mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Convert a bunch of places where we're dumping to stderr and calling `abort` over to using `ABORT` such that the message gets printed to the pretty stack trace. This ensures it gets picked up by CrashReporter.
877 lines
29 KiB
C++
877 lines
29 KiB
C++
//===--- GenericSignatureQueries.cpp --------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2021 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The various generic signature query operations on GenericSignature will
|
|
// lazily construct a requirement machine for the generic signature from the
|
|
// RewriteContext, then call the methods in this file.
|
|
//
|
|
// If you're working elsewhere in the compiler, use the methods on
|
|
// GenericSignature instead of calling into the RequirementMachine directly.
|
|
//
|
|
// Each query is generally implemented in the same manner:
|
|
//
|
|
// - First, convert the subject type parameter into a Term.
|
|
// - Simplify the Term to obtain a reduced Term.
|
|
// - Perform a property map lookup on the Term.
|
|
// - Return the appropriate piece of information from the property map.
|
|
//
|
|
// A few are slightly different; for example, getReducedType() takes an
|
|
// arbitrary type, not just a type parameter, and recursively transfozms the
|
|
// type parameters it contains, if any.
|
|
//
|
|
// Also, getConformancePath() is another one-off operation.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ASTContext.h"
|
|
#include "swift/AST/ConformanceLookup.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/GenericEnvironment.h"
|
|
#include "swift/AST/GenericSignature.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include <vector>
|
|
#include "NameLookup.h"
|
|
#include "RequirementMachine.h"
|
|
|
|
using namespace swift;
|
|
using namespace rewriting;
|
|
|
|
/// Collects all requirements on a type parameter that are used to construct
|
|
/// its ArchetypeType in a GenericEnvironment.
|
|
GenericSignature::LocalRequirements
|
|
RequirementMachine::getLocalRequirements(Type depType) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
GenericSignature::LocalRequirements result;
|
|
result.packShape = getReducedShape(depType, {});
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return result;
|
|
|
|
if (props->hasSuperclassBound())
|
|
result.superclass = props->getSuperclassBound({}, term, Map);
|
|
|
|
for (const auto *proto : props->getConformsTo())
|
|
result.protos.push_back(const_cast<ProtocolDecl *>(proto));
|
|
|
|
ProtocolType::canonicalizeProtocols(result.protos);
|
|
|
|
result.layout = props->getLayoutConstraint();
|
|
|
|
return result;
|
|
}
|
|
|
|
bool RequirementMachine::requiresClass(Type depType) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return false;
|
|
|
|
if (props->isConcreteType())
|
|
return false;
|
|
|
|
auto layout = props->getLayoutConstraint();
|
|
return (layout && layout->isClass());
|
|
}
|
|
|
|
LayoutConstraint RequirementMachine::getLayoutConstraint(Type depType) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return LayoutConstraint();
|
|
|
|
return props->getLayoutConstraint();
|
|
}
|
|
|
|
bool RequirementMachine::requiresProtocol(Type depType,
|
|
const ProtocolDecl *proto) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return false;
|
|
|
|
if (props->isConcreteType())
|
|
return false;
|
|
|
|
for (auto *otherProto : props->getConformsTo()) {
|
|
if (otherProto == proto)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
GenericSignature::RequiredProtocols
|
|
RequirementMachine::getRequiredProtocols(Type depType) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return { };
|
|
|
|
if (props->isConcreteType())
|
|
return { };
|
|
|
|
GenericSignature::RequiredProtocols result;
|
|
for (auto *otherProto : props->getConformsTo()) {
|
|
result.push_back(const_cast<ProtocolDecl *>(otherProto));
|
|
}
|
|
|
|
ProtocolType::canonicalizeProtocols(result);
|
|
|
|
return result;
|
|
}
|
|
|
|
Type RequirementMachine::
|
|
getSuperclassBound(Type depType,
|
|
ArrayRef<GenericTypeParamType *> genericParams) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return Type();
|
|
|
|
if (!props->hasSuperclassBound())
|
|
return Type();
|
|
|
|
return props->getSuperclassBound(genericParams, term, Map);
|
|
}
|
|
|
|
/// Unlike the other queries, we have occasion to call this on a requirement
|
|
/// machine for a protocol connected component as well as a top-level
|
|
/// generic signature, so plumb through the protocol to use for the root
|
|
/// `Self` generic parameter here.
