBoundary const &boundary) {
|
|
visitExtendedUnconsumedBoundary(
|
|
boundary.lastUsers, [&](auto *instruction, auto lifetimeEnding) {
|
|
liveness->updateForUse(instruction, lifetimeEnding);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Step 4. Extend the "original" boundary from step 2 up to destroys that
|
|
// aren't separated from it by "interesting" instructions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// Extends the boundary from PrunedLiveness down to preexisting destroys of the
|
|
/// def which aren't separated from the original boundary by "interesting"
|
|
/// instructions.
|
|
///
|
|
/// The motivation for extending the boundary is to avoid "churning" when
|
|
/// iterating to a fixed point by canonicalizing the lifetimes of several
|
|
/// values with overlapping live ranges and failing to find a fixed point
|
|
/// because their destroys are repeatedly hoisted over one another.
|
|
class ExtendBoundaryToDestroys final {
|
|
using InstructionPredicate = llvm::function_ref<bool(SILInstruction *)>;
|
|
SSAPrunedLiveness &liveness;
|
|
PrunedLivenessBoundary const &originalBoundary;
|
|
SILValue currentDef;
|
|
BasicBlockSet seenMergePoints;
|
|
InstructionPredicate isDestroy;
|
|
|
|
public:
|
|
ExtendBoundaryToDestroys(SSAPrunedLiveness &liveness,
|
|
PrunedLivenessBoundary const &originalBoundary,
|
|
SILValue currentDef, InstructionPredicate isDestroy)
|
|
: liveness(liveness), originalBoundary(originalBoundary),
|
|
currentDef(currentDef), seenMergePoints(currentDef->getFunction()),
|
|
isDestroy(isDestroy){};
|
|
ExtendBoundaryToDestroys(ExtendBoundaryToDestroys const &) = delete;
|
|
ExtendBoundaryToDestroys &
|
|
operator=(ExtendBoundaryToDestroys const &) = delete;
|
|
|
|
/// Compute the extended boundary by walking out from the original boundary
|
|
/// (from PrunedLiveness::computeBoundary) down to any destroys that appear
|
|
/// later but which aren't separated from the original boundary by
|
|
/// "interesting" users.
|
|
void extend(PrunedLivenessBoundary &boundary) {
|
|
for (auto *def : originalBoundary.deadDefs) {
|
|
extendBoundaryFromDef(def, boundary);
|
|
}
|
|
for (auto *destination : originalBoundary.boundaryEdges) {
|
|
extendBoundaryFromBoundaryEdge(destination, boundary);
|
|
}
|
|
for (auto *user : originalBoundary.lastUsers) {
|
|
extendBoundaryFromUser(user, boundary);
|
|
}
|
|
}
|
|
|
|
/// Look past ignoreable instructions to find the _last_ destroy after the
|
|
/// specified instruction that destroys \p def.
|
|
static DestroyValueInst *findDestroyAfter(SILInstruction *previous,
|
|
SILValue def,
|
|
InstructionPredicate isDestroy) {
|
|
DestroyValueInst *retval = nullptr;
|
|
for (auto *instruction = previous->getNextInstruction(); instruction;
|
|
instruction = instruction->getNextInstruction()) {
|
|
if (!CanonicalizeOSSALifetime::ignoredByDestroyHoisting(
|
|
instruction->getKind()))
|
|
break;
|
|
if (isDestroy(instruction))
|
|
retval = cast<DestroyValueInst>(instruction);
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/// Look past ignoreable instructions to find the _last_ destroy at or after
|
|
/// the specified instruction that destroys \p def.
|
|
static DestroyValueInst *
|
|
findDestroyAtOrAfter(SILInstruction *start, SILValue def,
|
|
InstructionPredicate isDestroy) {
|
|
if (isDestroy(start))
|
|
return cast<DestroyValueInst>(start);
|
|
return findDestroyAfter(start, def, isDestroy);
|
|
}
|
|
|
|
/// Look past ignoreable instructions to find the _first_ destroy in \p
|
|
/// destination that destroys \p def and isn't separated from the beginning
|
|
/// by "interesting" instructions.
