Files
swift-mirror/lib/AST/RequirementMachine/GenericSignatureQueries.cpp
Hamish Knight edca7c85ad Adopt ABORT throughout the compiler
Convert a bunch of places where we're dumping to stderr and calling
`abort` over to using `ABORT` such that the message gets printed to
the pretty stack trace. This ensures it gets picked up by
CrashReporter.
2025-05-19 20:55:01 +01:00

877 lines
29 KiB
C++

//===--- GenericSignatureQueries.cpp --------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// The various generic signature query operations on GenericSignature will
// lazily construct a requirement machine for the generic signature from the
// RewriteContext, then call the methods in this file.
//
// If you're working elsewhere in the compiler, use the methods on
// GenericSignature instead of calling into the RequirementMachine directly.
//
// Each query is generally implemented in the same manner:
//
// - First, convert the subject type parameter into a Term.
// - Simplify the Term to obtain a reduced Term.
// - Perform a property map lookup on the Term.
// - Return the appropriate piece of information from the property map.
//
// A few are slightly different; for example, getReducedType() takes an
// arbitrary type, not just a type parameter, and recursively transfozms the
// type parameters it contains, if any.
//
// Also, getConformancePath() is another one-off operation.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/Module.h"
#include "swift/Basic/Assertions.h"
#include <vector>
#include "NameLookup.h"
#include "RequirementMachine.h"
using namespace swift;
using namespace rewriting;
/// Collects all requirements on a type parameter that are used to construct
/// its ArchetypeType in a GenericEnvironment.
GenericSignature::LocalRequirements
RequirementMachine::getLocalRequirements(Type depType) const {
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
System.simplify(term);
verify(term);
GenericSignature::LocalRequirements result;
result.packShape = getReducedShape(depType, {});
auto *props = Map.lookUpProperties(term);
if (!props)
return result;
if (props->hasSuperclassBound())
result.superclass = props->getSuperclassBound({}, term, Map);
for (const auto *proto : props->getConformsTo())
result.protos.push_back(const_cast<ProtocolDecl *>(proto));
ProtocolType::canonicalizeProtocols(result.protos);
result.layout = props->getLayoutConstraint();
return result;
}
bool RequirementMachine::requiresClass(Type depType) const {
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
System.simplify(term);
verify(term);
auto *props = Map.lookUpProperties(term);
if (!props)
return false;
if (props->isConcreteType())
return false;
auto layout = props->getLayoutConstraint();
return (layout && layout->isClass());
}
LayoutConstraint RequirementMachine::getLayoutConstraint(Type depType) const {
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
System.simplify(term);
verify(term);
auto *props = Map.lookUpProperties(term);
if (!props)
return LayoutConstraint();
return props->getLayoutConstraint();
}
bool RequirementMachine::requiresProtocol(Type depType,
const ProtocolDecl *proto) const {
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
System.simplify(term);
verify(term);
auto *props = Map.lookUpProperties(term);
if (!props)
return false;
if (props->isConcreteType())
return false;
for (auto *otherProto : props->getConformsTo()) {
if (otherProto == proto)
return true;
}
return false;
}
GenericSignature::RequiredProtocols
RequirementMachine::getRequiredProtocols(Type depType) const {
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
System.simplify(term);
verify(term);
auto *props = Map.lookUpProperties(term);
if (!props)
return { };
if (props->isConcreteType())
return { };
GenericSignature::RequiredProtocols result;
for (auto *otherProto : props->getConformsTo()) {
result.push_back(const_cast<ProtocolDecl *>(otherProto));
}
ProtocolType::canonicalizeProtocols(result);
return result;
}
Type RequirementMachine::
getSuperclassBound(Type depType,
ArrayRef<GenericTypeParamType *> genericParams) const {
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
System.simplify(term);
verify(term);
auto *props = Map.lookUpProperties(term);
if (!props)
return Type();
if (!props->hasSuperclassBound())
return Type();
return props->getSuperclassBound(genericParams, term, Map);
}
/// Unlike the other queries, we have occasion to call this on a requirement
/// machine for a protocol connected component as well as a top-level
/// generic signature, so plumb through the protocol to use for the root
/// `Self` generic parameter here.
bool RequirementMachine::isConcreteType(Type depType,
const ProtocolDecl *proto) const {
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
proto);
System.simplify(term);
verify(term);
auto *props = Map.lookUpProperties(term);
if (!props)
return false;
return props->isConcreteType();
}
/// Unlike the other queries, we have occasion to call this on a requirement
/// machine for a protocol connected component as well as a top-level
/// generic signature, so plumb through the protocol to use for the root
/// `Self` generic parameter here.