|
|
bool RequirementMachine::isConcreteType(Type depType,
|
|
const ProtocolDecl *proto) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
proto);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return false;
|
|
|
|
return props->isConcreteType();
|
|
}
|
|
|
|
/// Unlike the other queries, we have occasion to call this on a requirement
|
|
/// machine for a protocol connected component as well as a top-level
|
|
/// generic signature, so plumb through the protocol to use for the root
|
|
/// `Self` generic parameter here.
|
|
Type RequirementMachine::
|
|
getConcreteType(Type depType,
|
|
ArrayRef<GenericTypeParamType *> genericParams,
|
|
const ProtocolDecl *proto) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
proto);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return Type();
|
|
|
|
if (!props->isConcreteType())
|
|
return Type();
|
|
|
|
return props->getConcreteType(genericParams, term, Map);
|
|
}
|
|
|
|
bool RequirementMachine::areReducedTypeParametersEqual(Type depType1,
|
|
Type depType2) const {
|
|
auto term1 = Context.getMutableTermForType(depType1->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term1);
|
|
verify(term1);
|
|
|
|
auto term2 = Context.getMutableTermForType(depType2->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term2);
|
|
verify(term2);
|
|
|
|
return (term1 == term2);
|
|
}
|
|
|
|
MutableTerm
|
|
RequirementMachine::getLongestValidPrefix(const MutableTerm &term) const {
|
|
MutableTerm prefix;
|
|
|
|
for (auto symbol : term) {
|
|
switch (symbol.getKind()) {
|
|
case Symbol::Kind::Name:
|
|
return prefix;
|
|
|
|
case Symbol::Kind::Protocol:
|
|
ASSERT(prefix.empty() &&
|
|
"Protocol symbol can only appear at the start of a type term");
|
|
break;
|
|
|
|
case Symbol::Kind::GenericParam: {
|
|
ASSERT(prefix.empty() &&
|
|
"Generic parameter symbol can only appear at the start of a type term");
|
|
|
|
if (std::find_if(Params.begin(), Params.end(),
|
|
[&](Type otherParam) -> bool {
|
|
return otherParam->isEqual(symbol.getGenericParam());
|
|
}) == Params.end()) {
|
|
return prefix;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Symbol::Kind::AssociatedType: {
|
|
const auto *props = Map.lookUpProperties(prefix);
|
|
if (!props)
|
|
return prefix;
|
|
|
|
auto conformsTo = props->getConformsTo();
|
|
|
|
// T.[P:A] is valid iff T conforms to P.
|
|
if (std::find(conformsTo.begin(), conformsTo.end(), symbol.getProtocol())
|
|
== conformsTo.end())
|
|
return prefix;
|
|
|
|
break;
|
|
}
|
|
|
|
case Symbol::Kind::Layout:
|
|
case Symbol::Kind::Superclass:
|
|
case Symbol::Kind::ConcreteType:
|
|
case Symbol::Kind::ConcreteConformance:
|
|
case Symbol::Kind::Shape:
|
|
case Symbol::Kind::PackElement:
|
|
ABORT([&](auto &out) {
|
|
out << "Invalid symbol in a type term: " << term;
|
|
});
|
|
}
|
|
|
|
// This symbol is valid, add it to the longest prefix.
|
|
prefix.add(symbol);
|
|
}
|
|
|
|
return prefix;
|
|
}
|
|
|
|
/// Unlike most other queries, the input type can be any type, not just a
|
|
/// type parameter.
