Files
swift-mirror/lib/AST/LifetimeDependence.cpp
Andrew Trick f66c04056f Allow passing MutableSpan 'inout' without an experimental feature.
This adds a new lifetime inference rule, loosening the requirement for @lifetime
annotations even when the experimental LifetimeDependence mode is
enabled. Additionally, it enables this new inference rule even when the
experimental mode is disabled. All other inference rules continue to require the
experimental feature. The rule is:

If a function or method has a single inout non-Escapable parameter other than
'self' and has no other non-Escapable parameters including 'self', then infer a
single @lifetime(copy) dependency on the inout parameter from its own incoming
value.

This supports the common case in which the user of a non-Escapable type,
such as MutableSpan, wants to modify the span's contents without modifying
the span value itself. It should be possible to use MutableSpan this way
without requiring any knowledge of lifetime annotations. The tradeoff is
that it makes authoring non-Escapable types less safe. For example, a
MutableSpan method could update the underlying unsafe pointer and forget to
declare a dependence on the incoming pointer.

Disallowing other non-Escapable parameters rules out the easy mistake of
programmers attempting to trivially reassign the inout parameter. There's
is no way to rule out the possibility that they derive another
non-Escapable value from an Escapable parameteter. So users can still write
the following:

    func reassign(s: inout MutableSpan<Int>, a: [Int]) {
      s = a.mutableSpan
    }

The 'reassign' declaration will type check, but it's implementation will
diagnose a lifetime error on 's'.

Fixes rdar://150557314 ([nonescapable] Declaration of inout MutableSpan
parameter requires LifetimeDependence experimental feature)
2025-05-21 00:25:00 -07:00

1445 lines
51 KiB
C++

//===--- LifetimeDependence.cpp -----------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/LifetimeDependence.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/Module.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Type.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/SourceManager.h"
namespace swift {
LifetimeEntry *
LifetimeEntry::create(const ASTContext &ctx, SourceLoc startLoc,
SourceLoc endLoc, ArrayRef<LifetimeDescriptor> sources,
std::optional<LifetimeDescriptor> targetDescriptor) {
unsigned size = totalSizeToAlloc<LifetimeDescriptor>(sources.size());
void *mem = ctx.Allocate(size, alignof(LifetimeEntry));
return new (mem) LifetimeEntry(startLoc, endLoc, sources, targetDescriptor);
}
std::string LifetimeEntry::getString() const {
std::string result = "@lifetime(";
if (targetDescriptor.has_value()) {
result += targetDescriptor->getString();
result += ": ";
}
bool firstElem = true;
for (auto source : getSources()) {
if (!firstElem) {
result += ", ";
}
auto lifetimeKind = source.getParsedLifetimeDependenceKind();
auto kindString = getNameForParsedLifetimeDependenceKind(lifetimeKind);
bool printSpace = (lifetimeKind == ParsedLifetimeDependenceKind::Borrow ||
lifetimeKind == ParsedLifetimeDependenceKind::Inherit);
if (!kindString.empty()) {
result += kindString;
}
if (printSpace) {
result += " ";
}
result += source.getString();
firstElem = false;
}
result += ")";
return result;
}
std::optional<LifetimeDependenceInfo>
getLifetimeDependenceFor(ArrayRef<LifetimeDependenceInfo> lifetimeDependencies,
unsigned index) {
for (auto dep : lifetimeDependencies) {
if (dep.getTargetIndex() == index) {
return dep;
}
}
return std::nullopt;
}
bool
filterEscapableLifetimeDependencies(GenericSignature sig,
ArrayRef<LifetimeDependenceInfo> inputs,
SmallVectorImpl<LifetimeDependenceInfo> &outputs,
llvm::function_ref<Type (unsigned targetIndex)> getSubstTargetType) {
bool didRemoveLifetimeDependencies = false;
for (auto &depInfo : inputs) {
auto targetIndex = depInfo.getTargetIndex();
Type substTy = getSubstTargetType(targetIndex);
// If the type still contains type variables we don't know whether we
// can drop the dependency.
if (substTy->hasTypeVariable())
continue;
// Drop the dependency if the target type is Escapable.
if (sig || !substTy->hasTypeParameter()) {
if (substTy->isEscapable(sig)) {
didRemoveLifetimeDependencies = true;
continue;
}
}
// Otherwise, keep the dependency.
outputs.push_back(depInfo);
}
return didRemoveLifetimeDependencies;
}
StringRef
getNameForParsedLifetimeDependenceKind(ParsedLifetimeDependenceKind kind) {
switch (kind) {
case ParsedLifetimeDependenceKind::Borrow:
return "borrow";
case ParsedLifetimeDependenceKind::Inherit:
return "copy";
case ParsedLifetimeDependenceKind::Inout:
return "&";
default:
return "";
}
}
std::string LifetimeDependenceInfo::getString() const {
std::string lifetimeDependenceString = "@lifetime(";
auto addressable = getAddressableIndices();
auto condAddressable = getConditionallyAddressableIndices();
auto getSourceString = [&](IndexSubset *bitvector, StringRef kind) {
std::string result;
bool isFirstSetBit = true;
for (unsigned i = 0; i < bitvector->getCapacity(); i++) {
if (bitvector->contains(i)) {
if (!isFirstSetBit) {
result += ", ";
}
result += kind;
if (addressable && addressable->contains(i)) {
result += "address ";
} else if (condAddressable && condAddressable->contains(i)) {
result += "address_for_deps ";
}
result += std::to_string(i);
isFirstSetBit = false;
}
}
return result;
};
if (inheritLifetimeParamIndices) {
assert(!inheritLifetimeParamIndices->isEmpty());
lifetimeDependenceString +=
getSourceString(inheritLifetimeParamIndices, "copy ");
}
if (scopeLifetimeParamIndices) {
assert(!scopeLifetimeParamIndices->isEmpty());
if (inheritLifetimeParamIndices) {
lifetimeDependenceString += ", ";
}
lifetimeDependenceString +=
getSourceString(scopeLifetimeParamIndices, "borrow ");
}
if (isImmortal()) {
lifetimeDependenceString += "immortal";
}
lifetimeDependenceString += ") ";
return lifetimeDependenceString;
}
void LifetimeDependenceInfo::Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddBoolean(addressableParamIndicesAndImmortal.getInt());
ID.AddInteger(targetIndex);
if (inheritLifetimeParamIndices) {
ID.AddInteger((uint8_t)LifetimeDependenceKind::Inherit);
inheritLifetimeParamIndices->Profile(ID);
}
if (scopeLifetimeParamIndices) {
ID.AddInteger((uint8_t)LifetimeDependenceKind::Scope);
scopeLifetimeParamIndices->Profile(ID);
}
if (addressableParamIndicesAndImmortal.getPointer()) {
ID.AddBoolean(true);
addressableParamIndicesAndImmortal.getPointer()->Profile(ID);
} else {
ID.AddBoolean(false);
}
}
// Warning: this is incorrect for Setter 'newValue' parameters. It should only
// be called for a Setter's 'self'.