|
|
static DestroyValueInst *
|
|
findDestroyFromBlockBegin(SILBasicBlock *destination, SILValue def,
|
|
InstructionPredicate isDestroy) {
|
|
return findDestroyAtOrAfter(&*destination->begin(), def, isDestroy);
|
|
}
|
|
|
|
private:
|
|
/// Compute the points on the extended boundary found by walking forward from
|
|
/// the dead def (starting either with the top of the block in the case of a
|
|
/// dead arg or the next instruction in the case of an instruction) down to
|
|
/// any destroys that appear later but which aren't separated from the
|
|
/// original boundary by "interesting" users.
|
|
///
|
|
/// If a destroy is found, it becomes a last user. Otherwise, the boundary
|
|
/// stays in place and \p def remains a dead def.
|
|
void extendBoundaryFromDef(SILNode *def, PrunedLivenessBoundary &boundary) {
|
|
if (auto *arg = dyn_cast<SILArgument>(def)) {
|
|
if (auto *dvi = findDestroyFromBlockBegin(arg->getParent(), currentDef,
|
|
isDestroy)) {
|
|
boundary.lastUsers.push_back(dvi);
|
|
return;
|
|
}
|
|
} else {
|
|
if (auto *dvi = findDestroyAfter(cast<SILInstruction>(def), currentDef,
|
|
isDestroy)) {
|
|
boundary.lastUsers.push_back(dvi);
|
|
return;
|
|
}
|
|
}
|
|
boundary.deadDefs.push_back(def);
|
|
}
|
|
|
|
/// Compute the points on the extended boundary found by walking down from the
|
|
/// boundary edge in the original boundary (uniquely determined by the
|
|
/// specified destination edge) down to any destroys that appear later but
|
|
/// which aren't separated from the original boundary by "interesting" users.
|
|
///
|
|
/// If a destroy is found, it becomes a last user. Otherwise, the boundary
|
|
/// stays in place and \p destination remains a boundary edge.
|
|
void extendBoundaryFromBoundaryEdge(SILBasicBlock *destination,
|
|
PrunedLivenessBoundary &boundary) {
|
|
if (auto *dvi =
|
|
findDestroyFromBlockBegin(destination, currentDef, isDestroy)) {
|
|
boundary.lastUsers.push_back(dvi);
|
|
} else {
|
|
boundary.boundaryEdges.push_back(destination);
|
|
}
|
|
}
|
|
|
|
/// Compute the points on the extended boundary found by walking down from the
|
|
/// specified instruction in the original boundary down to any destroys that
|
|
/// appear later but which aren't separated from the original boundary by
|
|
/// "interesting" users.
|
|
///
|
|
/// If the user is consuming, the boundary remains in place.
|
|
///
|
|
/// If the user is a terminator, see extendBoundaryFromTerminator.
|
|
///
|
|
/// If a destroy is found after the (non-consuming, non-terminator) \p user,
|
|
/// it becomes a last user. Otherwise, the boundary stays in place and \p
|
|
/// user remains a last user.
|
|
void extendBoundaryFromUser(SILInstruction *user,
|
|
PrunedLivenessBoundary &boundary) {
|
|
if (isDestroy(user)) {
|
|
auto *dvi = cast<DestroyValueInst>(user);
|
|
auto *existingDestroy = findDestroyAtOrAfter(dvi, currentDef, isDestroy);
|
|
assert(existingDestroy && "couldn't find a destroy at or after one!?");
|
|
boundary.lastUsers.push_back(existingDestroy);
|
|
return;
|
|
}
|
|
switch (liveness.isInterestingUser(user)) {
|
|
case PrunedLiveness::IsInterestingUser::LifetimeEndingUse:
|
|
// Even if we saw a destroy after this consuming use, we don't want to
|
|
// add it to the boundary. We will rewrite copies so that this user is
|
|
// the final consuming user on this path.
