Files
swift-mirror/lib/SILOptimizer/Utils/CastOptimizer.cpp
Doug Gregor bc4cf1236b [SIL] Generalize CastingIsolatedConformances to CheckedCastInstOptions
We are going to need to add more flags to the various checked cast
instructions. Generalize the CastingIsolatedConformances bit in all of
these SIL instructions to an "options" struct that's easier to extend.

Precursor to rdar://152335805.
2025-06-04 17:12:28 -07:00

1683 lines
61 KiB
C++

//===--- CastOptimizer.cpp ------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// \file
///
/// This file contains local cast optimizations and simplifications.
///
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/CastOptimizer.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Module.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/DynamicCasts.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SIL/TypeLowering.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/Analysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include <optional>
using namespace swift;
//===----------------------------------------------------------------------===//
// ObjC -> Swift Bridging Cast Optimization
//===----------------------------------------------------------------------===//
static SILFunction *
getObjCToSwiftBridgingFunction(SILOptFunctionBuilder &funcBuilder,
SILDynamicCastInst dynamicCast) {
// inline constructor.
auto *bridgeFuncDecl = [&]() -> FuncDecl * {
auto &astContext = dynamicCast.getModule().getASTContext();
if (dynamicCast.isConditional()) {
return astContext.getConditionallyBridgeFromObjectiveCBridgeable();
}
return astContext.getForceBridgeFromObjectiveCBridgeable();
}();
assert(bridgeFuncDecl && "Bridging function doesn't exist?!");
SILDeclRef funcDeclRef(bridgeFuncDecl, SILDeclRef::Kind::Func);
// Lookup a function from the stdlib.
return funcBuilder.getOrCreateFunction(dynamicCast.getLocation(), funcDeclRef,
ForDefinition_t::NotForDefinition);
}
static SubstitutionMap lookupBridgeToObjCProtocolSubs(CanType target) {
auto bridgedProto =
target->getASTContext().getProtocol(KnownProtocolKind::ObjectiveCBridgeable);
auto conf = lookupConformance(target, bridgedProto);
return SubstitutionMap::getProtocolSubstitutions(conf);
}
/// Given that our insertion point is at the cast that we are trying to
/// optimize, convert our incoming value to something that can be passed to the
/// bridge call.
static std::pair<SILValue, SILInstruction *>
convertObjectToLoadableBridgeableType(SILBuilderWithScope &builder,
SILDynamicCastInst dynamicCast,
SILValue src) {
auto *f = dynamicCast.getFunction();
auto loc = dynamicCast.getLocation();
bool isConditional = dynamicCast.isConditional();
SILValue load =
builder.emitLoadValueOperation(loc, src, LoadOwnershipQualifier::Take);
SILType silBridgedTy = *dynamicCast.getLoweredBridgedTargetObjectType();
// If we are not conditional...
if (!isConditional) {
// and our loaded type is our bridged type, just return the load as our
// SILValue and signal to our caller that we did not create a new cast
// instruction by returning nullptr as second.
if (load->getType() == silBridgedTy) {
return {load, nullptr};
}
// Otherwise, just perform an unconditional checked cast to the sil bridged
// ty. We return the cast as our value and as our new cast instruction.
auto *cast =
builder.createUnconditionalCheckedCast(
loc, dynamicCast.getCheckedCastOptions(), load, silBridgedTy,
dynamicCast.getBridgedTargetType());
return {cast, cast};
}
SILBasicBlock *castSuccessBB =
f->createBasicBlockAfter(dynamicCast.getInstruction()->getParent());
castSuccessBB->createPhiArgument(silBridgedTy, OwnershipKind::Owned);
// If we /are/ conditional and we do not need to bridge the load to the sil,
// then we just create our cast success block and branch from the end of the
// cast instruction block to the cast success block. We leave our insertion
// point in the cast success block since when we return, we are going to
// insert the bridge call/switch there. We return the argument of the cast
// success block as the value to be passed to the bridging function.
if (load->getType() == silBridgedTy) {
f->moveBlockAfter(castSuccessBB, dynamicCast.getInstruction()->getParent());
builder.createBranch(loc, castSuccessBB, load);
builder.setInsertionPoint(castSuccessBB);
return {castSuccessBB->getArgument(0), nullptr};
}
auto *castFailBB = ([&]() -> SILBasicBlock * {
auto *failureBB = dynamicCast.getFailureBlock();
SILBuilderWithScope failureBBBuilder(&(*failureBB->begin()), builder);
return splitBasicBlockAndBranch(failureBBBuilder, &(*failureBB->begin()),
nullptr, nullptr);
}());
// Now that we have created the failure bb, move our cast success block right
// after the checked_cast_br bb.
f->moveBlockAfter(castSuccessBB, dynamicCast.getInstruction()->getParent());
// Ok, we need to perform the full cast optimization. This means that we are
// going to replace the cast terminator in inst_block with a checked_cast_br.
auto *ccbi = builder.createCheckedCastBranch(loc, false,
dynamicCast.getCheckedCastOptions(),
load,
dynamicCast.getBridgedSourceType(),
silBridgedTy,
dynamicCast.getBridgedTargetType(),
castSuccessBB, castFailBB);
splitEdge(ccbi, /* EdgeIdx to CastFailBB */ 1);
// Now that we have split the edge to cast fail bb, add the default argument
// for the checked_cast_br. Then we need to handle our error conditions,
// namely we destroy on take_always and otherwise store the value back into
// the memory location that we took it out of.
{
auto *newFailureBlock = ccbi->getFailureBB();
SILValue defaultArg;
if (builder.hasOwnership()) {
defaultArg = newFailureBlock->createPhiArgument(load->getType(),
OwnershipKind::Owned);
} else {
defaultArg = ccbi->getOperand();
}
// This block should be properly terminated already due to our method of
// splitting the failure block, so we can use begin() safely.
SILBuilderWithScope failureBuilder(newFailureBlock->begin());
switch (dynamicCast.getBridgedConsumptionKind()) {
case CastConsumptionKind::TakeAlways:
failureBuilder.emitDestroyValueOperation(loc, defaultArg);
break;
case CastConsumptionKind::TakeOnSuccess:
case CastConsumptionKind::CopyOnSuccess:
// Without ownership, we do not need to consume the taken value.
if (failureBuilder.hasOwnership()) {
failureBuilder.emitStoreValueOperation(loc, defaultArg, src,
StoreOwnershipQualifier::Init);
}
break;
case CastConsumptionKind::BorrowAlways:
llvm_unreachable("this should never occur here");
}
}
builder.setInsertionPoint(castSuccessBB);
return {castSuccessBB->getArgument(0), ccbi};
}
/// Create a call of _forceBridgeFromObjectiveC_bridgeable or
/// _conditionallyBridgeFromObjectiveC_bridgeable which converts an ObjC
/// instance into a corresponding Swift type, conforming to
/// _ObjectiveCBridgeable.
///
/// Control Flow Modification Model
/// ===============================
///
/// NOTE: In the following we assume that our src type is not address only. We
/// do not support optimizing such source types today.
///
/// Unconditional Casts
/// -------------------
///
/// In the case of unconditional casts, we do not touch the CFG at all. We
/// perform the following optimizations:
///
/// 1. If the bridged type and the src type equal, we replace the cast with the
/// apply.
///
/// 2. If src is an address and bridged type has the matching object type to
/// src, just load the value and again replace the cast with the apply.
///
/// 3. If src is an address and after loading still doesn't match bridged type,
/// insert an unconditional_checked_cast before calling the apply.