static ValueOwnership getLoweredOwnership(AbstractFunctionDecl *afd) {
if (isa<ConstructorDecl>(afd)) {
return ValueOwnership::Owned;
}
if (auto *ad = dyn_cast<AccessorDecl>(afd)) {
if (ad->getAccessorKind() == AccessorKind::Set ||
isYieldingMutableAccessor(ad->getAccessorKind())) {
return ValueOwnership::InOut;
}
}
return ValueOwnership::Shared;
}
static bool isBitwiseCopyable(Type type, ASTContext &ctx) {
auto *bitwiseCopyableProtocol =
ctx.getProtocol(KnownProtocolKind::BitwiseCopyable);
if (!bitwiseCopyableProtocol) {
return false;
}
return (bool)checkConformance(type, bitwiseCopyableProtocol);
}
static bool isDiagnosedNonEscapable(Type type) {
if (type->hasError()) {
return false;
}
// FIXME: This check is temporary until rdar://139976667 is fixed.
// ModuleType created with ModuleType::get methods are ~Copyable and
// ~Escapable because the Copyable and Escapable conformance is not added to
// them by default.
if (type->is<ModuleType>()) {
return false;
}
return !type->isEscapable();
}
void LifetimeDependenceInfo::getConcatenatedData(
SmallVectorImpl<bool> &concatenatedData) const {
auto pushData = [&](IndexSubset *paramIndices) {
if (paramIndices == nullptr) {
return;
}
assert(!paramIndices->isEmpty());
for (unsigned i = 0; i < paramIndices->getCapacity(); i++) {
if (paramIndices->contains(i)) {
concatenatedData.push_back(true);
continue;
}
concatenatedData.push_back(false);
}
};
if (hasInheritLifetimeParamIndices()) {
pushData(inheritLifetimeParamIndices);
}
if (hasScopeLifetimeParamIndices()) {
pushData(scopeLifetimeParamIndices);
}
if (hasAddressableParamIndices()) {
pushData(addressableParamIndicesAndImmortal.getPointer());
}
}
class LifetimeDependenceChecker {
AbstractFunctionDecl *afd;
DeclContext *dc;
ASTContext &ctx;
SourceLoc returnLoc;
// Only initialized when hasImplicitSelfDecl() is true.
unsigned selfIndex = ~0;
// 'resultIndex' is a pseudo-parameter-index used by LifetimeDependenceInfo to
// represent the function result.
unsigned resultIndex = ~0;
SmallVector<LifetimeDependenceInfo, 1> lifetimeDependencies;
// True if lifetime diganostics have already been performed. Avoids redundant
// diagnostics, and allows bypassing diagnostics for special cases.
bool performedDiagnostics = false;
public:
LifetimeDependenceChecker(AbstractFunctionDecl *afd):
afd(afd), dc(afd->getDeclContext()), ctx(dc->getASTContext())
{
auto resultTypeRepr = afd->getResultTypeRepr();
returnLoc = resultTypeRepr ? resultTypeRepr->getLoc() : afd->getLoc();
if (afd->hasImplicitSelfDecl()) {
selfIndex = afd->getParameters()->size();
resultIndex = selfIndex + 1;
} else {
resultIndex = afd->getParameters()->size();
}
}
std::optional<llvm::ArrayRef<LifetimeDependenceInfo>>
currentDependencies() const {
if (lifetimeDependencies.empty()) {
return std::nullopt;
}
return afd->getASTContext().AllocateCopy(lifetimeDependencies);
}
std::optional<llvm::ArrayRef<LifetimeDependenceInfo>> checkFuncDecl() {
assert(isa<FuncDecl>(afd) || isa<ConstructorDecl>(afd));
assert(lifetimeDependencies.empty());
// Handle Builtins first because, even though Builtins require
// LifetimeDependence, we don't force Feature::LifetimeDependence
// to be enabled when importing the Builtin module.
if (afd->isImplicit() && afd->getModuleContext()->isBuiltinModule()) {
inferBuiltin();
return currentDependencies();
}
if (!ctx.LangOpts.hasFeature(Feature::LifetimeDependence)
&& !ctx.SourceMgr.isImportMacroGeneratedLoc(returnLoc)) {
// Infer inout dependencies without requiring a feature flag. On
// returning, 'lifetimeDependencies' contains any inferred
// dependencies. This does not issue any diagnostics because any invalid
// usage should generate a missing feature flag diagnostic instead.
inferInoutParams();
diagnoseMissingResultDependencies(
diag::lifetime_dependence_feature_required_return.ID);
diagnoseMissingSelfDependencies(
diag::lifetime_dependence_feature_required_mutating.ID);
diagnoseMissingInoutDependencies(
diag::lifetime_dependence_feature_required_inout.ID);
return currentDependencies();
}
if (afd->getAttrs().hasAttribute<LifetimeAttr>()) {
return checkAttribute();
}
// Methods or functions with @_unsafeNonescapableResult do not require
// lifetime annotation and do not infer any lifetime dependency.
if (afd->getAttrs().hasAttribute<UnsafeNonEscapableResultAttr>()) {
return std::nullopt;
}
inferOrDiagnose();
// If precise diagnostics were already issued, bypass
// diagnoseMissingDependencies to avoid redundant diagnostics.
if (!performedDiagnostics) {
diagnoseMissingResultDependencies(
diag::lifetime_dependence_cannot_infer_return.ID);
diagnoseMissingSelfDependencies(
diag::lifetime_dependence_cannot_infer_mutating.ID);
diagnoseMissingInoutDependencies(
diag::lifetime_dependence_cannot_infer_inout.ID);
}
return currentDependencies();
}
protected:
template<typename ...ArgTypes>
InFlightDiagnostic diagnose(
SourceLoc Loc, Diag<ArgTypes...> ID,
typename detail::PassArgument<ArgTypes>::type... Args) {
performedDiagnostics = true;
return ctx.Diags.diagnose(Loc, ID, std::move(Args)...);
}
template<typename ...ArgTypes>
InFlightDiagnostic
diagnose(const Decl *decl, Diag<ArgTypes...> id,
typename detail::PassArgument<ArgTypes>::type... args) {
return ctx.Diags.diagnose(decl, Diagnostic(id, std::move(args)...));
}
bool isInit() const {
return isa<ConstructorDecl>(afd);
}
// For initializers, the implicit self parameter is ignored and instead shows
// up as the result type.