Type RequirementMachine::
getConcreteType(Type depType,
ArrayRef<GenericTypeParamType *> genericParams,
const ProtocolDecl *proto) const {
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
proto);
System.simplify(term);
verify(term);
auto *props = Map.lookUpProperties(term);
if (!props)
return Type();
if (!props->isConcreteType())
return Type();
return props->getConcreteType(genericParams, term, Map);
}
bool RequirementMachine::areReducedTypeParametersEqual(Type depType1,
Type depType2) const {
auto term1 = Context.getMutableTermForType(depType1->getCanonicalType(),
/*proto=*/nullptr);
System.simplify(term1);
verify(term1);
auto term2 = Context.getMutableTermForType(depType2->getCanonicalType(),
/*proto=*/nullptr);
System.simplify(term2);
verify(term2);
return (term1 == term2);
}
MutableTerm
RequirementMachine::getLongestValidPrefix(const MutableTerm &term) const {
MutableTerm prefix;
for (auto symbol : term) {
switch (symbol.getKind()) {
case Symbol::Kind::Name:
return prefix;
case Symbol::Kind::Protocol:
ASSERT(prefix.empty() &&
"Protocol symbol can only appear at the start of a type term");
break;
case Symbol::Kind::GenericParam: {
ASSERT(prefix.empty() &&
"Generic parameter symbol can only appear at the start of a type term");
if (std::find_if(Params.begin(), Params.end(),
[&](Type otherParam) -> bool {
return otherParam->isEqual(symbol.getGenericParam());
}) == Params.end()) {
return prefix;
}
break;
}
case Symbol::Kind::AssociatedType: {
const auto *props = Map.lookUpProperties(prefix);
if (!props)
return prefix;
auto conformsTo = props->getConformsTo();
// T.[P:A] is valid iff T conforms to P.
if (std::find(conformsTo.begin(), conformsTo.end(), symbol.getProtocol())
== conformsTo.end())
return prefix;
break;
}
case Symbol::Kind::Layout:
case Symbol::Kind::Superclass:
case Symbol::Kind::ConcreteType:
case Symbol::Kind::ConcreteConformance:
case Symbol::Kind::Shape:
case Symbol::Kind::PackElement:
ABORT([&](auto &out) {
out << "Invalid symbol in a type term: " << term;
});
}
// This symbol is valid, add it to the longest prefix.
prefix.add(symbol);
}
return prefix;
}
/// Unlike most other queries, the input type can be any type, not just a
/// type parameter.
///
/// Returns true if all structural components that are type parameters are
/// reduced, and in particular not concrete (in which case they're not
/// considered reduced, since they can be replaced with their concrete type).
bool RequirementMachine::isReducedType(Type type) const {
// Look for non-reduced type parameters.
class Walker : public TypeWalker {
const RequirementMachine &Self;
public:
explicit Walker(const RequirementMachine &self) : Self(self) {}
Action walkToTypePre(Type component) override {
if (!component->hasTypeParameter())
return Action::SkipNode;
if (!component->isTypeParameter())
return Action::Continue;
auto term = Self.Context.getMutableTermForType(
component->getCanonicalType(),
/*proto=*/nullptr);
Self.System.simplify(term);
Self.verify(term);
auto anchor = Self.Map.getTypeForTerm(term, {});
if (CanType(anchor) != CanType(component))
return Action::Stop;
auto *props = Self.Map.lookUpProperties(term);
if (props && props->isConcreteType())
return Action::Stop;
// The parent of a reduced type parameter might be non-reduced
// because it is concrete.
return Action::SkipNode;
}
};
return !type.walk(Walker(*this));
}
/// Given a type parameter 'T.A1.A2...An', a suffix length m where m <= n,
/// and a replacement type U, produce the type 'U.A(n-m)...An' by replacing
/// 'T.A1...A(n-m-1)' with 'U'.