|
|
///
|
|
/// Returns true if all structural components that are type parameters are
|
|
/// reduced, and in particular not concrete (in which case they're not
|
|
/// considered reduced, since they can be replaced with their concrete type).
|
|
bool RequirementMachine::isReducedType(Type type) const {
|
|
// Look for non-reduced type parameters.
|
|
class Walker : public TypeWalker {
|
|
const RequirementMachine &Self;
|
|
|
|
public:
|
|
explicit Walker(const RequirementMachine &self) : Self(self) {}
|
|
|
|
Action walkToTypePre(Type component) override {
|
|
if (!component->hasTypeParameter())
|
|
return Action::SkipNode;
|
|
|
|
if (!component->isTypeParameter())
|
|
return Action::Continue;
|
|
|
|
auto term = Self.Context.getMutableTermForType(
|
|
component->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
|
|
Self.System.simplify(term);
|
|
Self.verify(term);
|
|
|
|
auto anchor = Self.Map.getTypeForTerm(term, {});
|
|
if (CanType(anchor) != CanType(component))
|
|
return Action::Stop;
|
|
|
|
auto *props = Self.Map.lookUpProperties(term);
|
|
if (props && props->isConcreteType())
|
|
return Action::Stop;
|
|
|
|
// The parent of a reduced type parameter might be non-reduced
|
|
// because it is concrete.
|
|
return Action::SkipNode;
|
|
}
|
|
};
|
|
|
|
return !type.walk(Walker(*this));
|
|
}
|
|
|
|
/// Given a type parameter 'T.A1.A2...An', a suffix length m where m <= n,
|
|
/// and a replacement type U, produce the type 'U.A(n-m)...An' by replacing
|
|
/// 'T.A1...A(n-m-1)' with 'U'.
|
|
///
|
|
/// FIXME: Remove this.
|
|
static Type substPrefixType(Type type, unsigned suffixLength, Type prefixType,
|
|
GenericSignature sig) {
|
|
if (suffixLength == 0)
|
|
return prefixType;
|
|
|
|
auto *memberType = type->castTo<DependentMemberType>();
|
|
auto substBaseType = substPrefixType(memberType->getBase(), suffixLength - 1,
|
|
prefixType, sig);
|
|
auto *assocDecl = memberType->getAssocType();
|
|
auto *proto = assocDecl->getProtocol();
|
|
auto conformance = lookupConformance(substBaseType, proto);
|
|
return conformance.getTypeWitness(assocDecl);
|
|
}
|
|
|
|
Type RequirementMachine::getReducedTypeParameter(
|
|
CanType t,
|
|
ArrayRef<GenericTypeParamType *> genericParams) const {
|
|
// Get a simplified term T.
|
|
auto term = Context.getMutableTermForType(t, /*proto=*/nullptr);
|
|
System.simplify(term);
|
|
|
|
// We need to handle "purely concrete" member types, eg if I have a
|
|
// signature <T where T == Foo>, and we're asked to reduce the
|
|
// type T.[P:A] where Foo : A.
|
|
//
|
|
// This comes up because we can derive the signature <T where T == Foo>
|
|
// from a generic signature like <T where T : P>; adding the
|
|
// concrete requirement 'T == Foo' renders 'T : P' redundant. We then
|
|
// want to take interface types written against the original signature
|
|
// and reduce them with respect to the derived signature.
|
|
//
|
|
// The problem is that T.[P:A] is not a valid term in the rewrite system
|
|
// for <T where T == Foo>, since we do not have the requirement T : P.
|
|
//
|
|
// A more principled solution would build a substitution map when
|
|
// building a derived generic signature that adds new requirements;
|
|
// interface types would first be substituted before being reduced
|
|
// in the new signature.
|
|
//
|
|
// For now, we handle this with a two-step process; we split a term up
|
|
// into a longest valid prefix, which must resolve to a concrete type,
|
|
// and the remaining suffix, which we use to perform a concrete
|
|
// substitution using subst().