///
/// Conditional Casts
/// -----------------
///
/// In the case of a conditional const (i.e. checked_cast_addr_br), we transform
/// the following CFG:
///
/// ```
/// InstBlock (checked_cast_addr_br) -> FailureBB -> FailureSucc
/// \
/// \----------------------------> SuccessBB -> SuccessSucc
/// ```
///
/// to a CFG of the following form:
///
/// ```
/// InstBlock (checked_cast_br) -> CastFailBB -> FailureBB -> FailureSucc
/// | ^
/// \-> CastSuccessBB (bridge call + switch) --|
/// |
/// \-> BridgeSuccessBB -> SuccessBB -> SuccessSucc
/// ```
///
/// NOTE: That if the underlying src type matches the type of the underlying
/// bridge source object, we can omit the initial checked_cast_br and just load
/// the value + branch to the CastSuccessBB. This results instead in the
/// following CFG:
///
/// ```
/// InstBlock (br) FailureBB -> FailureSucc
/// | ^
/// \-> CastSuccessBB (bridge call + switch) --|
/// |
/// \-> BridgeSuccessBB -> SuccessBB -> SuccessSucc
/// ```
///
SILInstruction *
CastOptimizer::optimizeBridgedObjCToSwiftCast(SILDynamicCastInst dynamicCast) {
auto kind = dynamicCast.getKind();
(void)kind;
assert(((kind == SILDynamicCastKind::CheckedCastAddrBranchInst) ||
(kind == SILDynamicCastKind::UnconditionalCheckedCastAddrInst)) &&
"Unsupported dynamic cast kind");
CanType target = dynamicCast.getTargetFormalType();
auto &mod = dynamicCast.getModule();
// AnyHashable is a special case that we do not handle since we only handle
// objc targets in this function. Bailout early.
if (target->isAnyHashable()) {
return nullptr;
}
SILValue src = dynamicCast.getSource();
SILInstruction *Inst = dynamicCast.getInstruction();
auto *F = Inst->getFunction();
// Check if we have a source type that is address only. We do not support that
// today.
if (src->getType().isAddressOnly(*F)) {
return nullptr;
}
bool isConditional = dynamicCast.isConditional();
SILValue Dest = dynamicCast.getDest();
SILBasicBlock *SuccessBB = dynamicCast.getSuccessBlock();
SILBasicBlock *FailureBB = dynamicCast.getFailureBlock();
auto Loc = Inst->getLoc();
// The conformance to _BridgedToObjectiveC is statically known.
// Retrieve the bridging operation to be used if a static conformance
// to _BridgedToObjectiveC can be proven.
SILFunction *bridgingFunc =
getObjCToSwiftBridgingFunction(functionBuilder, dynamicCast);
if (!bridgingFunc)
return nullptr;
auto paramTypes = bridgingFunc->getLoweredFunctionType()->getParameters();
(void)paramTypes;
assert(paramTypes[0].getConvention() ==
ParameterConvention::Direct_Guaranteed &&
"Parameter should be @guaranteed");
SILBuilderWithScope Builder(Inst, builderContext);
// Generate a load for the source argument since as part of our optimization
// we are going to promote the cast to work with objects instead of
// addresses. Additionally, if we have an objc object that is not bridgeable,
// but that could be converted to something that is bridgeable, we try to
// convert to the bridgeable type.
SILValue srcOp;
SILInstruction *newI;
std::tie(srcOp, newI) =
convertObjectToLoadableBridgeableType(Builder, dynamicCast, src);
// Now emit the a cast from the casted ObjC object into a target type.
// This is done by means of calling _forceBridgeFromObjectiveC or
// _conditionallyBridgeFromObjectiveC_bridgeable from the Target type.
auto *funcRef = Builder.createFunctionRefFor(Loc, bridgingFunc);
SubstitutionMap subMap = lookupBridgeToObjCProtocolSubs(target);
auto MetaTy = MetatypeType::get(target, MetatypeRepresentation::Thick);
auto SILMetaTy = F->getTypeLowering(MetaTy).getLoweredType();
auto *MetaTyVal = Builder.createMetatype(Loc, SILMetaTy);
// Temporary to hold the intermediate result.
AllocStackInst *Tmp = nullptr;
CanType OptionalTy;
SILValue outOptionalParam;
if (isConditional) {
// Create a temporary
OptionalTy = OptionalType::get(Dest->getType().getASTType())
->getImplementationType()
->getCanonicalType();
Tmp = Builder.createAllocStack(Loc,
SILType::getPrimitiveObjectType(OptionalTy));
outOptionalParam = Tmp;
} else {
outOptionalParam = Dest;
}
// Emit a retain.
SILValue srcArg = Builder.emitCopyValueOperation(Loc, srcOp);
SmallVector<SILValue, 1> Args;
Args.push_back(outOptionalParam);
Args.push_back(srcArg);
Args.push_back(MetaTyVal);
auto *AI = Builder.createApply(Loc, funcRef, subMap, Args);
// If we have guaranteed normal arguments, insert the destroy.
//
// TODO: Is it safe to just eliminate the initial retain?
Builder.emitDestroyOperation(Loc, srcArg);
// If we have an unconditional_checked_cast_addr, return early. We do not need
// to handle any conditional code.
if (isa<UnconditionalCheckedCastAddrInst>(Inst)) {
// Destroy the source value as unconditional_checked_cast_addr would.
Builder.emitDestroyOperation(Loc, srcOp);
eraseInstAction(Inst);
return (newI) ? newI : AI;
}
auto *CCABI = cast<CheckedCastAddrBranchInst>(Inst);
switch (CCABI->getConsumptionKind()) {
case CastConsumptionKind::TakeAlways:
Builder.emitDestroyOperation(Loc, srcOp);
break;
case CastConsumptionKind::TakeOnSuccess: {
{
// Insert a release in the success BB.
SILBuilderWithScope successBuilder(SuccessBB->begin());
successBuilder.emitDestroyOperation(Loc, srcOp);
}
{
// And a store in the failure BB.
if (Builder.hasOwnership()) {
SILBuilderWithScope failureBuilder(FailureBB->begin());
SILValue writeback = srcOp;
SILType srcType = src->getType().getObjectType();
if (writeback->getType() != srcType) {
writeback =
failureBuilder.createUncheckedRefCast(Loc, writeback, srcType);
}
failureBuilder.emitStoreValueOperation(Loc, writeback, src,
StoreOwnershipQualifier::Init);
}
}
break;
}
case CastConsumptionKind::BorrowAlways:
llvm_unreachable("checked_cast_addr_br never has BorrowAlways");
case CastConsumptionKind::CopyOnSuccess:
// If we are performing copy_on_success, store the value back into memory
// here since we loaded it. We may need to cast back to the actual
// underlying type.
if (Builder.hasOwnership()) {
SILValue writeback = srcOp;
SILType srcType = src->getType().getObjectType();
if (writeback->getType() != srcType) {
writeback = Builder.createUncheckedRefCast(Loc, writeback, srcType);
}
Builder.emitStoreValueOperation(Loc, writeback, src,
StoreOwnershipQualifier::Init);
}
break;
}
// Results should be checked in case we process a conditional
// case. E.g. casts from NSArray into [SwiftType] may fail, i.e. return .None.
if (isConditional) {
// Copy the temporary into Dest.