///
/// FIXME: Remove this.
static Type substPrefixType(Type type, unsigned suffixLength, Type prefixType,
GenericSignature sig) {
if (suffixLength == 0)
return prefixType;
auto *memberType = type->castTo<DependentMemberType>();
auto substBaseType = substPrefixType(memberType->getBase(), suffixLength - 1,
prefixType, sig);
auto *assocDecl = memberType->getAssocType();
auto *proto = assocDecl->getProtocol();
auto conformance = lookupConformance(substBaseType, proto);
return conformance.getTypeWitness(assocDecl);
}
Type RequirementMachine::getReducedTypeParameter(
CanType t,
ArrayRef<GenericTypeParamType *> genericParams) const {
// Get a simplified term T.
auto term = Context.getMutableTermForType(t, /*proto=*/nullptr);
System.simplify(term);
// We need to handle "purely concrete" member types, eg if I have a
// signature <T where T == Foo>, and we're asked to reduce the
// type T.[P:A] where Foo : A.
//
// This comes up because we can derive the signature <T where T == Foo>
// from a generic signature like <T where T : P>; adding the
// concrete requirement 'T == Foo' renders 'T : P' redundant. We then
// want to take interface types written against the original signature
// and reduce them with respect to the derived signature.
//
// The problem is that T.[P:A] is not a valid term in the rewrite system
// for <T where T == Foo>, since we do not have the requirement T : P.
//
// A more principled solution would build a substitution map when
// building a derived generic signature that adds new requirements;
// interface types would first be substituted before being reduced
// in the new signature.
//
// For now, we handle this with a two-step process; we split a term up
// into a longest valid prefix, which must resolve to a concrete type,
// and the remaining suffix, which we use to perform a concrete
// substitution using subst().
// In the below, let T be a type term, with T == UV, where U is the
// longest valid prefix.
//
// Note that V can be empty if T is fully valid; we expect this to be
// true most of the time.
//
// FIXME: Remove all of this.
auto prefix = getLongestValidPrefix(term);
// Get a type (concrete or dependent) for U.
auto prefixType = [&]() -> Type {
if (prefix.empty())
return Type();
verify(prefix);
auto *props = Map.lookUpProperties(prefix);
if (props) {
if (props->isConcreteType()) {
auto concreteType = props->getConcreteType(genericParams,
prefix, Map);
if (!concreteType->hasTypeParameter())
return concreteType;
// FIXME: Recursion guard is needed here
return getReducedType(concreteType, genericParams);
}
// Skip this part if the entire input term is valid, because in that
// case we don't want to replace the term with its superclass bound;
// unlike a fixed concrete type, the superclass bound only comes into
// play when looking up a member type.
if (props->hasSuperclassBound() &&
prefix.size() != term.size()) {
auto superclass = props->getSuperclassBound(genericParams,
prefix, Map);
if (!superclass->hasTypeParameter())
return superclass;
// FIXME: Recursion guard is needed here
return getReducedType(superclass, genericParams);
}
}
return Map.getTypeForTerm(prefix, genericParams);
}();
// If T is already valid, the longest valid prefix U of T is T itself, and
// V is empty. Just return the type we computed above.
//
// This is the only case where U is allowed to be dependent.
if (prefix.size() == term.size())
return prefixType;
// If U is not concrete, we have an invalid member type of a dependent
// type, which is not valid in this generic signature. Give up.
if (prefix.empty() || prefixType->isTypeParameter()) {
ABORT([&](auto &out) {
out << "getReducedTypeParameter() was called\n";
out << " with " << Sig << ",\n";
out << " and " << t << ".\n\n";
if (prefix.empty()) {
out << "This type parameter contains the generic parameter "
<< Type(t->getRootGenericParam()) << ".\n\n";
out << "This generic parameter is not part of the given "
<< "generic signature.\n\n";
} else {
out << "This type parameter's reduced term is " << term << ".\n\n";
out << "This is not a valid term, because " << prefix << " does not "
<< "have a member type named " << term[prefix.size()] << ".\n\n";
}
out << "This usually indicates the caller passed the wrong type or "
<< "generic signature to getReducedType().\n\n";
dump(out);
});
}
// Compute the type of the unresolved suffix term V.
auto substType = substPrefixType(t, term.size() - prefix.size(),
prefixType, Sig);
// FIXME: Recursion guard is needed here
return getReducedType(substType, genericParams);
}
/// Unlike most other queries, the input type can be any type, not just a
/// type parameter.