|
|
|
|
// In the below, let T be a type term, with T == UV, where U is the
|
|
// longest valid prefix.
|
|
//
|
|
// Note that V can be empty if T is fully valid; we expect this to be
|
|
// true most of the time.
|
|
//
|
|
// FIXME: Remove all of this.
|
|
auto prefix = getLongestValidPrefix(term);
|
|
|
|
// Get a type (concrete or dependent) for U.
|
|
auto prefixType = [&]() -> Type {
|
|
if (prefix.empty())
|
|
return Type();
|
|
|
|
verify(prefix);
|
|
|
|
auto *props = Map.lookUpProperties(prefix);
|
|
if (props) {
|
|
if (props->isConcreteType()) {
|
|
auto concreteType = props->getConcreteType(genericParams,
|
|
prefix, Map);
|
|
if (!concreteType->hasTypeParameter())
|
|
return concreteType;
|
|
|
|
// FIXME: Recursion guard is needed here
|
|
return getReducedType(concreteType, genericParams);
|
|
}
|
|
|
|
// Skip this part if the entire input term is valid, because in that
|
|
// case we don't want to replace the term with its superclass bound;
|
|
// unlike a fixed concrete type, the superclass bound only comes into
|
|
// play when looking up a member type.
|
|
if (props->hasSuperclassBound() &&
|
|
prefix.size() != term.size()) {
|
|
auto superclass = props->getSuperclassBound(genericParams,
|
|
prefix, Map);
|
|
if (!superclass->hasTypeParameter())
|
|
return superclass;
|
|
|
|
// FIXME: Recursion guard is needed here
|
|
return getReducedType(superclass, genericParams);
|
|
}
|
|
}
|
|
|
|
return Map.getTypeForTerm(prefix, genericParams);
|
|
}();
|
|
|
|
// If T is already valid, the longest valid prefix U of T is T itself, and
|
|
// V is empty. Just return the type we computed above.
|
|
//
|
|
// This is the only case where U is allowed to be dependent.
|
|
if (prefix.size() == term.size())
|
|
return prefixType;
|
|
|
|
// If U is not concrete, we have an invalid member type of a dependent
|
|
// type, which is not valid in this generic signature. Give up.
|
|
if (prefix.empty() || prefixType->isTypeParameter()) {
|
|
ABORT([&](auto &out) {
|
|
out << "getReducedTypeParameter() was called\n";
|
|
out << " with " << Sig << ",\n";
|
|
out << " and " << t << ".\n\n";
|
|
if (prefix.empty()) {
|
|
out << "This type parameter contains the generic parameter "
|
|
<< Type(t->getRootGenericParam()) << ".\n\n";
|
|
out << "This generic parameter is not part of the given "
|
|
<< "generic signature.\n\n";
|
|
} else {
|
|
out << "This type parameter's reduced term is " << term << ".\n\n";
|
|
out << "This is not a valid term, because " << prefix << " does not "
|
|
<< "have a member type named " << term[prefix.size()] << ".\n\n";
|
|
}
|
|
out << "This usually indicates the caller passed the wrong type or "
|
|
<< "generic signature to getReducedType().\n\n";
|
|
|
|
dump(out);
|
|
});
|
|
}
|
|
|
|
// Compute the type of the unresolved suffix term V.
|
|
auto substType = substPrefixType(t, term.size() - prefix.size(),
|
|
prefixType, Sig);
|
|
|
|
// FIXME: Recursion guard is needed here
|
|
return getReducedType(substType, genericParams);
|
|
}
|
|
|
|
/// Unlike most other queries, the input type can be any type, not just a
|
|
/// type parameter.
|
|
///
|
|
/// Replaces all structural components that are type parameters with their
|
|
/// reduced form, which is either a (possibly different) type parameter,
|
|
/// or a concrete type, in which case we recursively reduce any type
|
|
/// parameters appearing in structural positions of that concrete type
|
|
/// as well, and so on.
