Files
swift-mirror/lib/AST/RequirementMachine/HomotopyReduction.cpp
Hamish Knight edca7c85ad Adopt ABORT throughout the compiler
Convert a bunch of places where we're dumping to stderr and calling
`abort` over to using `ABORT` such that the message gets printed to
the pretty stack trace. This ensures it gets picked up by
CrashReporter.
2025-05-19 20:55:01 +01:00

858 lines
28 KiB
C++

//===--- HomotopyReduction.cpp - Higher-dimensional term rewriting --------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the algorithm for computing a minimal set of rules from
// a confluent rewrite system. A minimal set of rules is:
//
// 1) Large enough that computing the confluent completion produces the original
// rewrite system;
//
// 2) Small enough that no further rules can be deleted without changing the
// resulting confluent rewrite system.
//
// The main entry point here is RewriteSystem::minimizeRewriteSystem().
//
// Redundant rules are detected by analyzing the set of rewrite loops computed
// by the completion procedure. See RewriteLoop.cpp for a discussion of rewrite
// loops.
//
// If a rewrite rule appears exactly once in a loop and without context, the
// loop witnesses a redundancy; the rewrite rule is equivalent to traveling
// around the loop "in the other direction". This rewrite rule and the
// corresponding rewrite loop can be deleted.
//
// Any occurrence of the rule in the remaining loops is replaced with the
// alternate definition obtained by splitting the loop that witnessed the
// redundancy.
//
// Iterating this process eventually produces a minimal set of rewrite rules.
//
// For a description of the general algorithm, see "A Homotopical Completion
// Procedure with Applications to Coherence of Monoids",
// https://hal.inria.fr/hal-00818253.
//
// Note that in the world of Swift, rewrite rules for introducing associated
// type symbols are marked 'permanent'; they are always re-added when a new
// rewrite system is built from a minimal generic signature, so instead of
// deleting them it is better to leave them in place in case it allows other
// rules to be deleted instead.
//
// Also, for a conformance rule (V.[P] => V) to be redundant, a stronger
// condition is needed than appearing once in a loop and without context;
// the rule must not be a _minimal conformance_. The algorithm for computing
// minimal conformances is implemented in MinimalConformances.cpp.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Type.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Range.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include "PropertyMap.h"
#include "RewriteContext.h"
#include "RewriteSystem.h"
using namespace swift;
using namespace rewriting;
/// If a rewrite loop contains an explicit rule in empty context, propagate the
/// explicit bit to all other rules appearing in empty context within the same
/// loop.
///
/// When computing minimal conformances we prefer to eliminate non-explicit
/// rules, as a heuristic to ensure that minimized conformance requirements
/// remain in the same protocol as originally written, in cases where they can
/// be moved between protocols.
///
/// However, conformance rules can also be written in a non-canonical way.
///
/// Most conformance requirements are non-canonical, since the original
/// requirements use unresolved types. For example, a requirement 'Self.X.Y : Q'
/// inside a protocol P will lower to a rewrite rule
///
/// [P].X.Y.[Q] => [P].X.Y
///
/// Completion will then add a new rule that looks something like this, using
/// associated type symbols:
///
/// [P:X].[P2:Y].[Q] => [P:X].[P2:Y]
///
/// Furthermore, if [P:X].[P2:Y] simplies to some other term, such as [P:Z],
/// there will be yet another rule added by completion:
///
/// [P:Z].[Q] => [P:Z]
///
/// The new rules are related to the original rule via rewrite loops where
/// both rules appear in empty context. This algorithm will propagate the
/// explicit bit from the original rule to the canonical rule.
void RewriteSystem::propagateExplicitBits() {
for (const auto &loop : Loops) {
auto rulesInEmptyContext =
loop.findRulesAppearingOnceInEmptyContext(*this);
bool sawExplicitRule = false;
for (unsigned ruleID : rulesInEmptyContext) {
const auto &rule = getRule(ruleID);
if (rule.isExplicit())
sawExplicitRule = true;
}
if (sawExplicitRule) {
for (unsigned ruleID : rulesInEmptyContext) {
auto &rule = getRule(ruleID);
if (!rule.isPermanent() && !rule.isExplicit())
rule.markExplicit();
}
}
}
}
/// Find concrete type or superclass rules where the right hand side occurs as a
/// proper prefix of one of its substitutions.