// Load from the optional.
auto *SomeDecl = Builder.getASTContext().getOptionalSomeDecl();
auto *BridgeSuccessBB =
Inst->getFunction()->createBasicBlockAfter(Builder.getInsertionBB());
SmallVector<std::pair<EnumElementDecl *, SILBasicBlock *>, 2> CaseBBs;
CaseBBs.emplace_back(SomeDecl, BridgeSuccessBB);
CaseBBs.emplace_back(mod.getASTContext().getOptionalNoneDecl(), FailureBB);
Builder.createSwitchEnumAddr(Loc, outOptionalParam, nullptr, CaseBBs);
Builder.setInsertionPoint(FailureBB->begin());
Builder.createDeallocStack(Loc, Tmp);
Builder.setInsertionPoint(BridgeSuccessBB);
auto Addr = Builder.createUncheckedTakeEnumDataAddr(Loc, outOptionalParam,
SomeDecl);
Builder.createCopyAddr(Loc, Addr, Dest, IsTake, IsInitialization);
Builder.createDeallocStack(Loc, Tmp);
SmallVector<SILValue, 1> SuccessBBArgs;
Builder.createBranch(Loc, SuccessBB, SuccessBBArgs);
}
eraseInstAction(Inst);
return (newI) ? newI : AI;
}
//===----------------------------------------------------------------------===//
// Swift -> ObjC Bridging Cast Optimization
//===----------------------------------------------------------------------===//
static bool canOptimizeCast(const swift::Type &BridgedTargetTy,
swift::SILFunctionConventions &substConv,
TypeExpansionContext context) {
// DestTy is the type which we want to convert to
SILType DestTy =
SILType::getPrimitiveObjectType(BridgedTargetTy->getCanonicalType());
// ConvTy is the return type of the _bridgeToObjectiveCImpl()
auto ConvTy = substConv.getSILResultType(context).getObjectType();
if (ConvTy == DestTy) {
// Destination is the same type
return true;
}
// Check if a superclass/subclass of the source operand
if (DestTy.isExactSuperclassOf(ConvTy)) {
return true;
}
if (ConvTy.isExactSuperclassOf(DestTy)) {
return true;
}
// check if it is a bridgeable CF type
if (ConvTy.getASTType() ==
getNSBridgedClassOfCFClass(DestTy.getASTType())) {
return true;
}
if (DestTy.getASTType() ==
getNSBridgedClassOfCFClass(ConvTy.getASTType())) {
return true;
}
// All else failed - can't optimize this case
return false;
}
static std::optional<std::pair<SILFunction *, SubstitutionMap>>
findBridgeToObjCFunc(SILOptFunctionBuilder &functionBuilder,
SILDynamicCastInst dynamicCast) {
CanType sourceFormalType = dynamicCast.getSourceFormalType();
auto *mod = dynamicCast.getModule().getSwiftModule();
auto &ctx = mod->getASTContext();
auto loc = dynamicCast.getLocation();
auto bridgedProto =
ctx.getProtocol(
KnownProtocolKind::ObjectiveCBridgeable);
auto conf = lookupConformance(sourceFormalType, bridgedProto);
assert(conf && "_ObjectiveCBridgeable conformance should exist");
(void)conf;
// Generate code to invoke _bridgeToObjectiveC
ModuleDecl *modDecl =
ctx.getLoadedModule(ctx.Id_Foundation);
if (!modDecl)
return std::nullopt;
SmallVector<ValueDecl *, 2> results;
modDecl->lookupMember(results,
sourceFormalType.getNominalOrBoundGenericNominal(),
ctx.Id_bridgeToObjectiveC,
Identifier());
ArrayRef<ValueDecl *> resultsRef(results);
if (resultsRef.empty()) {
mod->lookupMember(
results, sourceFormalType.getNominalOrBoundGenericNominal(),
ctx.Id_bridgeToObjectiveC, Identifier());
resultsRef = results;
}
if (resultsRef.size() != 1)
return std::nullopt;
auto *resultDecl = results.front();
auto memberDeclRef = SILDeclRef(resultDecl);
auto *bridgedFunc = functionBuilder.getOrCreateFunction(
loc, memberDeclRef, ForDefinition_t::NotForDefinition);
// Get substitutions, if source is a bound generic type.
auto subMap = sourceFormalType->getContextSubstitutionMap(
resultDecl->getDeclContext());
// Implementation of _bridgeToObjectiveC could not be found.
if (!bridgedFunc)
return std::nullopt;
// The bridging function must have the correct parent module set. This ensures
// that IRGen sets correct linkage when this function comes from the same
// module as being compiled.
if (!bridgedFunc->getDeclContext())
bridgedFunc->setParentModule(
resultDecl->getDeclContext()->getParentModule());
if (dynamicCast.getFunction()->isAnySerialized() &&
!bridgedFunc->hasValidLinkageForFragileRef(dynamicCast.getFunction()->getSerializedKind()))
return std::nullopt;
if (bridgedFunc->getLoweredFunctionType()
->getSingleResult()
.isFormalIndirect())
return std::nullopt;
return std::make_pair(bridgedFunc, subMap);
}
static SILValue computeFinalCastedValue(SILBuilderWithScope &builder,
SILDynamicCastInst dynamicCast,
ApplyInst *newAI) {
auto loc = dynamicCast.getLocation();
auto convTy = newAI->getType();
bool isConditional = dynamicCast.isConditional();
auto sourceFormalTy = dynamicCast.getSourceFormalType();
auto destLoweredTy = dynamicCast.getTargetLoweredType().getObjectType();
auto destFormalTy = dynamicCast.getTargetFormalType();
assert(destLoweredTy == dynamicCast.getLoweredBridgedTargetObjectType() &&
"Expected Dest Type to be the same as BridgedTargetTy");
if (convTy == destLoweredTy) {
return newAI;
}
if (destLoweredTy.isExactSuperclassOf(convTy)) {
return builder.createUpcast(loc, newAI, destLoweredTy);
}
if (convTy.isExactSuperclassOf(destLoweredTy)) {
// If we are not conditional, we are ok with the downcast via checked cast
// fails since we will trap.
if (!isConditional) {
return builder.createUnconditionalCheckedCast(
loc, dynamicCast.getCheckedCastOptions(), newAI,
destLoweredTy, destFormalTy);
}
// Otherwise if we /are/ emitting a conditional cast, make sure that we
// handle the failure gracefully.
//
// Since we are being returned the value at +1, we need to destroy the
// newAI on failure.
auto *failureBB = dynamicCast.getFailureBlock();
{
SILBuilderWithScope innerBuilder(&*failureBB->begin(), builder);
auto valueToDestroy = ([&]() -> SILValue {
if (!innerBuilder.hasOwnership())
return newAI;
return failureBB->createPhiArgument(newAI->getType(),
OwnershipKind::Owned);
}());
innerBuilder.emitDestroyOperation(loc, valueToDestroy);
}
auto *condBrSuccessBB =
newAI->getFunction()->createBasicBlockAfter(newAI->getParent());
condBrSuccessBB->createPhiArgument(destLoweredTy, OwnershipKind::Owned);
builder.createCheckedCastBranch(loc, /* isExact*/ false,
dynamicCast.getCheckedCastOptions(),
newAI,
sourceFormalTy, destLoweredTy, destFormalTy,
condBrSuccessBB, failureBB);
builder.setInsertionPoint(condBrSuccessBB, condBrSuccessBB->begin());
return condBrSuccessBB->getArgument(0);
}
if (convTy.getASTType() ==
getNSBridgedClassOfCFClass(destLoweredTy.getASTType()) ||
destLoweredTy.getASTType() ==
getNSBridgedClassOfCFClass(convTy.getASTType())) {
// Handle NS <-> CF toll-free bridging here.
return SILValue(builder.createUncheckedRefCast(loc, newAI, destLoweredTy));
}
llvm_unreachable(
"optimizeBridgedSwiftToObjCCast: should never reach this condition: if "
"the Destination does not have the same type, is not a bridgeable CF "
"type and isn't a superclass/subclass of the source operand we should "
"have bailed earlier.");
}
/// Create a call of _bridgeToObjectiveC which converts an _ObjectiveCBridgeable
/// instance into a bridged ObjC type.