|
|
Type RequirementMachine::getReducedType(
|
|
Type type,
|
|
ArrayRef<GenericTypeParamType *> genericParams) const {
|
|
|
|
return type.transformRec([&](Type t) -> std::optional<Type> {
|
|
if (!t->hasTypeParameter())
|
|
return t;
|
|
|
|
// The reduced type of a PackExpansionType has a reduced *shape* for
|
|
// the count type.
|
|
if (auto *packExpansionType = t->getAs<PackExpansionType>()) {
|
|
auto reducedPattern = getReducedType(packExpansionType->getPatternType(),
|
|
genericParams);
|
|
auto reducedShape = packExpansionType->getCountType();
|
|
if (reducedShape->isParameterPack())
|
|
reducedShape = getReducedShape(reducedShape, genericParams);
|
|
return Type(PackExpansionType::get(reducedPattern, reducedShape));
|
|
}
|
|
|
|
if (!t->isTypeParameter())
|
|
return std::nullopt;
|
|
|
|
return getReducedTypeParameter(t->getCanonicalType(), genericParams);
|
|
});
|
|
}
|
|
|
|
/// Determine if the given type parameter is valid with respect to this
|
|
/// requirement machine's generic signature.
|
|
bool RequirementMachine::isValidTypeParameter(Type type) const {
|
|
auto term = Context.getMutableTermForType(type->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
|
|
auto prefix = getLongestValidPrefix(term);
|
|
return (prefix == term);
|
|
}
|
|
|
|
/// Retrieve the conformance path used to extract the conformance of
|
|
/// interface \c type to the given \c protocol.
|
|
///
|
|
/// \param type The interface type whose conformance access path is to be
|
|
/// queried.
|
|
/// \param protocol A protocol to which \c type conforms.
|
|
///
|
|
/// \returns the conformance access path that starts at a requirement of
|
|
/// this generic signature and ends at the conformance that makes \c type
|
|
/// conform to \c protocol.
|
|
///
|
|
/// \seealso ConformancePath
|
|
ConformancePath
|
|
RequirementMachine::getConformancePath(Type type,
|
|
ProtocolDecl *protocol) {
|
|
auto mutTerm = Context.getMutableTermForType(type->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(mutTerm);
|
|
verify(mutTerm);
|
|
|
|
if (CONDITIONAL_ASSERT_enabled()) {
|
|
auto *props = Map.lookUpProperties(mutTerm);
|
|
ASSERT(props &&
|
|
"Subject type of conformance access path should be known");
|
|
ASSERT(!props->isConcreteType() &&
|
|
"Concrete types do not have conformance access paths");
|
|
auto conformsTo = props->getConformsTo();
|
|
ASSERT(std::find(conformsTo.begin(), conformsTo.end(), protocol) &&
|
|
"Subject type of conformance access path must conform to protocol");
|
|
}
|
|
|
|
auto term = Term::get(mutTerm, Context);
|
|
|
|
// Check if we've already cached the result before doing anything else.
|
|
auto found = ConformancePaths.find(
|
|
std::make_pair(term, protocol));
|
|
if (found != ConformancePaths.end()) {
|
|
return found->second;
|
|
}
|
|
|
|
auto &ctx = Context.getASTContext();
|
|
|
|
FrontendStatsTracer tracer(Stats, "get-conformance-access-path");
|
|
|
|
auto recordPath = [&](Term term, ProtocolDecl *proto,
|
|
ConformancePath path) {
|
|
// Add the path to the buffer.
|
|
CurrentConformancePaths.emplace_back(term, path);
|
|
|
|
// Add the path to the map.