|
|
boundary.lastUsers.push_back(user);
|
|
return;
|
|
case PrunedLiveness::IsInterestingUser::NonLifetimeEndingUse:
|
|
case PrunedLiveness::IsInterestingUser::NonUser:
|
|
if (auto *terminator = dyn_cast<TermInst>(user)) {
|
|
extendBoundaryFromTerminator(terminator, boundary);
|
|
return;
|
|
}
|
|
if (auto *existingDestroy =
|
|
findDestroyAfter(user, currentDef, isDestroy)) {
|
|
boundary.lastUsers.push_back(existingDestroy);
|
|
return;
|
|
}
|
|
boundary.lastUsers.push_back(user);
|
|
}
|
|
}
|
|
|
|
/// Compute the points on the extended boundary by walking into \p user's
|
|
/// parent's successors and looking for destroys.
|
|
///
|
|
/// If any destroys are found, they become last users and all other successors
|
|
/// (which lack destroys) become boundary edges. If no destroys are found,
|
|
/// the boundary stays in place and \p user remains a last user.
|
|
void extendBoundaryFromTerminator(TermInst *user,
|
|
PrunedLivenessBoundary &boundary) {
|
|
auto *block = user->getParent();
|
|
// Record the successors at the beginning of which we didn't find destroys.
|
|
// If we found a destroy at the beginning of any other successor, then all
|
|
// the other edges become boundary edges.
|
|
SmallVector<SILBasicBlock *, 4> successorsWithoutDestroys;
|
|
bool foundDestroy = false;
|
|
for (auto *successor : block->getSuccessorBlocks()) {
|
|
// If multiple terminators were live and had the same successor, only
|
|
// record the boundary corresponding to that destination block once.
|
|
if (!seenMergePoints.insert(successor)) {
|
|
// Thanks to the lack of critical edges, having seen this successor
|
|
// before means it has multiple predecessors, so this must be \p block's
|
|
// unique successor.
|
|
assert(block->getSingleSuccessorBlock() == successor);
|
|
// When this merge point was encountered the first time, a
|
|
// destroy_value was sought from its top. If one was found, it was
|
|
// added to the boundary. If no destroy_value was found, _that_ user
|
|
// (i.e. the one on behalf of which extendBoundaryFromTerminator was
|
|
// called which inserted successor into seenMergePoints) was added to
|
|
// the boundary.
|
|
//
|
|
// This time, if a destroy was found, it's already in the boundary. If
|
|
// no destroy was found, though, _this_ user must be added to the
|
|
// boundary.
|
|
foundDestroy =
|
|
findDestroyFromBlockBegin(successor, currentDef, isDestroy);
|
|
continue;
|
|
}
|
|
if (auto *dvi =
|
|
findDestroyFromBlockBegin(successor, currentDef, isDestroy)) {
|
|
boundary.lastUsers.push_back(dvi);
|
|
foundDestroy = true;
|
|
} else {
|
|
successorsWithoutDestroys.push_back(successor);
|
|
}
|
|
}
|
|
if (foundDestroy) {
|
|
// If we found a destroy in any successor, then every block at the
|
|
// beginning of which we didn't find a destroy becomes a boundary edge.
|
|
for (auto *successor : successorsWithoutDestroys) {
|
|
boundary.boundaryEdges.push_back(successor);
|
|
}
|
|
} else {
|
|
boundary.lastUsers.push_back(user);
|
|
}
|
|
}
|
|
};
|
|
} // anonymous namespace
|
|
|
|
void CanonicalizeOSSALifetime::findExtendedBoundary(
|
|
PrunedLivenessBoundary const &originalBoundary,
|
|
PrunedLivenessBoundary &boundary) {
|
|
assert(boundary.lastUsers.size() == 0 && boundary.boundaryEdges.size() == 0 &&
|
|
boundary.deadDefs.size() == 0);
|
|
auto isDestroy = [&](auto *inst) { return destroys.contains(inst); };
|
|
ExtendBoundaryToDestroys extender(*liveness, originalBoundary,
|
|
getCurrentDef(), isDestroy);
|
|
extender.extend(boundary);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Step 5. Insert destroys onto the boundary found in step 3 where needed.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Create a new destroy_value instruction before the specified instruction and
|
|
/// record it as a final consume.
|
|
static void
|
|
insertDestroyBeforeInstruction(SILInstruction *nextInstruction,
|
|
SILValue currentDef, IsDeadEnd_t isDeadEnd,
|
|
CanonicalOSSAConsumeInfo &consumes,
|
|
SmallVectorImpl<DestroyValueInst *> &destroys,
|
|
InstModCallbacks &callbacks) {
|
|
// OSSALifetimeCompletion: This conditional clause can be deleted with
|
|
// complete lifetimes.