//
// Note: Do not use this to reserve the self parameter index.
// LifetimeDependenceInfo always reserves an extra formal parameter
// index for hasImplicitSelfDecl(), even for initializers. During function
// type lowering, it is mapped to the metatype parameter. Without reserving
// the extra formal self parameter, a dependency targeting the formal result
// index would incorrectly target the SIL metatype parameter.
bool hasImplicitSelfParam() const {
return !isInit() && afd->hasImplicitSelfDecl();
}
// In SIL, implicit initializers and accessors become explicit.
bool isImplicitOrSIL() const {
if (afd->isImplicit()) {
return true;
}
// TODO: remove this check once SIL prints @lifetime.
if (auto *sf = afd->getParentSourceFile()) {
// The AST printer makes implicit initializers explicit, but does not
// print the @lifetime annotations. Until that is fixed, avoid
// diagnosing this as an error.
if (sf->Kind == SourceFileKind::SIL) {
return true;
}
}
return false;
}
bool isInterfaceFile() const {
// TODO: remove this check once all compilers that are rev-locked to the
// stdlib print the 'copy' dependence kind in the interface (Aug '25)
if (auto *sf = afd->getParentSourceFile()) {
if (sf->Kind == SourceFileKind::Interface) {
return true;
}
}
return false;
}
bool useLazyInference() const {
return isInterfaceFile()
|| ctx.LangOpts.EnableExperimentalLifetimeDependenceInference;
}
std::string diagnosticQualifier() const {
if (afd->isImplicit()) {
if (isInit()) {
return "an implicit initializer";
}
if (auto *ad = dyn_cast<AccessorDecl>(afd)) {
std::string qualifier = "the '";
qualifier += accessorKindName(ad->getAccessorKind());
qualifier += "' accessor";
return qualifier;
}
}
if (afd->hasImplicitSelfDecl()) {
if (isInit()) {
return "an initializer";
}
if (afd->getImplicitSelfDecl()->isInOut()) {
return "a mutating method";
}
return "a method";
}
return "a function";
}
// Ensure that dependencies exist for any return value or inout parameter that
// needs one. Always runs before the checker completes if no other diagnostics
// were issued.
void diagnoseMissingResultDependencies(DiagID diagID) {
if (!isDiagnosedNonEscapable(getResultOrYield())) {
return;
}
if (llvm::none_of(lifetimeDependencies,
[&](LifetimeDependenceInfo dep) {
return dep.getTargetIndex() == resultIndex;
})) {
ctx.Diags.diagnose(returnLoc, diagID,
{StringRef(diagnosticQualifier())});
}
}
// Ensure that dependencies exist for any mutating self value. Always runs
// before the checker completes if no other diagnostics were issued. For
// initializers, the inout self parameter is actually considered the result
// type so is not handled here.
void diagnoseMissingSelfDependencies(DiagID diagID) {
if (!hasImplicitSelfParam()) {
return;
}
auto *selfDecl = afd->getImplicitSelfDecl();
if (!selfDecl->isInOut()) {
return;
}
if (!isDiagnosedNonEscapable(dc->getSelfTypeInContext())) {
return;
}
if (llvm::none_of(lifetimeDependencies,
[&](LifetimeDependenceInfo dep) {
return dep.getTargetIndex() == selfIndex;
})) {
ctx.Diags.diagnose(selfDecl->getLoc(), diagID,
{StringRef(diagnosticQualifier())});
}
}
void diagnoseMissingInoutDependencies(DiagID diagID) {
unsigned paramIndex = 0;
for (auto *param : *afd->getParameters()) {
SWIFT_DEFER { paramIndex++; };
if (!param->isInOut()) {
continue;
}
if (!isDiagnosedNonEscapable(
afd->mapTypeIntoContext(param->getInterfaceType()))) {
continue;
}
if (llvm::none_of(lifetimeDependencies,
[&](LifetimeDependenceInfo dep) {
return dep.getTargetIndex() == paramIndex;
})) {
ctx.Diags.diagnose(param->getLoc(), diagID,
{StringRef(diagnosticQualifier()),
param->getName()});
}
}
}
bool isCompatibleWithOwnership(ParsedLifetimeDependenceKind kind, Type type,
ValueOwnership ownership,
bool isInterfaceFile = false) const {
if (kind == ParsedLifetimeDependenceKind::Inherit) {
return true;
}
// Lifetime dependence always propagates through temporary BitwiseCopyable
// values, even if the dependence is scoped.
if (isBitwiseCopyable(type, ctx)) {
return true;
}
auto loweredOwnership = ownership != ValueOwnership::Default
? ownership : getLoweredOwnership(afd);
if (kind == ParsedLifetimeDependenceKind::Borrow) {
if (isInterfaceFile) {
return loweredOwnership == ValueOwnership::Shared ||
loweredOwnership == ValueOwnership::InOut;
}
return loweredOwnership == ValueOwnership::Shared;
}
assert(kind == ParsedLifetimeDependenceKind::Inout);
return loweredOwnership == ValueOwnership::InOut;
}
bool isCompatibleWithOwnership(LifetimeDependenceKind kind, Type type,
ValueOwnership ownership) const {
if (kind == LifetimeDependenceKind::Inherit) {
return true;
}
// Lifetime dependence always propagates through temporary BitwiseCopyable
// values, even if the dependence is scoped.