SILInstruction *
CastOptimizer::optimizeBridgedSwiftToObjCCast(SILDynamicCastInst dynamicCast) {
SILInstruction *Inst = dynamicCast.getInstruction();
const SILFunction *F = Inst->getFunction();
CastConsumptionKind ConsumptionKind = dynamicCast.getBridgedConsumptionKind();
bool isConditional = dynamicCast.isConditional();
SILValue Src = dynamicCast.getSource();
SILValue Dest = dynamicCast.getDest();
CanType BridgedTargetTy = dynamicCast.getBridgedTargetType();
SILBasicBlock *SuccessBB = dynamicCast.getSuccessBlock();
SILBasicBlock *FailureBB = dynamicCast.getFailureBlock();
auto &M = Inst->getModule();
auto Loc = Inst->getLoc();
bool AddressOnlyType = false;
if (!Src->getType().isLoadable(*F) || !Dest->getType().isLoadable(*F)) {
AddressOnlyType = true;
}
// Find the _BridgedToObjectiveC protocol.
SILFunction *bridgedFunc = nullptr;
SubstitutionMap subMap;
{
auto result = findBridgeToObjCFunc(functionBuilder, dynamicCast);
if (!result)
return nullptr;
std::tie(bridgedFunc, subMap) = result.value();
}
SILType SubstFnTy = bridgedFunc->getLoweredType().substGenericArgs(
M, subMap, TypeExpansionContext(*F));
SILFunctionConventions substConv(SubstFnTy.castTo<SILFunctionType>(), M);
// Check that this is a case that the authors of this code thought it could
// handle.
if (!canOptimizeCast(BridgedTargetTy, substConv,
F->getTypeExpansionContext())) {
return nullptr;
}
SILBuilderWithScope Builder(Inst, builderContext);
auto FnRef = Builder.createFunctionRefFor(Loc, bridgedFunc);
auto ParamTypes = SubstFnTy.castTo<SILFunctionType>()->getParameters();
SILValue oldSrc;
if (Src->getType().isAddress() && !substConv.isSILIndirect(ParamTypes[0])) {
// Create load
oldSrc = Src;
Src =
Builder.emitLoadValueOperation(Loc, Src, LoadOwnershipQualifier::Take);
}
// Compensate different owning conventions of the replaced cast instruction
// and the inserted conversion function.
bool needReleaseAfterCall = false;
bool needReleaseInSuccess = false;
switch (ParamTypes[0].getConvention()) {
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Indirect_In_Guaranteed:
switch (ConsumptionKind) {
case CastConsumptionKind::TakeAlways:
needReleaseAfterCall = true;
break;
case CastConsumptionKind::TakeOnSuccess:
needReleaseInSuccess = true;
break;
case CastConsumptionKind::BorrowAlways:
llvm_unreachable("Should never hit this");
case CastConsumptionKind::CopyOnSuccess:
// We assume that our caller is correct and will treat our argument as
// being immutable, so we do not need to do anything here.
break;
}
break;
case ParameterConvention::Pack_Guaranteed:
case ParameterConvention::Pack_Owned:
case ParameterConvention::Pack_Inout:
case ParameterConvention::Direct_Owned:
case ParameterConvention::Indirect_In:
case ParameterConvention::Indirect_In_CXX:
// Currently this
// cannot appear, because the _bridgeToObjectiveC protocol witness method
// always receives the this pointer (= the source) as guaranteed.
// If it became possible (perhaps with the advent of ownership and
// explicit +1 annotations), the implementation should look something
// like this:
/*
switch (ConsumptionKind) {
case CastConsumptionKind::TakeAlways:
break;
case CastConsumptionKind::TakeOnSuccess:
needRetainBeforeCall = true;
needReleaseInSuccess = true;
break;
case CastConsumptionKind::CopyOnSuccess:
needRetainBeforeCall = true;
break;
}
break;
*/
llvm_unreachable("this should never happen so is currently untestable");
case ParameterConvention::Direct_Unowned:
assert(!AddressOnlyType &&
"AddressOnlyType with Direct_Unowned is not supported");
break;
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
// TODO handle remaining indirect argument types
return nullptr;
}
// Generate a code to invoke the bridging function.
auto *NewAI = Builder.createApply(Loc, FnRef, subMap, Src);
// First if we are going to destroy the value unconditionally, just insert the
// destroy right after the call. This handles some of the conditional cases
// and /all/ of the consuming unconditional cases.
if (needReleaseAfterCall) {
Builder.emitDestroyOperation(Loc, Src);
} else {
if (SuccessBB) {
SILBuilderWithScope succBuilder(&*SuccessBB->begin(), Builder);
if (needReleaseInSuccess) {
succBuilder.emitDestroyOperation(Loc, Src);
} else {
if (oldSrc) {
succBuilder.emitStoreValueOperation(Loc, Src, oldSrc,
StoreOwnershipQualifier::Init);
}
}
SILBuilderWithScope failBuilder(&*FailureBB->begin(), Builder);
if (oldSrc) {
failBuilder.emitStoreValueOperation(Loc, Src, oldSrc,
StoreOwnershipQualifier::Init);
}
} else {
if (oldSrc) {
Builder.emitStoreValueOperation(Loc, Src, oldSrc,
StoreOwnershipQualifier::Init);
}
}
}
if (!Dest)
return NewAI;
// If it is addr cast then store the result into the dest.
//
// NOTE: We assume that dest was uninitialized when passed to us.
SILValue castedValue = computeFinalCastedValue(Builder, dynamicCast, NewAI);
auto qual = Builder.hasOwnership() ? StoreOwnershipQualifier::Init
: StoreOwnershipQualifier::Unqualified;
SILInstruction *NewI = Builder.createStore(Loc, castedValue, Dest, qual);
if (isConditional && NewI->getParent() != NewAI->getParent()) {
Builder.createBranch(Loc, SuccessBB);
}
eraseInstAction(Inst);
return NewI;
}
//===----------------------------------------------------------------------===//
// Top Level Bridge Cast Optimization Entrypoint
//===----------------------------------------------------------------------===//
/// Make use of the fact that some of these casts cannot fail. For
/// example, if the ObjC type is exactly the expected _ObjectiveCType
/// type, then it would always succeed for NSString, NSNumber, etc.
/// Casts from NSArray, NSDictionary and NSSet may fail.
///
/// If ObjC class is not exactly _ObjectiveCType, then its conversion
/// to a required _ObjectiveCType may fail.
SILInstruction *
CastOptimizer::optimizeBridgedCasts(SILDynamicCastInst dynamicCast) {
CanType source = dynamicCast.getSourceFormalType();
CanType target = dynamicCast.getTargetFormalType();
auto &M = dynamicCast.getModule();
// To apply the bridged optimizations, we should ensure that types are not
// existential (and keep in mind that generic parameters can be existentials),
// and that one of the types is a class and another one is a struct.
if (source.isAnyExistentialType() || target.isAnyExistentialType() ||
source->is<ArchetypeType>() || target->is<ArchetypeType>() ||
(source.getClassOrBoundGenericClass() &&
!target.getStructOrBoundGenericStruct()) ||
(target.getClassOrBoundGenericClass() &&
!source.getStructOrBoundGenericStruct()))
return nullptr;
// Casts involving non-bound generic types cannot be optimized.
if (source->hasArchetype() || target->hasArchetype())
return nullptr;
CanType CanBridgedSourceTy = dynamicCast.getBridgedSourceType();
CanType CanBridgedTargetTy = dynamicCast.getBridgedTargetType();
// If we were unable to bridge either of our source/target types, return
// nullptr.
if (!CanBridgedSourceTy || !CanBridgedTargetTy)
return nullptr;
if (CanBridgedSourceTy == source && CanBridgedTargetTy == target) {
// Both source and target type are ObjC types.
return nullptr;
}
if (CanBridgedSourceTy != source && CanBridgedTargetTy != target) {
// Both source and target type are Swift types.