|
|
if (consumes.isUnreachableLifetimeEnd(nextInstruction)) {
|
|
// Don't create a destroy_value if the next instruction is an unreachable
|
|
// (or a terminator on the availability boundary of the dead-end region
|
|
// starting from the non-lifetime-ending boundary of `currentDef`).
|
|
//
|
|
// If there was a destroy here already, it would be reused. Avoids
|
|
// creating an explicit destroy of a value which might have an unclosed
|
|
// borrow scope. Doing so would result in
|
|
//
|
|
// somewhere:
|
|
// %def
|
|
// %borrow = begin_borrow ...
|
|
//
|
|
// die:
|
|
// destroy_value %def
|
|
// unreachable
|
|
//
|
|
// which is invalid (although the verifier doesn't catch
|
|
// it--rdar://115850528) because there must be an `end_borrow %borrow`
|
|
// before the destroy_value.
|
|
return;
|
|
}
|
|
SILBuilderWithScope builder(nextInstruction);
|
|
auto loc =
|
|
RegularLocation::getAutoGeneratedLocation(nextInstruction->getLoc());
|
|
auto *dvi =
|
|
builder.createDestroyValue(loc, currentDef, DontPoisonRefs, isDeadEnd);
|
|
callbacks.createdNewInst(dvi);
|
|
consumes.recordFinalConsume(dvi);
|
|
++NumDestroysGenerated;
|
|
destroys.push_back(dvi);
|
|
}
|
|
|
|
/// Whether a destroy created at \p inst should be marked [dead_end].
|
|
///
|
|
/// It should be if
|
|
/// (1) \p inst is itself in a dead-end region
|
|
/// (2) all destroys after \p inst are [dead_end]
|
|
static IsDeadEnd_t
|
|
isDeadEndDestroy(SILInstruction *inst,
|
|
SmallPtrSetVector<SILInstruction *, 8> const &destroys,
|
|
BasicBlockSet &semanticDestroysBlocks,
|
|
DeadEndBlocks *deadEnds) {
|
|
auto *parent = inst->getParent();
|
|
if (!deadEnds->isDeadEnd(parent)) {
|
|
// Only destroys in dead-ends can be non-meaningful (aka "dead end").
|
|
return IsntDeadEnd;
|
|
}
|
|
if (semanticDestroysBlocks.contains(parent)) {
|
|
// `parent` has a semantic destroy somewhere. Is it after `inst`?
|
|
for (auto *i = inst; i; i = i->getNextInstruction()) {
|
|
if (!destroys.contains(i)) {
|
|
continue;
|
|
}
|
|
auto *dvi = cast<DestroyValueInst>(i);
|
|
if (!dvi->isDeadEnd()) {
|
|
// Some subsequent destroy within `parent` was meaningful, so one
|
|
// created at `inst` must be too.
|
|
return IsntDeadEnd;
|
|
}
|
|
}
|
|
}
|
|
// Walk the portion of the dead-end region after `parent` to check that all
|
|
// destroys are non-meaningful.
|
|
BasicBlockWorklist worklist(inst->getFunction());
|
|
for (auto *successor : parent->getSuccessorBlocks()) {
|
|
worklist.push(successor);
|
|
}
|
|
while (auto *block = worklist.pop()) {
|
|
assert(deadEnds->isDeadEnd(block));
|
|
if (semanticDestroysBlocks.contains(block)) {
|
|
// Some subsequent destroy was meaningful, so one created at `inst`
|
|
// must be too.
|
|
return IsntDeadEnd;
|
|
}
|
|
for (auto *successor : block->getSuccessorBlocks()) {
|
|
worklist.pushIfNotVisited(successor);
|
|
}
|
|
}
|
|
return IsDeadEnd;
|
|
}
|
|
|
|
/// Inserts destroys along the boundary where needed and records all final
|
|
/// consuming uses.
|
|
///
|
|
/// Observations:
|
|
/// - currentDef must be postdominated by some subset of its
|
|
/// consuming uses, including destroys on all return paths.