if (isBitwiseCopyable(type, ctx)) {
return true;
}
auto loweredOwnership = ownership != ValueOwnership::Default
? ownership
: getLoweredOwnership(afd);
assert(kind == LifetimeDependenceKind::Scope);
return loweredOwnership == ValueOwnership::Shared ||
loweredOwnership == ValueOwnership::InOut;
}
struct TargetDeps {
unsigned targetIndex;
SmallBitVector inheritIndices;
SmallBitVector scopeIndices;
TargetDeps(unsigned targetIndex, unsigned capacity)
: targetIndex(targetIndex), inheritIndices(capacity),
scopeIndices(capacity) {}
TargetDeps &&add(unsigned sourceIndex, LifetimeDependenceKind kind) && {
switch (kind) {
case LifetimeDependenceKind::Inherit:
inheritIndices.set(sourceIndex);
break;
case LifetimeDependenceKind::Scope:
scopeIndices.set(sourceIndex);
break;
}
return std::move(*this);
}
};
TargetDeps createDeps(unsigned targetIndex) {
unsigned capacity = afd->hasImplicitSelfDecl()
? (afd->getParameters()->size() + 1)
: afd->getParameters()->size();
return TargetDeps(targetIndex, capacity);
}
// Allocate LifetimeDependenceInfo in the ASTContext and push it onto
// lifetimeDependencies.
void pushDeps(const TargetDeps &&deps) {
assert(llvm::none_of(lifetimeDependencies,
[&](LifetimeDependenceInfo dep) {
return dep.getTargetIndex() == deps.targetIndex;
}));
IndexSubset *inheritIndices = nullptr;
if (deps.inheritIndices.any()) {
inheritIndices = IndexSubset::get(ctx, deps.inheritIndices);
}
IndexSubset *scopeIndices = nullptr;
if (deps.scopeIndices.any()) {
scopeIndices = IndexSubset::get(ctx, deps.scopeIndices);
}
lifetimeDependencies.push_back(
LifetimeDependenceInfo{
/*inheritLifetimeParamIndices*/ inheritIndices,
/*scopeLifetimeParamIndices*/ scopeIndices,
deps.targetIndex,
/*isImmortal*/ false});
}
Type getResultOrYield() const {
if (auto *accessor = dyn_cast<AccessorDecl>(afd)) {
if (accessor->isCoroutine()) {
auto yieldTyInContext = accessor->mapTypeIntoContext(
accessor->getStorage()->getValueInterfaceType());
return yieldTyInContext;
}
}
Type resultType;
if (auto fn = dyn_cast<FuncDecl>(afd)) {
resultType = fn->getResultInterfaceType();
} else {
auto ctor = cast<ConstructorDecl>(afd);
resultType = ctor->getResultInterfaceType();
}
return afd->mapTypeIntoContext(resultType);
}
std::optional<LifetimeDependenceKind>
getDependenceKindFromDescriptor(LifetimeDescriptor descriptor,
ParamDecl *decl) {
auto loc = descriptor.getLoc();
auto type = decl->getTypeInContext();
auto parsedLifetimeKind = descriptor.getParsedLifetimeDependenceKind();
auto ownership = decl->getValueOwnership();
auto loweredOwnership = ownership != ValueOwnership::Default
? ownership
: getLoweredOwnership(afd);
switch (parsedLifetimeKind) {
case ParsedLifetimeDependenceKind::Default: {
if (type->isEscapable()) {
if (loweredOwnership == ValueOwnership::Shared ||
loweredOwnership == ValueOwnership::InOut) {
return LifetimeDependenceKind::Scope;
}
diagnose(
loc,
diag::lifetime_dependence_cannot_use_default_escapable_consuming,
getOwnershipSpelling(loweredOwnership));
return std::nullopt;
}
if (useLazyInference()) {
return LifetimeDependenceKind::Inherit;
}
diagnose(loc, diag::lifetime_dependence_cannot_infer_kind,
diagnosticQualifier(), descriptor.getString());
return std::nullopt;
}
case ParsedLifetimeDependenceKind::Borrow: LLVM_FALLTHROUGH;
case ParsedLifetimeDependenceKind::Inout: {
// @lifetime(borrow x) is valid only for borrowing parameters.
// @lifetime(inout x) is valid only for inout parameters.
if (!isCompatibleWithOwnership(parsedLifetimeKind, type, loweredOwnership,
isInterfaceFile())) {
diagnose(loc,
diag::lifetime_dependence_cannot_use_parsed_borrow_consuming,
getNameForParsedLifetimeDependenceKind(parsedLifetimeKind),
getOwnershipSpelling(loweredOwnership));
return std::nullopt;
}
return LifetimeDependenceKind::Scope;
}
case ParsedLifetimeDependenceKind::Inherit:
// @lifetime(copy x) is only invalid for Escapable types.
if (type->isEscapable()) {
diagnose(loc, diag::lifetime_dependence_invalid_inherit_escapable_type,
descriptor.getString());
return std::nullopt;
}
return LifetimeDependenceKind::Inherit;
}
}
// Finds the ParamDecl* and its index from a LifetimeDescriptor
std::optional<std::pair<ParamDecl *, unsigned>>
getParamDeclFromDescriptor(LifetimeDescriptor descriptor) {
switch (descriptor.getDescriptorKind()) {
case LifetimeDescriptor::DescriptorKind::Named: {
unsigned paramIndex = 0;
ParamDecl *candidateParam = nullptr;
for (auto *param : *afd->getParameters()) {
if (param->getParameterName() == descriptor.getName()) {
candidateParam = param;
break;
}
paramIndex++;
}
if (!candidateParam) {
diagnose(descriptor.getLoc(),
diag::lifetime_dependence_invalid_param_name,
descriptor.getName());
return std::nullopt;
}
return std::make_pair(candidateParam, paramIndex);
}
case LifetimeDescriptor::DescriptorKind::Ordered: {
auto paramIndex = descriptor.getIndex();
if (paramIndex >= afd->getParameters()->size()) {
diagnose(descriptor.getLoc(),
diag::lifetime_dependence_invalid_param_index,
paramIndex);
return std::nullopt;
}
auto candidateParam = afd->getParameters()->get(paramIndex);
return std::make_pair(candidateParam, paramIndex);
}
case LifetimeDescriptor::DescriptorKind::Self: {
if (!hasImplicitSelfParam()) {
diagnose(descriptor.getLoc(),
diag::lifetime_dependence_invalid_self_in_static);
return std::nullopt;
}
if (isa<ConstructorDecl>(afd)) {
diagnose(descriptor.getLoc(),
diag::lifetime_dependence_invalid_self_in_init);
return std::nullopt;
}
auto *selfDecl = afd->getImplicitSelfDecl();
return std::make_pair(selfDecl, afd->getParameters()->size());
}
}
}
std::optional<ArrayRef<LifetimeDependenceInfo>> checkAttribute() {
SmallVector<LifetimeDependenceInfo, 1> lifetimeDependencies;
llvm::SmallSet<unsigned, 1> lifetimeDependentTargets;
auto lifetimeAttrs = afd->getAttrs().getAttributes<LifetimeAttr>();
for (auto attr : lifetimeAttrs) {
auto lifetimeDependenceInfo =
checkAttributeEntry(attr->getLifetimeEntry());
if (!lifetimeDependenceInfo.has_value()) {
return std::nullopt;
}
auto targetIndex = lifetimeDependenceInfo->getTargetIndex();
if (lifetimeDependentTargets.contains(targetIndex)) {
// TODO: Diagnose at the source location of the @lifetime attribute with
// duplicate target.