|
|
auto key = std::make_pair(term, proto);
|
|
auto inserted = ConformancePaths.insert(
|
|
std::make_pair(key, path));
|
|
ASSERT(inserted.second);
|
|
|
|
if (Stats)
|
|
++Stats->getFrontendCounters().NumConformancePathsRecorded;
|
|
};
|
|
|
|
// If this is the first time we're asked to look up a conformance access path,
|
|
// visit all of the root conformance requirements in our generic signature and
|
|
// add them to the buffer.
|
|
if (ConformancePaths.empty()) {
|
|
for (const auto &req : Sig.getRequirements()) {
|
|
// We only care about conformance requirements.
|
|
if (req.getKind() != RequirementKind::Conformance)
|
|
continue;
|
|
|
|
auto rootType = CanType(req.getFirstType());
|
|
auto *rootProto = req.getProtocolDecl();
|
|
|
|
ConformancePath::Entry root(rootType, rootProto);
|
|
ArrayRef<ConformancePath::Entry> path(root);
|
|
ConformancePath result(ctx.AllocateCopy(path));
|
|
|
|
auto mutTerm = Context.getMutableTermForType(rootType, nullptr);
|
|
System.simplify(mutTerm);
|
|
|
|
auto rootTerm = Term::get(mutTerm, Context);
|
|
recordPath(rootTerm, rootProto, result);
|
|
}
|
|
}
|
|
|
|
// We enumerate conformance paths in shortlex order until we find the
|
|
// path whose corresponding type reduces to the one we are looking for.
|
|
while (true) {
|
|
auto found = ConformancePaths.find(
|
|
std::make_pair(term, protocol));
|
|
if (found != ConformancePaths.end()) {
|
|
return found->second;
|
|
}
|
|
|
|
if (CurrentConformancePaths.empty()) {
|
|
ABORT([&](auto &out) {
|
|
out << "Failed to find conformance path for ";
|
|
out << type << " (" << term << ")" << " : ";
|
|
out << protocol->getName() << ":\n";
|
|
type.dump(out);
|
|
out << "\n";
|
|
dump(out);
|
|
});
|
|
}
|
|
|
|
// The buffer consists of all conformance paths of length N.
|
|
// Swap it out with an empty buffer, and fill it with all paths of
|
|
// length N+1.
|
|
std::vector<std::pair<Term, ConformancePath>> oldPaths;
|
|
std::swap(CurrentConformancePaths, oldPaths);
|
|
|
|
for (const auto &pair : oldPaths) {
|
|
const auto &lastElt = pair.second.back();
|
|
auto *lastProto = lastElt.second;
|
|
|
|
// A copy of the current path, populated as needed.
|
|
SmallVector<ConformancePath::Entry, 4> entries;
|
|
|
|
auto reqs = lastProto->getRequirementSignature().getRequirements();
|
|
for (const auto &req : reqs) {
|
|
// We only care about conformance requirements.
|
|
if (req.getKind() != RequirementKind::Conformance)
|
|
continue;
|
|
|
|
auto nextSubjectType = req.getFirstType()->getCanonicalType();
|
|
auto *nextProto = req.getProtocolDecl();
|
|
|
|
MutableTerm mutTerm(pair.first);
|
|
mutTerm.append(Context.getMutableTermForType(nextSubjectType,
|
|
/*proto=*/lastProto));
|
|
System.simplify(mutTerm);
|
|
|
|
auto nextTerm = Term::get(mutTerm, Context);
|
|
|
|
// If we've already seen a path for this conformance, skip it and
|
|
// don't add it to the buffer. Note that because we iterate over
|
|
// conformance access paths in shortlex order, the existing
|
|
// conformance access path is shorter than the one we found just now.
|
|
if (ConformancePaths.count(
|
|
std::make_pair(nextTerm, nextProto)))
|
|
continue;
|
|
|
|
if (entries.empty()) {
|
|
// Fill our temporary vector.
|
|
entries.insert(entries.begin(),
|
|
pair.second.begin(),
|
|
pair.second.end());
|
|
}
|
|
|
|
// Add the next entry.