|
|
/// - The postdominating consumes cannot be within nested loops.
|
|
/// - Any blocks in nested loops are now marked LiveOut.
|
|
void CanonicalizeOSSALifetime::insertDestroysOnBoundary(
|
|
PrunedLivenessBoundary const &boundary,
|
|
SmallVectorImpl<DestroyValueInst *> &newDestroys) {
|
|
BasicBlockSet semanticDestroyBlocks(getCurrentDef()->getFunction());
|
|
for (auto *destroy : destroys) {
|
|
if (!cast<DestroyValueInst>(destroy)->isDeadEnd()) {
|
|
semanticDestroyBlocks.insert(destroy->getParent());
|
|
}
|
|
}
|
|
auto isDeadEnd = [&semanticDestroyBlocks,
|
|
this](SILInstruction *inst) -> IsDeadEnd_t {
|
|
return isDeadEndDestroy(
|
|
inst, destroys, semanticDestroyBlocks,
|
|
deadEndBlocksAnalysis->get(getCurrentDef()->getFunction()));
|
|
};
|
|
BasicBlockSet seenMergePoints(getCurrentDef()->getFunction());
|
|
for (auto *instruction : boundary.lastUsers) {
|
|
if (destroys.contains(instruction)) {
|
|
consumes.recordFinalConsume(instruction);
|
|
continue;
|
|
}
|
|
switch (liveness->isInterestingUser(instruction)) {
|
|
case PrunedLiveness::IsInterestingUser::LifetimeEndingUse:
|
|
consumes.recordFinalConsume(instruction);
|
|
continue;
|
|
case PrunedLiveness::IsInterestingUser::NonLifetimeEndingUse:
|
|
case PrunedLiveness::IsInterestingUser::NonUser:
|
|
if (isa<TermInst>(instruction)) {
|
|
auto *block = instruction->getParent();
|
|
for (auto *successor : block->getSuccessorBlocks()) {
|
|
if (!seenMergePoints.insert(successor)) {
|
|
assert(block->getSingleSuccessorBlock() == successor);
|
|
continue;
|
|
}
|
|
auto *insertionPoint = &*successor->begin();
|
|
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(),
|
|
isDeadEnd(insertionPoint), consumes,
|
|
newDestroys, getCallbacks());
|
|
LLVM_DEBUG(llvm::dbgs() << " Destroy after terminator "
|
|
<< *instruction << " at beginning of ";
|
|
successor->printID(llvm::dbgs(), false);
|
|
llvm::dbgs() << "\n";);
|
|
}
|
|
continue;
|
|
}
|
|
auto *insertionPoint = instruction->getNextInstruction();
|
|
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(),
|
|
isDeadEnd(insertionPoint), consumes,
|
|
newDestroys, getCallbacks());
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Destroy at last use " << insertionPoint << "\n");
|
|
continue;
|
|
}
|
|
}
|
|
for (auto *edgeDestination : boundary.boundaryEdges) {
|
|
auto *insertionPoint = &*edgeDestination->begin();
|
|
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(),
|
|
isDeadEnd(insertionPoint), consumes,
|
|
newDestroys, getCallbacks());
|
|
LLVM_DEBUG(llvm::dbgs() << " Destroy on edge " << edgeDestination << "\n");
|
|
}
|
|
for (auto *def : boundary.deadDefs) {
|
|
if (auto *arg = dyn_cast<SILArgument>(def)) {
|
|
auto *insertionPoint = &*arg->getParent()->begin();
|
|
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(),
|
|
isDeadEnd(insertionPoint), consumes,
|
|
newDestroys, getCallbacks());
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Destroy after dead def arg " << arg << "\n");
|
|
} else {
|
|
auto *instruction = cast<SILInstruction>(def);
|
|
auto *insertionPoint = instruction->getNextInstruction();
|
|
assert(insertionPoint && "def instruction was a terminator?!");
|
|
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(),
|
|
isDeadEnd(insertionPoint), consumes,
|
|
newDestroys, getCallbacks());
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< " Destroy after dead def inst " << instruction << "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Step 6. Rewrite copies and destroys
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// The lifetime extends beyond given consuming use. Copy the value.