return nullptr;
}
if ((CanBridgedSourceTy && CanBridgedSourceTy->getAnyNominal() ==
M.getASTContext().getNSErrorDecl()) ||
(CanBridgedTargetTy && CanBridgedTargetTy->getAnyNominal() ==
M.getASTContext().getNSErrorDecl())) {
// FIXME: Can't optimize bridging with NSError.
return nullptr;
}
// Check what kind of conversion it is? ObjC->Swift or Swift-ObjC?
if (CanBridgedTargetTy != target) {
// This is an ObjC to Swift cast.
return optimizeBridgedObjCToSwiftCast(dynamicCast);
} else {
// This is a Swift to ObjC cast
return optimizeBridgedSwiftToObjCCast(dynamicCast);
}
llvm_unreachable("Unknown kind of bridging");
}
//===----------------------------------------------------------------------===//
// Cast Optimizer Public API
//===----------------------------------------------------------------------===//
SILInstruction *CastOptimizer::simplifyCheckedCastAddrBranchInst(
CheckedCastAddrBranchInst *Inst) {
if (auto *I = optimizeCheckedCastAddrBranchInst(Inst))
Inst = dyn_cast<CheckedCastAddrBranchInst>(I);
if (!Inst)
return nullptr;
SILDynamicCastInst dynamicCast(Inst);
auto Loc = dynamicCast.getLocation();
auto Src = dynamicCast.getSource();
auto Dest = dynamicCast.getDest();
auto *SuccessBB = dynamicCast.getSuccessBlock();
auto *FailureBB = dynamicCast.getFailureBlock();
SILBuilderWithScope Builder(Inst, builderContext);
// Check if we can statically predict the outcome of the cast.
auto Feasibility =
dynamicCast.classifyFeasibility(true /*allow whole module*/);
if (Feasibility == DynamicCastFeasibility::WillFail) {
if (shouldDestroyOnFailure(Inst->getConsumptionKind())) {
auto &srcTL = Builder.getTypeLowering(Src->getType());
srcTL.emitDestroyAddress(Builder, Loc, Src);
}
auto NewI = Builder.createBranch(Loc, FailureBB);
eraseInstAction(Inst);
willFailAction();
return NewI;
}
bool ResultNotUsed = isa<AllocStackInst>(Dest);
if (ResultNotUsed) {
for (auto Use : Dest->getUses()) {
auto *User = Use->getUser();
if (isa<DeallocStackInst>(User) || isa<DestroyAddrInst>(User) ||
User == Inst)
continue;
ResultNotUsed = false;
break;
}
}
auto *BB = Inst->getParent();
SILInstruction *BridgedI = nullptr;
// To apply the bridged optimizations, we should
// ensure that types are not existential,
// and that not both types are classes.
BridgedI = optimizeBridgedCasts(dynamicCast);
if (!BridgedI) {
// If the cast may succeed or fail, and it can't be optimized into a
// bridging operation, then let it be.
if (Feasibility == DynamicCastFeasibility::MaySucceed) {
return nullptr;
}
assert(Feasibility == DynamicCastFeasibility::WillSucceed);
// Replace by unconditional_addr_cast, followed by a branch.
// The unconditional_addr_cast can be skipped, if the result of a cast
// is not used afterwards.
if (ResultNotUsed) {
if (shouldTakeOnSuccess(Inst->getConsumptionKind())) {
auto &srcTL = Builder.getTypeLowering(Src->getType());
srcTL.emitDestroyAddress(Builder, Loc, Src);
}
for (auto iter = Dest->use_begin(); iter != Dest->use_end();) {
SILInstruction *user = (*iter++)->getUser();
if (isa<DestroyAddrInst>(user))
eraseInstAction(user);
}
eraseInstAction(Inst);
Builder.setInsertionPoint(BB);
auto *NewI = Builder.createBranch(Loc, SuccessBB);
willSucceedAction();
return NewI;
}
// Since it is an addr cast, only address types are handled here.
if (!Src->getType().isAddress() || !Dest->getType().isAddress()) {
return nullptr;
}
// Both TakeOnSuccess and TakeAlways can be reduced to an
// UnconditionalCheckedCast, since the failure path is irrelevant.
AllocStackInst *copiedSrc = nullptr;
switch (Inst->getConsumptionKind()) {
case CastConsumptionKind::BorrowAlways:
llvm_unreachable("checked_cast_addr_br never has BorrowAlways");
case CastConsumptionKind::CopyOnSuccess:
if (!Src->getType().isTrivial(*BB->getParent())) {
copiedSrc = Builder.createAllocStack(Loc, Src->getType());
Builder.createCopyAddr(Loc, Src, copiedSrc, IsNotTake, IsInitialization);
Src = copiedSrc;
}
break;
case CastConsumptionKind::TakeAlways:
case CastConsumptionKind::TakeOnSuccess:
break;
}
bool result = emitSuccessfulIndirectUnconditionalCast(
Builder, Builder.getModule().getSwiftModule(), Loc, Src,
Inst->getSourceFormalType(), Dest, Inst->getTargetFormalType(), Inst);
(void)result;
assert(result && "emit cannot fail for an checked_cast_addr_br");
if (copiedSrc)
Builder.createDeallocStack(Loc, copiedSrc);
eraseInstAction(Inst);
}
SILInstruction *NewI = &BB->back();
if (!isa<TermInst>(NewI)) {
Builder.setInsertionPoint(BB);
NewI = Builder.createBranch(Loc, SuccessBB);
}
willSucceedAction();
return NewI;
}
SILInstruction *
CastOptimizer::simplifyCheckedCastBranchInst(CheckedCastBranchInst *Inst) {
if (Inst->isExact()) {
SILDynamicCastInst dynamicCast(Inst);
auto *ARI = dyn_cast<AllocRefInst>(stripUpCasts(dynamicCast.getSource()));
if (!ARI)
return nullptr;
// We know the dynamic type of the operand.
SILBuilderWithScope Builder(Inst, builderContext);
auto Loc = dynamicCast.getLocation();
if (ARI->getType() == dynamicCast.getTargetLoweredType()) {
// This exact cast will succeed.
SmallVector<SILValue, 1> Args;
Args.push_back(ARI);
auto *NewI =
Builder.createBranch(Loc, dynamicCast.getSuccessBlock(), Args);
eraseInstAction(Inst);
willSucceedAction();
return NewI;
}
// This exact cast will fail. With ownership enabled, we pass a copy of the
// original casts value to the failure block.
TinyPtrVector<SILValue> Args;
if (Builder.hasOwnership())
Args.push_back(dynamicCast.getSource());
auto *NewI = Builder.createBranch(Loc, dynamicCast.getFailureBlock(), Args);
eraseInstAction(Inst);
willFailAction();
return NewI;
}
if (auto *I = optimizeCheckedCastBranchInst(Inst))
Inst = dyn_cast<CheckedCastBranchInst>(I);
if (!Inst)
return nullptr;
SILDynamicCastInst dynamicCast(Inst);
auto TargetLoweredType = dynamicCast.getTargetLoweredType();
auto TargetFormalType = dynamicCast.getTargetFormalType();
auto Loc = dynamicCast.getLocation();
auto *SuccessBB = dynamicCast.getSuccessBlock();
auto *FailureBB = dynamicCast.getFailureBlock();
auto Op = dynamicCast.getSource();
auto *F = dynamicCast.getFunction();
// Check if we can statically predict the outcome of the cast.
auto Feasibility =
dynamicCast.classifyFeasibility(false /*allow whole module*/);
if (Feasibility == DynamicCastFeasibility::MaySucceed) {
return nullptr;
}
SILBuilderWithScope Builder(Inst, builderContext);
if (Feasibility == DynamicCastFeasibility::WillFail) {
auto *NewI = Builder.createBranch(Loc, FailureBB);
if (Builder.hasOwnership()) {
FailureBB->getArgument(0)->replaceAllUsesWith(Op);
FailureBB->eraseArgument(0);
SuccessBB->getArgument(0)->replaceAllUsesWithUndef();
SuccessBB->eraseArgument(0);
}
eraseInstAction(Inst);
willFailAction();
return NewI;
}
assert(Feasibility == DynamicCastFeasibility::WillSucceed);
bool ResultNotUsed = SuccessBB->getArgument(0)->use_empty();
SILValue CastedValue;
if (Op->getType() != TargetLoweredType) {
// Apply the bridged cast optimizations.