///
/// Replaces all structural components that are type parameters with their
/// reduced form, which is either a (possibly different) type parameter,
/// or a concrete type, in which case we recursively reduce any type
/// parameters appearing in structural positions of that concrete type
/// as well, and so on.
Type RequirementMachine::getReducedType(
Type type,
ArrayRef<GenericTypeParamType *> genericParams) const {
return type.transformRec([&](Type t) -> std::optional<Type> {
if (!t->hasTypeParameter())
return t;
// The reduced type of a PackExpansionType has a reduced *shape* for
// the count type.
if (auto *packExpansionType = t->getAs<PackExpansionType>()) {
auto reducedPattern = getReducedType(packExpansionType->getPatternType(),
genericParams);
auto reducedShape = packExpansionType->getCountType();
if (reducedShape->isParameterPack())
reducedShape = getReducedShape(reducedShape, genericParams);
return Type(PackExpansionType::get(reducedPattern, reducedShape));
}
if (!t->isTypeParameter())
return std::nullopt;
return getReducedTypeParameter(t->getCanonicalType(), genericParams);
});
}
/// Determine if the given type parameter is valid with respect to this
/// requirement machine's generic signature.
bool RequirementMachine::isValidTypeParameter(Type type) const {
auto term = Context.getMutableTermForType(type->getCanonicalType(),
/*proto=*/nullptr);
System.simplify(term);
auto prefix = getLongestValidPrefix(term);
return (prefix == term);
}
/// Retrieve the conformance path used to extract the conformance of
/// interface \c type to the given \c protocol.
///
/// \param type The interface type whose conformance access path is to be
/// queried.
/// \param protocol A protocol to which \c type conforms.
///
/// \returns the conformance access path that starts at a requirement of
/// this generic signature and ends at the conformance that makes \c type
/// conform to \c protocol.
///
/// \seealso ConformancePath
ConformancePath
RequirementMachine::getConformancePath(Type type,
ProtocolDecl *protocol) {
auto mutTerm = Context.getMutableTermForType(type->getCanonicalType(),
/*proto=*/nullptr);
System.simplify(mutTerm);
verify(mutTerm);
if (CONDITIONAL_ASSERT_enabled()) {
auto *props = Map.lookUpProperties(mutTerm);
ASSERT(props &&
"Subject type of conformance access path should be known");
ASSERT(!props->isConcreteType() &&
"Concrete types do not have conformance access paths");
auto conformsTo = props->getConformsTo();
ASSERT(std::find(conformsTo.begin(), conformsTo.end(), protocol) &&
"Subject type of conformance access path must conform to protocol");
}
auto term = Term::get(mutTerm, Context);
// Check if we've already cached the result before doing anything else.
auto found = ConformancePaths.find(
std::make_pair(term, protocol));
if (found != ConformancePaths.end()) {
return found->second;
}
auto &ctx = Context.getASTContext();
FrontendStatsTracer tracer(Stats, "get-conformance-access-path");
auto recordPath = [&](Term term, ProtocolDecl *proto,
ConformancePath path) {
// Add the path to the buffer.
CurrentConformancePaths.emplace_back(term, path);
// Add the path to the map.
auto key = std::make_pair(term, proto);
auto inserted = ConformancePaths.insert(
std::make_pair(key, path));
ASSERT(inserted.second);
if (Stats)
++Stats->getFrontendCounters().NumConformancePathsRecorded;
};
// If this is the first time we're asked to look up a conformance access path,
// visit all of the root conformance requirements in our generic signature and
// add them to the buffer.
if (ConformancePaths.empty()) {
for (const auto &req : Sig.getRequirements()) {
// We only care about conformance requirements.
if (req.getKind() != RequirementKind::Conformance)
continue;
auto rootType = CanType(req.getFirstType());
auto *rootProto = req.getProtocolDecl();
ConformancePath::Entry root(rootType, rootProto);
ArrayRef<ConformancePath::Entry> path(root);
ConformancePath result(ctx.AllocateCopy(path));
auto mutTerm = Context.getMutableTermForType(rootType, nullptr);
System.simplify(mutTerm);
auto rootTerm = Term::get(mutTerm, Context);
recordPath(rootTerm, rootProto, result);
}
}
// We enumerate conformance paths in shortlex order until we find the
// path whose corresponding type reduces to the one we are looking for.