|
|
///
|
|
/// This can set the operand value, but cannot invalidate the use iterator.
|
|
void swift::copyLiveUse(Operand *use, InstModCallbacks &instModCallbacks) {
|
|
SILInstruction *user = use->getUser();
|
|
SILBuilderWithScope builder(user->getIterator());
|
|
|
|
auto loc = RegularLocation::getAutoGeneratedLocation(user->getLoc());
|
|
auto *copy = builder.createCopyValue(loc, use->get());
|
|
instModCallbacks.createdNewInst(copy);
|
|
use->set(copy);
|
|
|
|
++NumCopiesGenerated;
|
|
LLVM_DEBUG(llvm::dbgs() << " Copying at last use " << *copy);
|
|
}
|
|
|
|
/// Revisit the def-use chain of currentDef. Mark unneeded original
|
|
/// copies and destroys for deletion. Insert new copies for interior uses that
|
|
/// require ownership of the used operand.
|
|
void CanonicalizeOSSALifetime::rewriteCopies(
|
|
SmallVectorImpl<DestroyValueInst *> const &newDestroys) {
|
|
assert(getCurrentDef()->getOwnershipKind() == OwnershipKind::Owned);
|
|
|
|
// Shadow discoveredDefs in order to constrain its uses.
|
|
const auto &discoveredDefs = this->discoveredDefs;
|
|
|
|
InstructionSetVector instsToDelete(getCurrentDef()->getFunction());
|
|
|
|
// Visit each operand in the def-use chain.
|
|
//
|
|
// Return true if the operand can use the current definition. Return false if
|
|
// it requires a copy.
|
|
auto visitUse = [&](Operand *use) {
|
|
auto *user = use->getUser();
|
|
if (destroys.contains(user)) {
|
|
auto *destroy = cast<DestroyValueInst>(user);
|
|
// If this destroy was marked as a final destroy, ignore it; otherwise,
|
|
// delete it.
|
|
if (!consumes.claimConsume(destroy)) {
|
|
instsToDelete.insert(destroy);
|
|
LLVM_DEBUG(llvm::dbgs() << " Removing " << *destroy);
|
|
++NumDestroysEliminated;
|
|
} else if (pruneDebugMode) {
|
|
// If this destroy was marked as a final destroy, add it to liveness so
|
|
// that we don't delete any debug instructions that occur before it.
|
|
// (Only relevant in pruneDebugMode).
|
|
liveness->updateForUse(destroy, /*lifetimeEnding*/ true);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Nonconsuming uses do not need copies and cannot be marked as destroys.
|
|
// A lifetime-ending use here must be a consume because EndBorrow/Reborrow
|
|
// uses have been filtered out.
|
|
if (!use->isLifetimeEnding())
|
|
return true;
|
|
|
|
// If this use was not marked as a final destroy *or* this is not the first
|
|
// consumed operand we visited, then it needs a copy.
|
|
if (!consumes.claimConsume(user)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
// Perform a def-use traversal, visiting each use operand.
|
|
for (auto def : discoveredDefs) {
|
|
switch (def.kind) {
|
|
case Def::BorrowedFrom:
|
|
case Def::Reborrow:
|
|
// Direct uses of these defs never need to be rewritten. Being guaranteed
|
|
// values, none of their direct uses consume an owned value.
|
|
assert(def.value->getOwnershipKind() == OwnershipKind::Guaranteed);
|
|
break;
|
|
case Def::Root: {
|
|
SILValue value = def.value;
|
|
for (auto useIter = value->use_begin(), endIter = value->use_end();
|
|
useIter != endIter;) {
|
|
Operand *use = *useIter++;
|
|
if (!visitUse(use)) {
|
|
copyLiveUse(use, getCallbacks());
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Def::Copy: {
|
|
SILValue value = def.value;
|
|
CopyValueInst *srcCopy = cast<CopyValueInst>(value);
|
|
// Recurse through copies while replacing their uses.