///
/// eg, (T.[concrete: G<T.[P:A]>] => T).
void RewriteSystem::computeRecursiveRules() {
for (unsigned ruleID = FirstLocalRule, e = Rules.size();
ruleID < e; ++ruleID) {
auto &rule = getRule(ruleID);
if (rule.isPermanent() ||
rule.isRedundant())
continue;
auto optSymbol = rule.isPropertyRule();
if (!optSymbol)
continue;
auto kind = optSymbol->getKind();
if (kind != Symbol::Kind::ConcreteType &&
kind != Symbol::Kind::Superclass) {
continue;
}
auto rhs = rule.getRHS();
for (auto term : optSymbol->getSubstitutions()) {
if (term.size() > rhs.size() &&
std::equal(rhs.begin(), rhs.end(), term.begin())) {
RecursiveRules.push_back(ruleID);
rule.markRecursive();
break;
}
}
}
}
/// Find a rule to delete by looking through all loops for rewrite rules appearing
/// once in empty context. Returns a pair consisting of a loop ID and a rule ID,
/// otherwise returns None.
///
/// Minimization performs three passes over the rewrite system.
///
/// 1) First, rules that are not conformance rules are deleted, with
/// \p redundantConformances equal to nullptr.
///
/// 2) Second, minimal conformances are computed.
///
/// 3) Finally, redundant conformance rules are deleted, with
/// \p redundantConformances equal to the set of conformance rules that are
/// not minimal conformances.
std::optional<std::pair<unsigned, unsigned>>
RewriteSystem::findRuleToDelete(EliminationPredicate isRedundantRuleFn) {
SmallVector<std::pair<unsigned, unsigned>, 2> redundancyCandidates;
for (unsigned loopID : indices(Loops)) {
auto &loop = Loops[loopID];
if (loop.isDeleted())
continue;
// Delete loops that don't contain any rewrite rules in empty context,
// since such loops do not yield any elimination candidates.
if (!loop.isUseful(*this)) {
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "** Deleting useless loop #" << loopID << ": ";
loop.dump(llvm::dbgs(), *this);
llvm::dbgs() << "\n";
}
loop.markDeleted();
continue;
}
for (unsigned ruleID : loop.findRulesAppearingOnceInEmptyContext(*this)) {
redundancyCandidates.emplace_back(loopID, ruleID);
}
}
std::optional<std::pair<unsigned, unsigned>> found;
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "\n";
}
for (const auto &pair : redundancyCandidates) {
unsigned loopID = pair.first;
unsigned ruleID = pair.second;
const auto &loop = Loops[loopID];
const auto &rule = getRule(ruleID);
// We should not find a rule that has already been marked redundant
// here; it should have already been replaced with a rewrite path
// in all homotopy generators.
ASSERT(!rule.isRedundant());
// Associated type introduction rules are 'permanent'. They're
// not worth eliminating since they are re-added every time; it
// is better to find other candidates to eliminate in the same
// loop instead.
if (rule.isPermanent())
continue;
// Homotopy reduction runs multiple passes with different filters to
// prioritize the deletion of certain rules ahead of others. Apply
// the filter now.
if (!isRedundantRuleFn(loopID, ruleID)) {
if (Debug.contains(DebugFlags::HomotopyReductionDetail)) {
llvm::dbgs() << "** Skipping rule " << rule << " from loop #"
<< loopID << "\n";
}
continue;
}
if (Debug.contains(DebugFlags::HomotopyReductionDetail)) {
llvm::dbgs() << "** Candidate rule " << rule << " from loop #"
<< loopID << "\n";
}
if (!found) {
found = pair;
continue;
}
// 'rule' is the candidate rule; 'otherRule' is the best rule to eliminate
// we've found so far.
const auto &otherRule = getRule(found->second);
const auto &otherLoop = Loops[found->first];
{
// If one of the rules was a concrete unification projection, prefer to
// eliminate the *other* rule.
//
// For example, if 'X.T == G<U, V>' is implied by the conformance on X,
// and the following three rules are defined in the current protocol:
//
// a) X.T == G<Int, W>
// b) X.U == Int
// c) X.V == W
//
// Then we can either eliminate a) alone, or b) and c). Since b) and c)
// are projections, they are "simpler", and we would rather keep both and
// eliminate a).
unsigned projectionCount = loop.getProjectionCount(*this);
unsigned otherProjectionCount = otherLoop.getProjectionCount(*this);
if (projectionCount != otherProjectionCount) {
if (projectionCount < otherProjectionCount)
found = pair;
continue;
}
}
{
// If one of the rules is a concrete type requirement, prefer to
// eliminate the *other* rule.
bool ruleIsConcrete = rule.getLHS().back().hasSubstitutions();
bool otherRuleIsConcrete = otherRule.getLHS().back().hasSubstitutions();
if (ruleIsConcrete != otherRuleIsConcrete) {
if (otherRuleIsConcrete)
found = pair;
continue;
}
}
{
// If both are concrete type requirements, prefer to eliminate the
// one with the more deeply nested type.