while (true) {
auto found = ConformancePaths.find(
std::make_pair(term, protocol));
if (found != ConformancePaths.end()) {
return found->second;
}
if (CurrentConformancePaths.empty()) {
ABORT([&](auto &out) {
out << "Failed to find conformance path for ";
out << type << " (" << term << ")" << " : ";
out << protocol->getName() << ":\n";
type.dump(out);
out << "\n";
dump(out);
});
}
// The buffer consists of all conformance paths of length N.
// Swap it out with an empty buffer, and fill it with all paths of
// length N+1.
std::vector<std::pair<Term, ConformancePath>> oldPaths;
std::swap(CurrentConformancePaths, oldPaths);
for (const auto &pair : oldPaths) {
const auto &lastElt = pair.second.back();
auto *lastProto = lastElt.second;
// A copy of the current path, populated as needed.
SmallVector<ConformancePath::Entry, 4> entries;
auto reqs = lastProto->getRequirementSignature().getRequirements();
for (const auto &req : reqs) {
// We only care about conformance requirements.
if (req.getKind() != RequirementKind::Conformance)
continue;
auto nextSubjectType = req.getFirstType()->getCanonicalType();
auto *nextProto = req.getProtocolDecl();
MutableTerm mutTerm(pair.first);
mutTerm.append(Context.getMutableTermForType(nextSubjectType,
/*proto=*/lastProto));
System.simplify(mutTerm);
auto nextTerm = Term::get(mutTerm, Context);
// If we've already seen a path for this conformance, skip it and
// don't add it to the buffer. Note that because we iterate over
// conformance access paths in shortlex order, the existing
// conformance access path is shorter than the one we found just now.
if (ConformancePaths.count(
std::make_pair(nextTerm, nextProto)))
continue;
if (entries.empty()) {
// Fill our temporary vector.
entries.insert(entries.begin(),
pair.second.begin(),
pair.second.end());
}
// Add the next entry.
entries.emplace_back(nextSubjectType, nextProto);
ConformancePath result = ctx.AllocateCopy(entries);
entries.pop_back();
recordPath(nextTerm, nextProto, result);
}
}
}
}
TypeDecl *
RequirementMachine::lookupNestedType(Type depType, Identifier name) const {
auto term = Context.getMutableTermForType(depType->getCanonicalType(),
/*proto=*/nullptr);
System.simplify(term);
verify(term);
auto *props = Map.lookUpProperties(term);
if (!props)
return nullptr;
// Look for types with the given name in protocols that we know about.
AssociatedTypeDecl *bestAssocType = nullptr;
SmallVector<TypeDecl *, 4> concreteDecls;
for (const auto *proto : props->getConformsTo()) {
// Look for an associated type and/or concrete type with this name.
for (auto member : const_cast<ProtocolDecl *>(proto)->lookupDirect(name)) {
// If this is an associated type, record whether it is the best
// associated type we've seen thus far.
if (auto assocType = dyn_cast<AssociatedTypeDecl>(member)) {
// Retrieve the associated type anchor.
assocType = assocType->getAssociatedTypeAnchor();
if (!bestAssocType ||
compareAssociatedTypes(assocType, bestAssocType) < 0)
bestAssocType = assocType;
continue;
}
// If this is another type declaration, record it.
if (auto type = dyn_cast<TypeDecl>(member)) {
concreteDecls.push_back(type);
continue;
}
}
}
// If we haven't found anything yet but have a concrete type or a superclass,
// look for a type in that.