|
|
Operand *reusedCopyOp = nullptr;
|
|
for (auto useIter = srcCopy->use_begin();
|
|
useIter != srcCopy->use_end();) {
|
|
Operand *use = *useIter++;
|
|
if (!visitUse(use)) {
|
|
if (!reusedCopyOp && srcCopy->getParent() == use->getParentBlock()) {
|
|
reusedCopyOp = use;
|
|
} else {
|
|
copyLiveUse(use, getCallbacks());
|
|
}
|
|
}
|
|
}
|
|
if (!(reusedCopyOp && srcCopy->hasOneUse())) {
|
|
getCallbacks().replaceValueUsesWith(srcCopy, srcCopy->getOperand());
|
|
if (reusedCopyOp) {
|
|
reusedCopyOp->set(srcCopy);
|
|
} else {
|
|
if (instsToDelete.insert(srcCopy)) {
|
|
LLVM_DEBUG(llvm::dbgs() << " Removing " << *srcCopy);
|
|
++NumCopiesAndMovesEliminated;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
assert(!consumes.hasUnclaimedConsumes());
|
|
|
|
if (pruneDebugMode) {
|
|
for (auto *destroy : newDestroys) {
|
|
liveness->updateForUse(destroy, /*lifetimeEnding=*/true);
|
|
}
|
|
for (auto *dvi : debugValues) {
|
|
if (liveness->isWithinBoundary(
|
|
dvi,
|
|
deadEndBlocksAnalysis->get(getCurrentDef()->getFunction()))) {
|
|
continue;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << " Removing debug_value: " << *dvi);
|
|
deleter.forceDelete(dvi);
|
|
}
|
|
}
|
|
|
|
// Remove the leftover copy_value and destroy_value instructions.
|
|
for (auto *inst : instsToDelete) {
|
|
deleter.forceDelete(inst);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Top-Level API
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool CanonicalizeOSSALifetime::computeLiveness() {
|
|
LLVM_DEBUG(llvm::dbgs() << " Canonicalizing: " << currentDef);
|
|
|
|
if (currentDef->getOwnershipKind() != OwnershipKind::Owned) {
|
|
LLVM_DEBUG(llvm::dbgs() << " not owned, never mind\n");
|
|
return false;
|
|
}
|
|
|
|
// Note: There is no need to register callbacks with this utility. 'onDelete'
|
|
// is the only one in use to handle dangling pointers, which could be done
|
|
// instead be registering a temporary handler with the pass. Canonicalization
|
|
// is only allowed to create and delete instructions that are associated with
|
|
// this canonical def (copies and destroys). Each canonical def has a disjoint
|
|
// extended lifetime. Any pass calling this utility should work at the level
|
|
// canonical defs, not individual instructions.
|
|
//
|
|
// NotifyWillBeDeleted will not work because copy rewriting removes operands
|
|
// before deleting instructions. Also prohibit setUse callbacks just because
|
|
// that would simply be unsound.
|
|
assert(!getCallbacks().notifyWillBeDeletedFunc
|
|
&& !getCallbacks().setUseValueFunc && "unsupported");
|
|
|
|
// Step 1: compute liveness
|
|
if (!computeCanonicalLiveness()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Failed to compute canonical liveness?!\n");
|
|
clear();
|
|
return false;
|
|
}
|
|
if (respectsDeadEnds() && hasAnyDeadEnds()) {
|
|
if (respectsDeinitBarriers()) {
|
|
extendLexicalLivenessToDeadEnds();
|
|
}
|
|
extendLivenessToDeadEnds();
|
|
}
|
|
if (respectsDeinitBarriers()) {
|
|
extendLivenessToDeinitBarriers();
|
|
}
|
|
if (accessBlockAnalysis) {
|
|
extendLivenessThroughOverlappingAccess();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void CanonicalizeOSSALifetime::rewriteLifetimes() {
|
|
// Step 2: compute original boundary
|
|
PrunedLivenessBoundary originalBoundary;
|
|
findOriginalBoundary(originalBoundary);
|
|
PrunedLivenessBoundary extendedBoundary;
|
|
if (maximizeLifetime) {
|
|
// Step 3. (optional) maximize lifetimes
|
|
extendUnconsumedLiveness(originalBoundary);
|
|
originalBoundary.clear();
|
|
// Step 2: (again) recompute the original boundary since we've extended
|
|
// liveness
|
|
findOriginalBoundary(originalBoundary);
|
|
// Step 4: extend boundary to destroys
|
|
findExtendedBoundary(originalBoundary, extendedBoundary);
|
|
} else {
|
|
// Step 3: (skipped)
|
|
// Step 4: extend boundary to destroys
|
|
findExtendedBoundary(originalBoundary, extendedBoundary);
|
|
}
|
|
|
|
SmallVector<DestroyValueInst *> newDestroys;
|
|
// Step 5: insert destroys and record consumes
|
|
insertDestroysOnBoundary(extendedBoundary, newDestroys);
|
|
// Step 6: rewrite copies and delete extra destroys
|
|
rewriteCopies(newDestroys);
|
|
|
|
clear();
|
|
}
|
|
|
|
/// Canonicalize a single extended owned lifetime.