unsigned ruleNesting = rule.getNesting();
unsigned otherRuleNesting = otherRule.getNesting();
if (ruleNesting != otherRuleNesting) {
if (ruleNesting > otherRuleNesting)
found = pair;
continue;
}
}
{
// Otherwise, perform a shortlex comparison on (LHS, RHS).
std::optional<int> comparison = rule.compare(otherRule, Context);
if (!comparison.has_value()) {
// Two rules (T.[C] => T) and (T.[C'] => T) are incomparable if
// C and C' are superclass, concrete type or concrete conformance
// symbols.
continue;
}
if (*comparison == 0) {
// Given two rewrite loops that both eliminate the same rule, prefer
// the one that was not recorded by substitution simplification;
// substitution simplification rules contain the projections in
// context, which then prevents the projections from being eliminated.
//
// An example is if you have two rules implied by conformances on X,
//
// a) X.T == G<Y>
// b) X.T == G<Z>
//
// then the induced rule Y == Z is a projection.
//
// The rule X.T == G<Z> can be eliminated with a loop that begins at
// X.T.[concrete: G<Y>] followed by a decomposition and rewrite of
// Y into Z, finally followed by an inverse decomposition back to
// X.T.[concrete: G<Z>].
//
// However, if we can eliminate G<Y> via some other loop, we prefer
// to do that, since that might *also* allow us to eliminate Y == Z.
unsigned decomposeCount = loop.getDecomposeCount(*this);
unsigned otherDecomposeCount = otherLoop.getDecomposeCount(*this);
if (decomposeCount != otherDecomposeCount) {
if (decomposeCount < otherDecomposeCount)
found = pair;
continue;
}
}
if (*comparison > 0) {
// Otherwise, if the new rule is less canonical than the best one so
// far, it becomes the new candidate for elimination.
found = pair;
continue;
}
}
}
return found;
}
/// Delete a rewrite rule that is known to be redundant, replacing all
/// occurrences of the rule in all loops with the replacement path.
void RewriteSystem::deleteRule(unsigned ruleID,
const RewritePath &replacementPath) {
// Replace all occurrences of the rule with the replacement path in
// all remaining rewrite loops.
for (unsigned loopID : indices(Loops)) {
auto &loop = Loops[loopID];
if (loop.isDeleted())
continue;
bool changed = loop.Path.replaceRuleWithPath(ruleID, replacementPath);
if (!changed)
continue;
if (Context.getASTContext().LangOpts.EnableRequirementMachineLoopNormalization) {
loop.computeNormalForm(*this);
}
// The loop's path has changed, so we must invalidate the cached
// result of findRulesAppearingOnceInEmptyContext().
loop.markDirty();
if (Debug.contains(DebugFlags::HomotopyReductionDetail)) {
llvm::dbgs() << "** Updated loop #" << loopID << ": ";
loop.dump(llvm::dbgs(), *this);
llvm::dbgs() << "\n";
}
}
// Record the redundant rule along with its replacement path.
RedundantRules.emplace_back(ruleID, replacementPath);
}
void RewriteSystem::performHomotopyReduction(
EliminationPredicate isRedundantRuleFn) {
while (true) {
auto optPair = findRuleToDelete(isRedundantRuleFn);
// If no redundant rules remain which can be eliminated by this pass, stop.
if (!optPair)
break;
unsigned loopID = optPair->first;
unsigned ruleID = optPair->second;
auto &loop = Loops[loopID];
auto replacementPath = loop.Path.splitCycleAtRule(ruleID);
loop.markDeleted();
auto &rule = getRule(ruleID);
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "** Deleting rule " << rule << " from loop #"
<< loopID << "\n";
llvm::dbgs() << "* Replacement path: ";
MutableTerm mutTerm(getRule(ruleID).getLHS());
replacementPath.dump(llvm::dbgs(), mutTerm, *this);
llvm::dbgs() << "\n";
}
rule.markRedundant();
deleteRule(ruleID, replacementPath);
}
}
/// Use the loops to delete redundant rewrite rules via a series of Tietze
/// transformations, updating and simplifying existing loops as each rule
/// is deleted.
///
/// Redundant rules are mutated to set their isRedundant() bit.
void RewriteSystem::minimizeRewriteSystem(const PropertyMap &map) {
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "-----------------------------\n";
llvm::dbgs() << "- Minimizing rewrite system -\n";
llvm::dbgs() << "-----------------------------\n";
}
ASSERT(Complete);
ASSERT(!Minimized);
ASSERT(!Frozen);
Minimized = 1;
propagateExplicitBits();
if (Context.getASTContext().LangOpts.EnableRequirementMachineLoopNormalization) {
for (auto &loop : Loops) {
loop.computeNormalForm(*this);
}
}
// First pass:
// - Eliminate all LHS-simplified non-conformance rules.