// FIXME: Shouldn't we always look here?
if (!bestAssocType && concreteDecls.empty()) {
Type typeToSearch;
if (props->isConcreteType())
typeToSearch = props->getConcreteType();
else if (props->hasSuperclassBound())
typeToSearch = props->getSuperclassBound();
if (typeToSearch)
lookupConcreteNestedType(typeToSearch, name, concreteDecls);
}
if (bestAssocType) {
ASSERT(bestAssocType->getOverriddenDecls().empty() &&
"Lookup should never keep a non-anchor associated type");
return bestAssocType;
} else if (!concreteDecls.empty()) {
// Find the best concrete type.
return findBestConcreteNestedType(concreteDecls);
}
return nullptr;
}
MutableTerm
RequirementMachine::getReducedShapeTerm(Type type) const {
ASSERT(type->isParameterPack());
auto term = Context.getMutableTermForType(type->getCanonicalType(),
/*proto=*/nullptr);
// From a type term T, form the shape term `T.[shape]`.
term.add(Symbol::forShape(Context));
// Compute the reduced shape term `T'.[shape]`.
System.simplify(term);
verify(term);
// Get the term T', which is the reduced shape of T.
if (term.size() != 2 ||
term[0].getKind() != Symbol::Kind::GenericParam ||
term[1].getKind() != Symbol::Kind::Shape) {
ABORT([&](auto &out) {
out << "Invalid reduced shape\n";
out << "Type: " << type << "\n";
out << "Term: " << term;
});
}
MutableTerm reducedTerm(term.begin(), term.end() - 1);
return reducedTerm;
}
Type RequirementMachine::getReducedShape(Type type,
ArrayRef<GenericTypeParamType *> genericParams) const {
if (!type->isParameterPack())
return Type();
return Map.getTypeForTerm(getReducedShapeTerm(type), genericParams);
}
bool RequirementMachine::haveSameShape(Type type1, Type type2) const {
auto term1 = getReducedShapeTerm(type1);
auto term2 = getReducedShapeTerm(type2);
return term1 == term2;
}
void RequirementMachine::verify(const MutableTerm &term) const {
if (!CONDITIONAL_ASSERT_enabled())
return;
// If the term is in the generic parameter domain, ensure we have a valid
// generic parameter.
if (term.begin()->getKind() == Symbol::Kind::GenericParam) {
auto *genericParam = term.begin()->getGenericParam();
auto genericParams = getGenericParams();
auto found = std::find_if(genericParams.begin(),
genericParams.end(),
[&](GenericTypeParamType *otherType) {
return genericParam->isEqual(otherType);
});
if (found == genericParams.end()) {
ABORT([&](auto &out) {
out << "Bad generic parameter in " << term << "\n";
dump(out);
});
}
}
MutableTerm erased;
// First, "erase" resolved associated types from the term, and try
// to simplify it again.
for (auto symbol : term) {
if (erased.empty()) {
switch (symbol.getKind()) {
case Symbol::Kind::Protocol:
case Symbol::Kind::GenericParam:
case Symbol::Kind::PackElement:
erased.add(symbol);
continue;
case Symbol::Kind::AssociatedType:
erased.add(Symbol::forProtocol(symbol.getProtocol(), Context));
break;
case Symbol::Kind::Name:
case Symbol::Kind::Layout:
case Symbol::Kind::Superclass:
case Symbol::Kind::ConcreteType:
case Symbol::Kind::ConcreteConformance:
case Symbol::Kind::Shape:
ABORT([&](auto &out) {
out << "Bad initial symbol in " << term;
});
break;
}
}
switch (symbol.getKind()) {
case Symbol::Kind::Name:
ASSERT(!erased.empty());
erased.add(symbol);
break;
case Symbol::Kind::AssociatedType:
erased.add(Symbol::forName(symbol.getName(), Context));
break;
case Symbol::Kind::Shape:
erased.add(symbol);
break;
case Symbol::Kind::Protocol:
case Symbol::Kind::GenericParam:
case Symbol::Kind::Layout:
case Symbol::Kind::Superclass:
case Symbol::Kind::ConcreteType:
case Symbol::Kind::ConcreteConformance:
case Symbol::Kind::PackElement:
ABORT([&](auto &out) {
out << "Bad interior symbol " << symbol << " in " << term;
});
break;
}
}
MutableTerm simplified = erased;
System.simplify(simplified);
// We should end up with the same term.
if (simplified != term) {
ABORT([&](auto &out) {
out << "Term verification failed\n";
out << "Initial term: " << term << "\n";
out << "Erased term: " << erased << "\n";
out << "Simplified term: " << simplified << "\n";
out << "\n";
dump(out);
});
}
}