//
// TODO: Bridged casts cannot be expressed by checked_cast_br yet.
// Should we ever support it, please review this code.
auto BridgedI = optimizeBridgedCasts(dynamicCast);
if (BridgedI) {
llvm_unreachable(
"Bridged casts cannot be expressed by checked_cast_br yet");
} else {
// Replace by unconditional_cast, followed by a branch.
// The unconditional_cast can be skipped, if the result of a cast
// is not used afterwards.
if (!ResultNotUsed) {
if (!dynamicCast.canSILUseScalarCheckedCastInstructions())
return nullptr;
CastedValue =
emitSuccessfulScalarUnconditionalCast(Builder, Loc, dynamicCast);
} else {
CastedValue = SILUndef::get(F, TargetLoweredType);
}
if (!CastedValue)
CastedValue =
Builder.createUnconditionalCheckedCast(
Loc, Inst->getCheckedCastOptions(), Op, TargetLoweredType,
TargetFormalType);
}
} else {
// No need to cast.
CastedValue = Op;
}
BranchInst *NewI = nullptr;
if (Builder.hasOwnership()) {
NewI = Builder.createBranch(Loc, SuccessBB);
SuccessBB->getArgument(0)->replaceAllUsesWith(CastedValue);
SuccessBB->eraseArgument(0);
FailureBB->getArgument(0)->replaceAllUsesWithUndef();
FailureBB->eraseArgument(0);
}
else {
NewI = Builder.createBranch(Loc, SuccessBB, CastedValue);
}
eraseInstAction(Inst);
willSucceedAction();
return NewI;
}
SILInstruction *CastOptimizer::optimizeCheckedCastAddrBranchInst(
CheckedCastAddrBranchInst *Inst) {
auto Loc = Inst->getLoc();
auto Src = Inst->getSrc();
auto Dest = Inst->getDest();
auto *SuccessBB = Inst->getSuccessBB();
auto *FailureBB = Inst->getFailureBB();
// If there is an unbound generic type involved in the cast, bail.
if (Src->getType().hasArchetype() || Dest->getType().hasArchetype())
return nullptr;
// %1 = metatype $A.Type
// [%2 = init_existential_metatype %1 ...]
// %3 = alloc_stack
// store %1 to %3 or store %2 to %3
// checked_cast_addr_br %3 to ...
// ->
// %1 = metatype $A.Type
// %c = checked_cast_br %1 to ...
// store %c to %3 (if successful)
if (auto *ASI = dyn_cast<AllocStackInst>(Src)) {
// Check if the value of this alloc_stack is set only once by a store
// instruction, used only by CCABI and then deallocated.
bool isLegal = true;
StoreInst *Store = nullptr;
for (auto Use : ASI->getUses()) {
auto *User = Use->getUser();
if (isa<DeallocStackInst>(User) || User == Inst)
continue;
if (auto *SI = dyn_cast<StoreInst>(User)) {
if (SI->getOwnershipQualifier() == StoreOwnershipQualifier::Assign) {
// We do not handle [assign]
isLegal = false;
break;
}
if (!Store) {
Store = SI;
continue;
}
}
isLegal = false;
break;
}
if (isLegal && Store) {
// Check what was the value stored in the allocated stack slot.
auto Src = Store->getSrc();
MetatypeInst *MI = nullptr;
if (auto *IEMI = dyn_cast<InitExistentialMetatypeInst>(Src)) {
MI = dyn_cast<MetatypeInst>(IEMI->getOperand());
}
if (!MI)
MI = dyn_cast<MetatypeInst>(Src);
if (MI) {
if (SuccessBB->getSinglePredecessorBlock() &&
canSILUseScalarCheckedCastInstructions(
Inst->getModule(), MI->getType().getASTType(),
Inst->getTargetFormalType())) {
SILBuilderWithScope B(Inst, builderContext);
auto NewI = B.createCheckedCastBranch(
Loc, false /*isExact*/,
Inst->getCheckedCastOptions(),
MI,
Inst->getSourceFormalType(),
Inst->getTargetLoweredType().getObjectType(),
Inst->getTargetFormalType(),
SuccessBB, FailureBB, Inst->getTrueBBCount(),
Inst->getFalseBBCount());
SuccessBB->createPhiArgument(Dest->getType().getObjectType(),
OwnershipKind::Owned);
B.setInsertionPoint(SuccessBB->begin());
// Store the result
B.emitStoreValueOperation(Loc, SuccessBB->getArgument(0), Dest,
StoreOwnershipQualifier::Trivial);
if (B.hasOwnership())
FailureBB->createPhiArgument(MI->getType(), OwnershipKind::None);
eraseInstAction(Inst);
return NewI;
}
}
}
}
return nullptr;
}
SILInstruction *
CastOptimizer::optimizeCheckedCastBranchInst(CheckedCastBranchInst *Inst) {
if (Inst->isExact())
return nullptr;
// InstOptUtils.helper we use to simplify replacing a checked_cast_branch with
// an optimized checked cast branch.
auto replaceCastHelper = [](SILBuilderWithScope &B,
SILDynamicCastInst dynamicCast,
MetatypeInst *mi) -> SILInstruction * {
// Make sure that the failure block has the new metatype type for
// its default argument as required when we are in ossa
// mode. Without ossa, failure blocks do not have args, so we do
// not need to do anything.
auto *fBlock = dynamicCast.getFailureBlock();
if (B.hasOwnership()) {
fBlock->replacePhiArgumentAndReplaceAllUses(0, mi->getType(),
OwnershipKind::None);
}
return B.createCheckedCastBranch(
dynamicCast.getLocation(), false /*isExact*/,
dynamicCast.getCheckedCastOptions(),
mi,
// The cast is now from the MetatypeInst, so get the source formal
// type from it.
mi->getType().getASTType(),
dynamicCast.getTargetLoweredType(),
dynamicCast.getTargetFormalType(),
dynamicCast.getSuccessBlock(),
fBlock, *dynamicCast.getSuccessBlockCount(),
*dynamicCast.getFailureBlockCount());
};
SILDynamicCastInst dynamicCast(Inst);
auto Op = dynamicCast.getSource();
// Try to simplify checked_cond_br instructions using existential
// metatypes by propagating a concrete type whenever it can be
// determined statically.
// %0 = metatype $A.Type
// %1 = init_existential_metatype ..., %0: $A
// checked_cast_br %1, ....
// ->
// %0 = metatype $A.Type
// checked_cast_br %0 to ...
if (auto *IEMI = dyn_cast<InitExistentialMetatypeInst>(Op)) {
if (auto *MI = dyn_cast<MetatypeInst>(IEMI->getOperand())) {
SILBuilderWithScope B(Inst, builderContext);
auto *NewI = replaceCastHelper(B, dynamicCast, MI);
eraseInstAction(Inst);
return NewI;
}
}
if (auto *EMI = dyn_cast<ExistentialMetatypeInst>(Op)) {
// Operand of the existential_metatype instruction.
auto Op = EMI->getOperand();
auto EmiTy = EMI->getType();
// %0 = alloc_stack $T
// %1 = init_existential_addr %0: $*T, $A
// %2 = existential_metatype $T.Type, %0: $*T
// checked_cast_br %2 to ...