|
|
bool CanonicalizeOSSALifetime::canonicalizeValueLifetime(
|
|
SILValue def, ArrayRef<SILInstruction *> lexicalLifetimeEnds) {
|
|
LivenessState livenessState(*this, def, lexicalLifetimeEnds);
|
|
|
|
// Don't canonicalize the lifetimes of values of move-only type. According to
|
|
// language rules, they are fixed.
|
|
if (def->getType().isMoveOnly()) {
|
|
return false;
|
|
}
|
|
|
|
// Step 1: Compute liveness.
|
|
if (!computeLiveness()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Failed to compute liveness boundary!\n");
|
|
return false;
|
|
}
|
|
|
|
// Steps 2-6. \see rewriteUses for explanation of steps 2-6.
|
|
rewriteLifetimes();
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace swift::test {
|
|
// Arguments:
|
|
// - bool: pruneDebug
|
|
// - bool: maximizeLifetimes
|
|
// - bool: "respectAccessScopes", whether to contract lifetimes to end within
|
|
// access scopes which they previously enclosed but can't be hoisted
|
|
// before
|
|
// - SILValue: value to canonicalize
|
|
// - [SILInstruction]: the lexicalLifetimeEnds to recognize
|
|
// Dumps:
|
|
// - function after value canonicalization
|
|
static FunctionTest CanonicalizeOSSALifetimeTest(
|
|
"canonicalize_ossa_lifetime",
|
|
[](auto &function, auto &arguments, auto &test) {
|
|
auto *accessBlockAnalysis =
|
|
test.template getAnalysis<NonLocalAccessBlockAnalysis>();
|
|
auto *deadEndBlocksAnalysis =
|
|
test.template getAnalysis<DeadEndBlocksAnalysis>();
|
|
auto *dominanceAnalysis = test.template getAnalysis<DominanceAnalysis>();
|
|
DominanceInfo *domTree = dominanceAnalysis->get(&function);
|
|
auto *calleeAnalysis = test.template getAnalysis<BasicCalleeAnalysis>();
|
|
auto pruneDebug = PruneDebugInsts_t(arguments.takeBool());
|
|
auto maximizeLifetimes = MaximizeLifetime_t(arguments.takeBool());
|
|
auto respectAccessScopes = arguments.takeBool();
|
|
InstructionDeleter deleter;
|
|
CanonicalizeOSSALifetime canonicalizer(
|
|
pruneDebug, maximizeLifetimes, &function,
|
|
respectAccessScopes ? accessBlockAnalysis : nullptr,
|
|
deadEndBlocksAnalysis, domTree, calleeAnalysis, deleter);
|
|
auto value = arguments.takeValue();
|
|
SmallVector<SILInstruction *, 4> lexicalLifetimeEnds;
|
|
while (arguments.hasUntaken()) {
|
|
lexicalLifetimeEnds.push_back(arguments.takeInstruction());
|
|
}
|
|
canonicalizer.canonicalizeValueLifetime(value, lexicalLifetimeEnds);
|
|
function.print(llvm::outs());
|
|
});
|
|
} // end namespace swift::test
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Debugging
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SWIFT_ASSERT_ONLY_DECL(
|
|
void CanonicalOSSAConsumeInfo::dump() const {
|
|
llvm::dbgs() << "Consumes:";
|
|
for (auto &blockAndInst : finalBlockConsumes) {
|
|
llvm::dbgs() << " " << *blockAndInst.getSecond();
|
|
}
|
|
})
|