diagnose(afd->getLoc(), diag::lifetime_dependence_duplicate_target);
}
lifetimeDependentTargets.insert(targetIndex);
lifetimeDependencies.push_back(*lifetimeDependenceInfo);
}
return afd->getASTContext().AllocateCopy(lifetimeDependencies);
}
std::optional<LifetimeDependenceInfo>
checkAttributeEntry(LifetimeEntry *entry) {
auto capacity = afd->hasImplicitSelfDecl()
? (afd->getParameters()->size() + 1)
: afd->getParameters()->size();
SmallBitVector inheritIndices(capacity);
SmallBitVector scopeIndices(capacity);
auto updateLifetimeIndices = [&](LifetimeDescriptor descriptor,
unsigned paramIndexToSet,
LifetimeDependenceKind lifetimeKind) {
if (inheritIndices.test(paramIndexToSet) ||
scopeIndices.test(paramIndexToSet)) {
diagnose(descriptor.getLoc(),
diag::lifetime_dependence_duplicate_param_id);
return true;
}
if (lifetimeKind == LifetimeDependenceKind::Inherit) {
inheritIndices.set(paramIndexToSet);
} else {
assert(lifetimeKind == LifetimeDependenceKind::Scope);
scopeIndices.set(paramIndexToSet);
}
return false;
};
auto targetDescriptor = entry->getTargetDescriptor();
unsigned targetIndex;
if (targetDescriptor.has_value()) {
auto targetDeclAndIndex = getParamDeclFromDescriptor(*targetDescriptor);
if (!targetDeclAndIndex.has_value()) {
return std::nullopt;
}
// TODO: support dependencies on non-inout parameters.
if (!targetDeclAndIndex->first->isInOut()) {
diagnose(targetDeclAndIndex->first,
diag::lifetime_parameter_requires_inout,
targetDescriptor->getName());
}
targetIndex = targetDeclAndIndex->second;
} else {
targetIndex = afd->hasImplicitSelfDecl()
? afd->getParameters()->size() + 1
: afd->getParameters()->size();
}
for (auto source : entry->getSources()) {
if (source.isImmortal()) {
auto immortalParam =
std::find_if(afd->getParameters()->begin(),
afd->getParameters()->end(), [](ParamDecl *param) {
return param->getName().nonempty()
&& strcmp(param->getName().get(), "immortal") == 0;
});
if (immortalParam != afd->getParameters()->end()) {
diagnose(*immortalParam,
diag::lifetime_dependence_immortal_conflict_name);
return std::nullopt;
}
return LifetimeDependenceInfo(nullptr, nullptr, targetIndex,
/*isImmortal*/ true);
}
auto paramDeclAndIndex = getParamDeclFromDescriptor(source);
if (!paramDeclAndIndex.has_value()) {
return std::nullopt;
}
auto lifetimeKind =
getDependenceKindFromDescriptor(source, paramDeclAndIndex->first);
if (!lifetimeKind.has_value()) {
return std::nullopt;
}
unsigned sourceIndex = paramDeclAndIndex->second;
if (lifetimeKind == LifetimeDependenceKind::Scope
&& sourceIndex == targetIndex) {
diagnose(source.getLoc(),
diag::lifetime_dependence_cannot_use_parsed_borrow_inout);
return std::nullopt;
}
bool hasError =
updateLifetimeIndices(source, sourceIndex, *lifetimeKind);
if (hasError) {
return std::nullopt;
}
}
return LifetimeDependenceInfo(
inheritIndices.any() ? IndexSubset::get(ctx, inheritIndices) : nullptr,
scopeIndices.any() ? IndexSubset::get(ctx, scopeIndices) : nullptr,
targetIndex, /*isImmortal*/ false);
}
// On returning, 'lifetimeDependencies' contains any inferred dependencies and
// 'performedDiagnostics' indicates whether any specific diagnostics were
// issued.
void inferOrDiagnose() {
// Infer non-Escapable results.
if (isDiagnosedNonEscapable(getResultOrYield())) {
if (hasImplicitSelfParam()) {
// Methods and accessors that return or yield a non-Escapable value.
inferNonEscapableResultOnSelf();
return;
}
if (isInit() && isImplicitOrSIL()) {
inferImplicitInit();
return;
}
// Regular functions and initializers that return a non-Escapable value.
inferNonEscapableResultOnParam();
return;
}
// Infer mutating non-Escapable methods (excluding initializers).
inferMutatingSelf();
// Infer inout parameters.
inferInoutParams();
}
/// If the current function is a mutating method and 'self' is non-Escapable,
/// return 'self's ParamDecl.
bool isMutatingNonEscapableSelf() {
if (!hasImplicitSelfParam())
return false;
if (!isDiagnosedNonEscapable(dc->getSelfTypeInContext()))
return false;
assert(!isInit() && "class initializers have Escapable self");
auto *selfDecl = afd->getImplicitSelfDecl();
if (!selfDecl->isInOut())
return false;
return true;
}
// Infer method dependence: result depends on self. This includes _modify.
void inferNonEscapableResultOnSelf() {
Type selfTypeInContext = dc->getSelfTypeInContext();
if (selfTypeInContext->hasError()) {
return;
}
bool nonEscapableSelf = isDiagnosedNonEscapable(selfTypeInContext);
// Avoid diagnosing inference on mutating methods when 'self' is
// non-Escapable. The inout 'self' also needs an inferred dependence on
// itself. This will be diagnosed when checking for missing dependencies.
if (nonEscapableSelf && afd->getImplicitSelfDecl()->isInOut()) {
if (auto accessor = dyn_cast<AccessorDecl>(afd)) {
inferMutatingAccessor(accessor);
}
return;
}
// Methods with parameters only apply to lazy inference.