|
|
entries.emplace_back(nextSubjectType, nextProto);
|
|
ConformancePath result = ctx.AllocateCopy(entries);
|
|
entries.pop_back();
|
|
|
|
recordPath(nextTerm, nextProto, result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TypeDecl *
|
|
RequirementMachine::lookupNestedType(Type depType, Identifier name) const {
|
|
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
auto *props = Map.lookUpProperties(term);
|
|
if (!props)
|
|
return nullptr;
|
|
|
|
// Look for types with the given name in protocols that we know about.
|
|
AssociatedTypeDecl *bestAssocType = nullptr;
|
|
SmallVector<TypeDecl *, 4> concreteDecls;
|
|
|
|
for (const auto *proto : props->getConformsTo()) {
|
|
// Look for an associated type and/or concrete type with this name.
|
|
for (auto member : const_cast<ProtocolDecl *>(proto)->lookupDirect(name)) {
|
|
// If this is an associated type, record whether it is the best
|
|
// associated type we've seen thus far.
|
|
if (auto assocType = dyn_cast<AssociatedTypeDecl>(member)) {
|
|
// Retrieve the associated type anchor.
|
|
assocType = assocType->getAssociatedTypeAnchor();
|
|
|
|
if (!bestAssocType ||
|
|
compareAssociatedTypes(assocType, bestAssocType) < 0)
|
|
bestAssocType = assocType;
|
|
|
|
continue;
|
|
}
|
|
|
|
// If this is another type declaration, record it.
|
|
if (auto type = dyn_cast<TypeDecl>(member)) {
|
|
concreteDecls.push_back(type);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we haven't found anything yet but have a concrete type or a superclass,
|
|
// look for a type in that.
|
|
// FIXME: Shouldn't we always look here?
|
|
if (!bestAssocType && concreteDecls.empty()) {
|
|
Type typeToSearch;
|
|
if (props->isConcreteType())
|
|
typeToSearch = props->getConcreteType();
|
|
else if (props->hasSuperclassBound())
|
|
typeToSearch = props->getSuperclassBound();
|
|
|
|
if (typeToSearch)
|
|
lookupConcreteNestedType(typeToSearch, name, concreteDecls);
|
|
}
|
|
|
|
if (bestAssocType) {
|
|
ASSERT(bestAssocType->getOverriddenDecls().empty() &&
|
|
"Lookup should never keep a non-anchor associated type");
|
|
return bestAssocType;
|
|
|
|
} else if (!concreteDecls.empty()) {
|
|
// Find the best concrete type.
|
|
return findBestConcreteNestedType(concreteDecls);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
MutableTerm
|
|
RequirementMachine::getReducedShapeTerm(Type type) const {
|
|
ASSERT(type->isParameterPack());
|
|
|
|
auto term = Context.getMutableTermForType(type->getCanonicalType(),
|
|
/*proto=*/nullptr);
|
|
|
|
// From a type term T, form the shape term `T.[shape]`.
|
|
term.add(Symbol::forShape(Context));
|
|
|
|
// Compute the reduced shape term `T'.[shape]`.
|
|
System.simplify(term);
|
|
verify(term);
|
|
|
|
// Get the term T', which is the reduced shape of T.
|
|
if (term.size() != 2 ||
|
|
term[0].getKind() != Symbol::Kind::GenericParam ||
|
|
term[1].getKind() != Symbol::Kind::Shape) {
|
|
ABORT([&](auto &out) {
|
|
out << "Invalid reduced shape\n";
|
|
out << "Type: " << type << "\n";
|
|
out << "Term: " << term;
|
|
});
|
|
}
|
|
|
|
MutableTerm reducedTerm(term.begin(), term.end() - 1);
|
|
return reducedTerm;
|
|
}
|
|
|
|
Type RequirementMachine::getReducedShape(Type type,
|
|
ArrayRef<GenericTypeParamType *> genericParams) const {
|
|
if (!type->isParameterPack())
|
|
return Type();
|
|
|
|
return Map.getTypeForTerm(getReducedShapeTerm(type), genericParams);
|
|
}
|
|
|
|
bool RequirementMachine::haveSameShape(Type type1, Type type2) const {
|
|
auto term1 = getReducedShapeTerm(type1);
|
|
auto term2 = getReducedShapeTerm(type2);
|
|
|
|
return term1 == term2;
|
|
}
|
|
|
|
void RequirementMachine::verify(const MutableTerm &term) const {
|
|
if (!CONDITIONAL_ASSERT_enabled())
|
|
return;
|
|
|
|
// If the term is in the generic parameter domain, ensure we have a valid
|
|
// generic parameter.