// ->
// %1 = metatype $A.Type
// checked_cast_br %1 to ...
if (auto *ASI = dyn_cast<AllocStackInst>(Op)) {
// Should be in the same BB.
if (ASI->getParent() != EMI->getParent())
return nullptr;
// Check if this alloc_stack is only initialized once by means of
// single init_existential_addr.
bool isLegal = true;
// init_existential instruction used to initialize this alloc_stack.
InitExistentialAddrInst *FoundIEI = nullptr;
for (auto Use : getNonDebugUses(ASI)) {
auto *User = Use->getUser();
if (isa<ExistentialMetatypeInst>(User) || isa<DestroyAddrInst>(User) ||
isa<DeallocStackInst>(User))
continue;
if (auto *IEI = dyn_cast<InitExistentialAddrInst>(User)) {
if (!FoundIEI) {
FoundIEI = IEI;
continue;
}
}
isLegal = false;
break;
}
if (isLegal && FoundIEI) {
// Should be in the same BB.
if (FoundIEI->getParent() != EMI->getParent())
return nullptr;
// Get the type used to initialize the existential.
auto LoweredConcreteTy = FoundIEI->getLoweredConcreteType();
// We don't know enough at compile time about existential
// and generic type parameters.
if (LoweredConcreteTy.isAnyExistentialType() ||
LoweredConcreteTy.is<ArchetypeType>())
return nullptr;
// Get the metatype of this type.
auto EMT = EmiTy.castTo<AnyMetatypeType>();
auto *MetaTy = MetatypeType::get(LoweredConcreteTy.getASTType(),
EMT->getRepresentation());
auto CanMetaTy = CanTypeWrapper<MetatypeType>(MetaTy);
auto SILMetaTy = SILType::getPrimitiveObjectType(CanMetaTy);
SILBuilderWithScope B(Inst, builderContext);
auto *MI = B.createMetatype(FoundIEI->getLoc(), SILMetaTy);
auto *NewI = replaceCastHelper(B, dynamicCast, MI);
eraseInstAction(Inst);
return NewI;
}
}
// %0 = alloc_ref $A
// %1 = init_existential_ref %0: $A, $...
// %2 = existential_metatype ..., %1 : ...
// checked_cast_br %2, ....
// ->
// %1 = metatype $A.Type
// checked_cast_br %1, ....
if (auto *FoundIERI = dyn_cast<InitExistentialRefInst>(Op)) {
SILValue op = FoundIERI->getOperand();
if (auto *eir = dyn_cast<EndInitLetRefInst>(op))
op = eir->getOperand();
if (!isa<AllocRefInst>(op))
return nullptr;
// Get the type used to initialize the existential.
auto ConcreteTy = FoundIERI->getFormalConcreteType();
// We don't know enough at compile time about existential
// and generic type parameters.
if (ConcreteTy.isAnyExistentialType() ||
ConcreteTy->is<ArchetypeType>())
return nullptr;
// Get the SIL metatype of this type.
auto EMT = EMI->getType().castTo<AnyMetatypeType>();
auto *MetaTy = MetatypeType::get(ConcreteTy, EMT->getRepresentation());
auto CanMetaTy = CanTypeWrapper<MetatypeType>(MetaTy);
auto SILMetaTy = SILType::getPrimitiveObjectType(CanMetaTy);
SILBuilderWithScope B(Inst, builderContext);
auto *MI = B.createMetatype(FoundIERI->getLoc(), SILMetaTy);
auto *NewI = replaceCastHelper(B, dynamicCast, MI);
eraseInstAction(Inst);
return NewI;
}
}
return nullptr;
}
ValueBase *CastOptimizer::optimizeUnconditionalCheckedCastInst(
UnconditionalCheckedCastInst *Inst) {
SILDynamicCastInst dynamicCast(Inst);
auto Loc = dynamicCast.getLocation();
// Check if we can statically predict the outcome of the cast.
auto Feasibility =
dynamicCast.classifyFeasibility(false /*allowWholeModule*/);
if (Feasibility == DynamicCastFeasibility::WillFail) {
// Remove the cast and insert a trap, followed by an
// unreachable instruction.
SILBuilderWithScope Builder(Inst, builderContext);
auto *Trap = Builder.createUnconditionalFail(Loc, "failed cast");
Inst->replaceAllUsesWithUndef();
eraseInstAction(Inst);
Builder.setInsertionPoint(std::next(SILBasicBlock::iterator(Trap)));
auto *UnreachableInst =
Builder.createUnreachable(ArtificialUnreachableLocation());
// Delete everything after the unreachable except for dealloc_stack which we
// move before the trap.
deleteInstructionsAfterUnreachable(UnreachableInst, Trap);
willFailAction();
return nullptr;
}
if (Feasibility == DynamicCastFeasibility::WillSucceed) {
if (Inst->use_empty()) {
eraseInstAction(Inst);
willSucceedAction();
return nullptr;
}
}
SILBuilderWithScope Builder(Inst, builderContext);
// Try to apply the bridged casts optimizations
auto NewI = optimizeBridgedCasts(dynamicCast);
if (NewI) {
// FIXME: I'm not sure why this is true!
auto newValue = cast<SingleValueInstruction>(NewI);
replaceInstUsesAction(Inst, newValue);
eraseInstAction(Inst);
willSucceedAction();
return newValue;
}
// If the cast may succeed or fail and can't be optimized into a bridging
// call, let it be.
if (Feasibility == DynamicCastFeasibility::MaySucceed) {
return nullptr;
}
assert(Feasibility == DynamicCastFeasibility::WillSucceed);
if (dynamicCast.isBridgingCast())
return nullptr;
auto Result =
emitSuccessfulScalarUnconditionalCast(Builder, Loc, dynamicCast);
if (!Result) {
// No optimization was possible.
return nullptr;
}
replaceInstUsesAction(Inst, Result);
eraseInstAction(Inst);
willSucceedAction();
return Result;
}
/// Deletes all instructions after \p UnreachableInst except dealloc_stack
/// instructions are moved before \p TrapInst.
void CastOptimizer::deleteInstructionsAfterUnreachable(
SILInstruction *UnreachableInst, SILInstruction *TrapInst) {
auto UnreachableInstIt = std::next(SILBasicBlock::iterator(UnreachableInst));
auto *Block = TrapInst->getParent();
while (UnreachableInstIt != Block->end()) {
SILInstruction *CurInst = &*UnreachableInstIt;
++UnreachableInstIt;
CurInst->replaceAllUsesOfAllResultsWithUndef();
eraseInstAction(CurInst);
}
}
/// TODO: Move to emitSuccessfulIndirectUnconditionalCast?
///
/// Peephole to avoid runtime calls:
/// unconditional_checked_cast_addr T in %0 : $*T to P in %1 : $*P
/// ->
/// %addr = init_existential_addr %1 : $*P, T
/// copy_addr %0 to %addr
///
/// where T is a type statically known to conform to P.
///
/// In caase P is a class existential type, it generates:
/// %val = load %0 : $*T
/// %existential = init_existential_ref %val : $T, $T, P
/// store %existential to %1 : $*P
///
/// Returns true if the optimization was possible and false otherwise.
static bool optimizeStaticallyKnownProtocolConformance(
UnconditionalCheckedCastAddrInst *Inst) {
auto Loc = Inst->getLoc();
auto Src = Inst->getSrc();
auto Dest = Inst->getDest();
auto SourceType = Inst->getSourceFormalType();
auto TargetType = Inst->getTargetFormalType();
auto &Mod = Inst->getModule();
if (TargetType->isAnyExistentialType() &&
!SourceType->canBeExistential()) {
auto &Ctx = Mod.getASTContext();
auto *Proto = dyn_cast_or_null<ProtocolDecl>(TargetType->getAnyNominal());
if (!Proto)
return false;
// SourceType is a non-existential type with a non-conditional
// conformance to a protocol represented by the TargetType.