if (!useLazyInference() && afd->getParameters()->size() > 0) {
return;
}
if (!nonEscapableSelf && isBitwiseCopyable(selfTypeInContext, ctx)) {
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_bitwisecopyable,
diagnosticQualifier(), "self");
return;
}
if (!useLazyInference()) {
// Do not infer LifetimeDependenceKind::Inherit unless this is an implicit
// getter, which simply returns a stored property.
if (nonEscapableSelf && !isImplicitOrSIL()) {
diagnose(returnLoc, diag::lifetime_dependence_cannot_infer_kind,
diagnosticQualifier(), "self");
return;
}
}
auto kind = inferLifetimeDependenceKind(
selfTypeInContext, afd->getImplicitSelfDecl()->getValueOwnership());
if (!kind) {
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_scope_ownership,
"self", diagnosticQualifier());
return;
}
pushDeps(createDeps(resultIndex).add(selfIndex, *kind));
}
std::optional<LifetimeDependenceKind>
inferLifetimeDependenceKind(Type sourceType, ValueOwnership ownership) {
if (!sourceType->isEscapable()) {
return LifetimeDependenceKind::Inherit;
}
// Lifetime dependence always propagates through temporary BitwiseCopyable
// values, even if the dependence is scoped.
if (isBitwiseCopyable(sourceType, ctx)) {
return LifetimeDependenceKind::Scope;
}
auto loweredOwnership = ownership != ValueOwnership::Default
? ownership
: getLoweredOwnership(afd);
if (loweredOwnership != ValueOwnership::Shared &&
loweredOwnership != ValueOwnership::InOut) {
return std::nullopt;
}
return LifetimeDependenceKind::Scope;
}
// Infer implicit initialization. The dependence kind can be inferred, similar
// to an implicit setter, because the implementation is simply an assignment
// to stored property.
void inferImplicitInit() {
if (afd->getParameters()->size() == 0) {
// Empty ~Escapable types can be implicitly initialized without any
// dependencies. In SIL, implicit initializers become explicit. Set
// performedDiagnostics here to bypass normal dependence checking without
// raising an error.
performedDiagnostics = true;
return;
}
auto targetDeps = createDeps(resultIndex);
unsigned paramIndex = 0;
for (auto *param : *afd->getParameters()) {
SWIFT_DEFER { paramIndex++; };
Type paramTypeInContext =
afd->mapTypeIntoContext(param->getInterfaceType());
if (paramTypeInContext->hasError()) {
return;
}
auto kind = inferLifetimeDependenceKind(paramTypeInContext,
param->getValueOwnership());
if (!kind) {
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_scope_ownership,
param->getParameterName().str(), diagnosticQualifier());
return;
}
targetDeps = std::move(targetDeps).add(paramIndex, *kind);
}
pushDeps(std::move(targetDeps));
}
// Infer result dependence on a function or intitializer parameter.
//
// Note: for implicit initializers with parameters, consider inferring
// Inherit dependency for each non-Escapable parameter. This would be
// consistent with implicit stored property setters. This isn't done yet
// because we also need to consider any Escapable parameters: either skip
// inference if any exist, infer scoped dependency, or infer no
// dependency. Implicit setters for Escapable properties are not inferred.
void inferNonEscapableResultOnParam() {
// This is only called when there is no 'self' argument that can be the
// source of a dependence.
assert(!hasImplicitSelfParam());
if (useLazyInference()) {
return lazillyInferNonEscapableResultOnParam();
}
// Strict inference only handles a single escapable parameter,
// which is an unambiguous borrow dependence.
if (afd->getParameters()->size() == 0) {
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_return_no_param,
diagnosticQualifier());
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_return_immortal);
return;
}
if (afd->getParameters()->size() > 1) {
// The usual diagnostic check is sufficient.
return;
}
// Do not infer non-escapable dependence kind -- it is ambiguous.
auto *param = afd->getParameters()->get(0);
Type paramTypeInContext =
afd->mapTypeIntoContext(param->getInterfaceType());
if (paramTypeInContext->hasError()) {
return;
}
if (!paramTypeInContext->isEscapable()) {
diagnose(returnLoc, diag::lifetime_dependence_cannot_infer_kind,
diagnosticQualifier(), param->getParameterName().str());
return;
}
auto kind = LifetimeDependenceKind::Scope;
auto paramOwnership = param->getValueOwnership();
if (!isCompatibleWithOwnership(kind, paramTypeInContext, paramOwnership))
{
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_scope_ownership,
param->getParameterName().str(), diagnosticQualifier());
return;
}
pushDeps(createDeps(resultIndex).add(/*paramIndex*/ 0, kind));
}
// Lazy inference for .swiftinterface backward compatibility and
// experimentation. Inference cases can be added but not removed.
void lazillyInferNonEscapableResultOnParam() {
std::optional<unsigned> candidateParamIndex;
std::optional<LifetimeDependenceKind> candidateLifetimeKind;
unsigned paramIndex = 0;
for (auto *param : *afd->getParameters()) {
SWIFT_DEFER { paramIndex++; };
Type paramTypeInContext =
afd->mapTypeIntoContext(param->getInterfaceType());
if (paramTypeInContext->hasError()) {
return;
}
auto paramOwnership = param->getValueOwnership();
if (paramTypeInContext->isEscapable()) {
if (isBitwiseCopyable(paramTypeInContext, ctx)) {
continue;
}
if (paramOwnership == ValueOwnership::Default) {
continue;
}
}
candidateLifetimeKind =
inferLifetimeDependenceKind(paramTypeInContext, paramOwnership);
if (!candidateLifetimeKind) {
continue;
}
if (candidateParamIndex) {
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_ambiguous_candidate,
diagnosticQualifier());
return;
}
candidateParamIndex = paramIndex;
}
if (!candidateParamIndex) {
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_no_candidates,
diagnosticQualifier());
return;
}
pushDeps(createDeps(resultIndex).add(*candidateParamIndex,
*candidateLifetimeKind));
}
// Infer a mutating 'self' dependency when 'self' is non-Escapable and the
// result is 'void'.
void inferMutatingSelf() {
if (!isMutatingNonEscapableSelf()) {
return;
}
// Handle implicit setters before diagnosing mutating methods. This
// does not include global accessors, which have no implicit 'self'.
if (auto accessor = dyn_cast<AccessorDecl>(afd)) {
inferMutatingAccessor(accessor);
return;
}
if (afd->getParameters()->size() > 0) {
if (useLazyInference()) {
// Assume that a mutating method does not depend on its parameters.