|
|
if (term.begin()->getKind() == Symbol::Kind::GenericParam) {
|
|
auto *genericParam = term.begin()->getGenericParam();
|
|
auto genericParams = getGenericParams();
|
|
auto found = std::find_if(genericParams.begin(),
|
|
genericParams.end(),
|
|
[&](GenericTypeParamType *otherType) {
|
|
return genericParam->isEqual(otherType);
|
|
});
|
|
if (found == genericParams.end()) {
|
|
ABORT([&](auto &out) {
|
|
out << "Bad generic parameter in " << term << "\n";
|
|
dump(out);
|
|
});
|
|
}
|
|
}
|
|
|
|
MutableTerm erased;
|
|
|
|
// First, "erase" resolved associated types from the term, and try
|
|
// to simplify it again.
|
|
for (auto symbol : term) {
|
|
if (erased.empty()) {
|
|
switch (symbol.getKind()) {
|
|
case Symbol::Kind::Protocol:
|
|
case Symbol::Kind::GenericParam:
|
|
case Symbol::Kind::PackElement:
|
|
erased.add(symbol);
|
|
continue;
|
|
|
|
case Symbol::Kind::AssociatedType:
|
|
erased.add(Symbol::forProtocol(symbol.getProtocol(), Context));
|
|
break;
|
|
|
|
case Symbol::Kind::Name:
|
|
case Symbol::Kind::Layout:
|
|
case Symbol::Kind::Superclass:
|
|
case Symbol::Kind::ConcreteType:
|
|
case Symbol::Kind::ConcreteConformance:
|
|
case Symbol::Kind::Shape:
|
|
ABORT([&](auto &out) {
|
|
out << "Bad initial symbol in " << term;
|
|
});
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (symbol.getKind()) {
|
|
case Symbol::Kind::Name:
|
|
ASSERT(!erased.empty());
|
|
erased.add(symbol);
|
|
break;
|
|
|
|
case Symbol::Kind::AssociatedType:
|
|
erased.add(Symbol::forName(symbol.getName(), Context));
|
|
break;
|
|
|
|
case Symbol::Kind::Shape:
|
|
erased.add(symbol);
|
|
break;
|
|
|
|
case Symbol::Kind::Protocol:
|
|
case Symbol::Kind::GenericParam:
|
|
case Symbol::Kind::Layout:
|
|
case Symbol::Kind::Superclass:
|
|
case Symbol::Kind::ConcreteType:
|
|
case Symbol::Kind::ConcreteConformance:
|
|
case Symbol::Kind::PackElement:
|
|
ABORT([&](auto &out) {
|
|
out << "Bad interior symbol " << symbol << " in " << term;
|
|
});
|
|
break;
|
|
}
|
|
}
|
|
|
|
MutableTerm simplified = erased;
|
|
System.simplify(simplified);
|
|
|
|
// We should end up with the same term.
|
|
if (simplified != term) {
|
|
ABORT([&](auto &out) {
|
|
out << "Term verification failed\n";
|
|
out << "Initial term: " << term << "\n";
|
|
out << "Erased term: " << erased << "\n";
|
|
out << "Simplified term: " << simplified << "\n";
|
|
out << "\n";
|
|
dump(out);
|
|
});
|
|
}
|
|
}
|