//
// swift::checkConformance() checks any conditional conformances. If
// they depend on information not known until runtime, the conformance
// will not be returned. For instance, if `X: P` where `T == Int` in `func
// foo<T>(_: T) { ... X<T>() as? P ... }`, the cast will succeed for
// `foo(0)` but not for `foo("string")`. There are many cases where
// everything is completely static (`X<Int>() as? P`), in which case a
// valid conformance will be returned.
auto Conformance = checkConformance(SourceType, Proto);
if (Conformance.isInvalid())
return false;
if (!matchesActorIsolation(Conformance, Inst->getFunction()))
return false;
auto layout = TargetType->getExistentialLayout();
if (layout.getProtocols().size() != 1)
return false;
SILBuilderWithScope B(Inst);
SmallVector<ProtocolConformanceRef, 1> NewConformances;
NewConformances.push_back(Conformance);
ArrayRef<ProtocolConformanceRef> Conformances =
Ctx.AllocateCopy(NewConformances);
auto ExistentialRepr =
Dest->getType().getPreferredExistentialRepresentation(SourceType);
switch (ExistentialRepr) {
default:
return false;
case ExistentialRepresentation::Opaque: {
auto ExistentialAddr = B.createInitExistentialAddr(
Loc, Dest, SourceType, Src->getType().getObjectType(), Conformances);
B.createCopyAddr(Loc, Src, ExistentialAddr, IsTake_t::IsTake,
IsInitialization_t::IsInitialization);
break;
}
case ExistentialRepresentation::Class: {
auto Value =
B.emitLoadValueOperation(Loc, Src, LoadOwnershipQualifier::Take);
auto Existential =
B.createInitExistentialRef(Loc, Dest->getType().getObjectType(),
SourceType, Value, Conformances);
B.emitStoreValueOperation(Loc, Existential, Dest,
StoreOwnershipQualifier::Init);
break;
}
case ExistentialRepresentation::Boxed: {
auto AllocBox = B.createAllocExistentialBox(Loc, Dest->getType(),
SourceType, Conformances);
auto Projection =
B.createProjectExistentialBox(Loc, Src->getType(), AllocBox);
// This needs to be a copy_addr (for now) because we must handle
// address-only types.
B.createCopyAddr(Loc, Src, Projection, IsTake, IsInitialization);
B.emitStoreValueOperation(Loc, AllocBox, Dest,
StoreOwnershipQualifier::Init);
break;
}
};
return true;
}
// Not a concrete -> existential cast.
return false;
}
SILInstruction *CastOptimizer::optimizeUnconditionalCheckedCastAddrInst(
UnconditionalCheckedCastAddrInst *Inst) {
SILDynamicCastInst dynamicCast(Inst);
auto Loc = dynamicCast.getLocation();
// Check if we can statically predict the outcome of the cast.
auto Feasibility =
dynamicCast.classifyFeasibility(false /*allow whole module*/);
if (Feasibility == DynamicCastFeasibility::MaySucceed) {
// Forced bridged casts can be still simplified here.
// If they fail, they fail inside the conversion function.
if (!dynamicCast.isBridgingCast())
return nullptr;
}
if (Feasibility == DynamicCastFeasibility::WillFail) {
// Remove the cast and insert a trap, followed by an
// unreachable instruction.
SILBuilderWithScope Builder(Inst, builderContext);
auto *TrapI = Builder.createUnconditionalFail(Loc, "failed cast");
eraseInstAction(Inst);
Builder.setInsertionPoint(std::next(TrapI->getIterator()));
auto *UnreachableInst =
Builder.createUnreachable(ArtificialUnreachableLocation());
// Delete everything after the unreachable except for dealloc_stack which we
// move before the trap.
deleteInstructionsAfterUnreachable(UnreachableInst, TrapI);
willFailAction();
}
if (Feasibility == DynamicCastFeasibility::WillSucceed ||
Feasibility == DynamicCastFeasibility::MaySucceed) {
// Check if a result of a cast is unused. If this is the case, the cast can
// be removed even if the cast may fail at runtime.
// Swift optimizer does not claim to be crash-preserving.
SILValue dest = dynamicCast.getDest();
bool ResultNotUsed = isa<AllocStackInst>(dest);
DestroyAddrInst *DestroyDestInst = nullptr;
if (ResultNotUsed) {
for (auto Use : dest->getUses()) {
auto *User = Use->getUser();
if (isa<DeallocStackInst>(User) || User == Inst)
continue;
if (isa<DestroyAddrInst>(User) && !DestroyDestInst) {
DestroyDestInst = cast<DestroyAddrInst>(User);
continue;
}
ResultNotUsed = false;
DestroyDestInst = nullptr;
break;
}
}
if (ResultNotUsed) {
SILBuilderWithScope B(Inst, builderContext);
B.createDestroyAddr(Loc, dynamicCast.getSource());
if (DestroyDestInst)
eraseInstAction(DestroyDestInst);
eraseInstAction(Inst);
willSucceedAction();
return nullptr;
}
// Try to apply the bridged casts optimizations.
auto NewI = optimizeBridgedCasts(dynamicCast);
if (NewI) {
willSucceedAction();
return nullptr;
}
if (Feasibility == DynamicCastFeasibility::MaySucceed)
return nullptr;
assert(Feasibility == DynamicCastFeasibility::WillSucceed);
if (optimizeStaticallyKnownProtocolConformance(Inst)) {
eraseInstAction(Inst);
willSucceedAction();
return nullptr;
}
if (dynamicCast.isBridgingCast())
return nullptr;
SILBuilderWithScope Builder(Inst, builderContext);
if (!emitSuccessfulIndirectUnconditionalCast(Builder, Loc, dynamicCast)) {
// No optimization was possible.
return nullptr;
}
eraseInstAction(Inst);
willSucceedAction();
}
return nullptr;
}
/// Simplify conversions between thick and objc metatypes.
SILValue CastOptimizer::optimizeMetatypeConversion(
ConversionOperation mci, MetatypeRepresentation representation) {
SILValue op = mci->getOperand(0);
// Instruction has a proper target type already.
SILType ty = mci->getType();
auto metatypeTy = op->getType().getAs<AnyMetatypeType>();
if (metatypeTy->getRepresentation() != representation)
return SILValue();
auto loc = mci->getLoc();
// Rematerialize the incoming metatype instruction with the outgoing type.
auto replaceCast = [&](SILValue newValue) -> SILValue {
assert(ty.getAs<AnyMetatypeType>()->getRepresentation() ==
newValue->getType().getAs<AnyMetatypeType>()->getRepresentation());
replaceValueUsesAction(*mci, newValue);
eraseInstAction(*mci);
return newValue;
};
if (isa<MetatypeInst>(op)) {
return replaceCast(
SILBuilderWithScope(*mci, builderContext).createMetatype(loc, ty));
}
// For metatype instructions that require an operand, generate the new
// metatype at the same position as the original to avoid extending the
// lifetime of `op` past its destroy.
if (auto *vmi = dyn_cast<ValueMetatypeInst>(op)) {
return replaceCast(SILBuilderWithScope(vmi, builderContext)
.createValueMetatype(loc, ty, vmi->getOperand()));
}
if (auto *emi = dyn_cast<ExistentialMetatypeInst>(op)) {
return replaceCast(
SILBuilderWithScope(emi, builderContext)
.createExistentialMetatype(loc, ty, emi->getOperand()));
}
return SILValue();
}