// This is unsafe but needed because some MutableSpan APIs snuck into
// the standard library interface without specifying dependencies.
pushDeps(createDeps(selfIndex).add(selfIndex,
LifetimeDependenceKind::Inherit));
}
return;
}
pushDeps(createDeps(selfIndex).add(selfIndex,
LifetimeDependenceKind::Inherit));
}
// Infer a mutating accessor's non-Escapable 'self' dependencies.
void inferMutatingAccessor(AccessorDecl *accessor) {
if (!isImplicitOrSIL() && !useLazyInference()) {
// Explicit setters require explicit lifetime dependencies.
return;
}
switch (accessor->getAccessorKind()) {
case AccessorKind::Read:
case AccessorKind::Read2:
// An implicit _read/read accessor is generated when a mutating getter is
// declared. Emit the same lifetime dependencies as an implicit _modify.
case AccessorKind::Modify:
case AccessorKind::Modify2:
// A _modify's yielded value depends on self. The _modify dependency in
// the opposite direction (self depends on the modified value) is not
// recorded. The caller of _modify ensures that the modified 'self',
// passed as 'inout', depends on any value stored to the yielded address.
//
// This is required for stored properties because the AST generates a
// _modify for them even though it won't be emitted.
pushDeps(createDeps(selfIndex).add(selfIndex,
LifetimeDependenceKind::Inherit));
pushDeps(createDeps(resultIndex).add(selfIndex,
LifetimeDependenceKind::Scope));
break;
case AccessorKind::Set: {
const unsigned newValIdx = 0;
auto *param = afd->getParameters()->get(newValIdx);
Type paramTypeInContext =
afd->mapTypeIntoContext(param->getInterfaceType());
if (paramTypeInContext->hasError()) {
return;
}
auto targetDeps =
createDeps(selfIndex).add(selfIndex, LifetimeDependenceKind::Inherit);
// The 'newValue' dependence kind must match the getter's dependence kind
// because generated the implementation '_modify' accessor composes the
// getter's result with the setter's 'newValue'. In particular, if the
// result type is Escapable then the getter does not have any lifetime
// dependency, so the setter cannot depend on 'newValue'.
if (!paramTypeInContext->isEscapable()) {
targetDeps = std::move(targetDeps)
.add(newValIdx, LifetimeDependenceKind::Inherit);
}
pushDeps(std::move(targetDeps));
break;
}
case AccessorKind::MutableAddress:
if (useLazyInference()) {
// Assume that a mutating method does not depend on its parameters.
// Currently only for backward interface compatibility. Even though this
// is the only useful dependence (a borrow of self is possible but not
// useful), explicit annotation is required for now to confirm that the
// mutated self cannot depend on anything stored at this address.
pushDeps(createDeps(selfIndex).add(selfIndex,
LifetimeDependenceKind::Inherit));
}
break;
default:
// Unknown mutating accessor.
break;
}
}
// Infer 'inout' parameter dependency when the only parameter is
// non-Escapable.
//
// This supports the common case in which the user of a non-Escapable type,
// such as MutableSpan, wants to modify the span's contents without modifying
// the span value itself. It should be possible to use MutableSpan this way
// without requiring any knowledge of lifetime annotations. The tradeoff is
// that it makes authoring non-Escapable types less safe. For example, a
// MutableSpan method could update the underlying unsafe pointer and forget to
// declare a dependence on the incoming pointer.
//
// Disallowing other non-Escapable parameters rules out the easy mistake of
// programmers attempting to trivially reassign the inout parameter. There's
// is no way to rule out the possibility that they derive another
// non-Escapable value from an Escapable parameteter. So they can still write
// the following and will get a lifetime diagnostic:
//
// func reassign(s: inout MutableSpan<Int>, a: [Int]) {
// s = a.mutableSpan
// }
//
// Do not issue any diagnostics. This inference is triggered even when the
// feature is disabled!
void inferInoutParams() {
if (isMutatingNonEscapableSelf()) {
return;
}
std::optional<unsigned> candidateParamIndex;
bool hasNonEscapableParameter = false;
if (hasImplicitSelfParam()
&& isDiagnosedNonEscapable(dc->getSelfTypeInContext())) {
hasNonEscapableParameter = true;
}
for (unsigned paramIndex : range(afd->getParameters()->size())) {
auto *param = afd->getParameters()->get(paramIndex);
if (isDiagnosedNonEscapable(
afd->mapTypeIntoContext(param->getInterfaceType()))) {
if (param->isInOut()) {
if (hasNonEscapableParameter)
return;
candidateParamIndex = paramIndex;
continue;
}
if (candidateParamIndex)
return;
hasNonEscapableParameter = true;
}
}
if (candidateParamIndex) {
pushDeps(createDeps(*candidateParamIndex).add(
*candidateParamIndex, LifetimeDependenceKind::Inherit));
}
}
void inferUnambiguousInoutParams() {
if (afd->getParameters()->size() != 1) {
return;
}
const unsigned paramIndex = 0;
auto *param = afd->getParameters()->get(paramIndex);
if (!param->isInOut()) {
return;
}
if (!isDiagnosedNonEscapable(
afd->mapTypeIntoContext(param->getInterfaceType()))) {
return;
}
pushDeps(createDeps(paramIndex).add(paramIndex,
LifetimeDependenceKind::Inherit));
}
void inferBuiltin() {
// Normal inout parameter inference works for most generic Builtins.
inferUnambiguousInoutParams();
if (!lifetimeDependencies.empty()) {
return;
}
const DeclName &name = afd->getName();
if (name.isSpecial()) {
return;
}
// TODO: declare lifetime dependencies in Builtins.def. Until then, filter
// the few that are not covered by general inference rules here. This is
// safer than using a broader rule for implicit declarations. New Builtins
// need to be considered as they are defined.
auto id = name.getBaseIdentifier();
if (id ==
ctx.getIdentifier(getBuiltinName(BuiltinValueKind::InjectEnumTag))) {
// ignore the tag parameter
const unsigned inoutIdx = 0;
pushDeps(createDeps(inoutIdx).add(inoutIdx,
LifetimeDependenceKind::Inherit));
} else if (id ==
ctx.getIdentifier(
getBuiltinName(BuiltinValueKind::ConvertUnownedUnsafeToGuaranteed))) {
const unsigned baseIdx = 0;
const unsigned inoutIdx = 1;
pushDeps(createDeps(inoutIdx)
.add(inoutIdx, LifetimeDependenceKind::Inherit)
.add(baseIdx, LifetimeDependenceKind::Scope));
}
}
};
std::optional<llvm::ArrayRef<LifetimeDependenceInfo>>
LifetimeDependenceInfo::get(AbstractFunctionDecl *afd) {
return LifetimeDependenceChecker(afd).checkFuncDecl();
}
// This implements the logic for SIL type descriptors similar to source-level
// logic in LifetimeDependenceChecker::checkAttributeEntry(). The SIL context is
// substantially different from Sema.
static std::optional<LifetimeDependenceInfo> checkSILTypeModifiers(
LifetimeDependentTypeRepr *lifetimeDependentRepr, unsigned targetIndex,
ArrayRef<SILParameterInfo> params, DeclContext *dc) {
auto &ctx = dc->getASTContext();
auto &diags = ctx.Diags;
auto capacity = params.size(); // SIL parameters include self
SmallBitVector inheritLifetimeParamIndices(capacity);
SmallBitVector scopeLifetimeParamIndices(capacity);
SmallBitVector addressableLifetimeParamIndices(capacity);
SmallBitVector conditionallyAddressableLifetimeParamIndices(capacity);
auto updateLifetimeDependenceInfo =
[&](LifetimeDescriptor descriptor,
unsigned paramIndexToSet,
ParameterConvention paramConvention) {
auto loc = descriptor.getLoc();
auto kind = descriptor.getParsedLifetimeDependenceKind();
if (kind == ParsedLifetimeDependenceKind::Borrow &&
isConsumedParameterInCallee(paramConvention)) {
diags.diagnose(loc, diag::lifetime_dependence_cannot_use_kind, "_scope",
getStringForParameterConvention(paramConvention));
return true;
}
if (inheritLifetimeParamIndices.test(paramIndexToSet) ||
scopeLifetimeParamIndices.test(paramIndexToSet)) {
diags.diagnose(loc, diag::lifetime_dependence_duplicate_param_id);
return true;
}
if (kind == ParsedLifetimeDependenceKind::Inherit) {
inheritLifetimeParamIndices.set(paramIndexToSet);
} else {
assert(kind == ParsedLifetimeDependenceKind::Borrow);
scopeLifetimeParamIndices.set(paramIndexToSet);
}
return false;
};
for (auto source : lifetimeDependentRepr->getLifetimeEntry()->getSources())
{
switch (source.getDescriptorKind()) {
case LifetimeDescriptor::DescriptorKind::Ordered: {
auto index = source.getIndex();
if (index > capacity) {
diags.diagnose(source.getLoc(),
diag::lifetime_dependence_invalid_param_index, index);
return std::nullopt;
}
auto param = params[index];
auto paramConvention = param.getConvention();
if (updateLifetimeDependenceInfo(source, index, paramConvention)) {
return std::nullopt;
}
switch (source.isAddressable()) {
case LifetimeDescriptor::IsNotAddressable:
break;
case LifetimeDescriptor::IsConditionallyAddressable:
conditionallyAddressableLifetimeParamIndices.set(index);
break;
case LifetimeDescriptor::IsAddressable:
addressableLifetimeParamIndices.set(index);
break;
}
break;
}
case LifetimeDescriptor::DescriptorKind::Named: {
assert(source.isImmortal());
return LifetimeDependenceInfo(/*inheritLifetimeParamIndices*/ nullptr,
/*scopeLifetimeParamIndices*/ nullptr,
targetIndex,
/*isImmortal*/ true);
}
default:
llvm_unreachable("SIL can only have ordered or immortal lifetime "
"dependence specifier kind");
}
}
return LifetimeDependenceInfo(
inheritLifetimeParamIndices.any()
? IndexSubset::get(ctx, inheritLifetimeParamIndices)
: nullptr,
scopeLifetimeParamIndices.any()
? IndexSubset::get(ctx, scopeLifetimeParamIndices)
: nullptr,
targetIndex,
/*isImmortal*/ false,
addressableLifetimeParamIndices.any()
? IndexSubset::get(ctx, addressableLifetimeParamIndices)
: nullptr,
conditionallyAddressableLifetimeParamIndices.any()
? IndexSubset::get(ctx, conditionallyAddressableLifetimeParamIndices)
: nullptr);
}
std::optional<llvm::ArrayRef<LifetimeDependenceInfo>>
LifetimeDependenceInfo::getFromSIL(FunctionTypeRepr *funcRepr,
ArrayRef<SILParameterInfo> params,
ArrayRef<SILResultInfo> results,
DeclContext *dc) {
SmallVector<LifetimeDependenceInfo, 1> lifetimeDependencies;
auto getLifetimeDependenceFromTypeModifiers =
[&](TypeRepr *typeRepr,
unsigned targetIndex) -> std::optional<LifetimeDependenceInfo> {
auto *lifetimeTypeRepr =
dyn_cast_or_null<LifetimeDependentTypeRepr>(typeRepr);
if (!lifetimeTypeRepr) {
return std::nullopt;
}
return checkSILTypeModifiers(lifetimeTypeRepr, targetIndex, params, dc);
};
auto argsTypeRepr = funcRepr->getArgsTypeRepr()->getElements();
for (unsigned targetIndex : indices(argsTypeRepr)) {
if (auto result = getLifetimeDependenceFromTypeModifiers(
argsTypeRepr[targetIndex].Type, targetIndex)) {
lifetimeDependencies.push_back(*result);
}
}
auto result = getLifetimeDependenceFromTypeModifiers(
funcRepr->getResultTypeRepr(), params.size());
if (result) {
lifetimeDependencies.push_back(*result);
}
return dc->getASTContext().AllocateCopy(lifetimeDependencies);
}
void LifetimeDependenceInfo::dump() const {
llvm::errs() << "target: " << getTargetIndex() << '\n';
if (isImmortal()) {
llvm::errs() << " immortal\n";
}
if (auto scoped = getScopeIndices()) {
llvm::errs() << " scoped: ";
scoped->dump();
}
if (auto inherited = getInheritIndices()) {
llvm::errs() << " inherited: ";
inherited->dump();
}
if (auto addressable = getAddressableIndices()) {
llvm::errs() << " addressable: ";
addressable->dump();
}
}
} // namespace swift