// - Eliminate all RHS-simplified and substitution-simplified rules.
//
// An example of a conformance rule that is LHS-simplified but not
// RHS-simplified is (T.[P] => T) where T is irreducible, but there
// is a rule (V.[P] => V) for some V with T == U.V.
//
// Such conformance rules can still be minimal, as part of a hack to
// maintain compatibility with the GenericSignatureBuilder's minimization
// algorithm.
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "------------------------------\n";
llvm::dbgs() << "First pass: simplified rules -\n";
llvm::dbgs() << "------------------------------\n";
}
performHomotopyReduction([&](unsigned loopID, unsigned ruleID) -> bool {
const auto &rule = getRule(ruleID);
if (rule.isLHSSimplified() &&
!rule.isAnyConformanceRule())
return true;
if (rule.isRHSSimplified() ||
rule.isSubstitutionSimplified())
return true;
return false;
});
// Second pass:
// - Eliminate all rules with unresolved symbols which were *not*
// simplified.
//
// Two examples of such rules:
//
// - (T.X => T.[P:X]) obtained from resolving the overlap between
// (T.[P] => T) and ([P].X => [P:X]).
//
// - (T.X.[concrete: C] => T.X) obtained from resolving the overlap
// between (T.[P] => T) and a protocol typealias rule
// ([P].X.[concrete: C] => [P].X).
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "-------------------------------\n";
llvm::dbgs() << "Second pass: unresolved rules -\n";
llvm::dbgs() << "-------------------------------\n";
}
performHomotopyReduction([&](unsigned loopID, unsigned ruleID) -> bool {
const auto &rule = getRule(ruleID);
if (rule.containsNameSymbols())
return true;
return false;
});
// Now compute a set of minimal conformances.
//
// FIXME: For now this just produces a set of redundant conformances, but
// it should actually output the canonical minimal conformance equation
// for each non-minimal conformance. We can then use information to
// compute conformance access paths, instead of the current "brute force"
// algorithm used for that purpose.
llvm::DenseSet<unsigned> redundantConformances;
computeMinimalConformances(map, redundantConformances);
// Third pass: Eliminate all non-minimal conformance rules.
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "-------------------------------------------\n";
llvm::dbgs() << "Third pass: non-minimal conformance rules -\n";
llvm::dbgs() << "-------------------------------------------\n";
}
performHomotopyReduction([&](unsigned loopID, unsigned ruleID) -> bool {
const auto &rule = getRule(ruleID);
if (rule.isAnyConformanceRule() &&
redundantConformances.count(ruleID))
return true;
return false;
});
// Fourth pass: Eliminate all remaining redundant non-conformance rules.
if (Debug.contains(DebugFlags::HomotopyReduction)) {
llvm::dbgs() << "----------------------------------------\n";
llvm::dbgs() << "Fourth pass: all other redundant rules -\n";
llvm::dbgs() << "----------------------------------------\n";
}
performHomotopyReduction([&](unsigned loopID, unsigned ruleID) -> bool {
const auto &loop = Loops[loopID];
const auto &rule = getRule(ruleID);
if (rule.isProtocolTypeAliasRule())
return true;
if (!loop.hasConcreteTypeAliasRule(*this) &&
!rule.isAnyConformanceRule())
return true;
return false;
});
computeRecursiveRules();
// Check invariants after homotopy reduction.
verifyRewriteLoops();
verifyRedundantConformances(redundantConformances);
verifyMinimizedRules(redundantConformances);
if (Debug.contains(DebugFlags::RedundantRules)) {
llvm::dbgs() << "\nRedundant rules:\n";
for (const auto &pair : RedundantRules) {
const auto &rule = getRule(pair.first);
llvm::dbgs() << "- ("
<< rule.getLHS() << " => "
<< rule.getRHS() << ") ::== ";
MutableTerm lhs(rule.getLHS());
pair.second.dump(llvm::dbgs(), lhs, *this);
llvm::dbgs() << "\n";
if (Debug.contains(DebugFlags::RedundantRulesDetail)) {
llvm::dbgs() << "\n";
pair.second.dumpLong(llvm::dbgs(), lhs, *this);
llvm::dbgs() << "\n\n";
}
}
}
}
/// Returns flags indicating if the rewrite system has unresolved or
/// conflicting rules in our minimization domain. If these flags are
/// set, we do not install this rewrite system in the rewrite context
/// after minimization. Instead, we will rebuild a new rewrite system
/// from the minimized requirements.
GenericSignatureErrors RewriteSystem::getErrors() const {
ASSERT(Complete);
ASSERT(Minimized);
GenericSignatureErrors result;
if (!ConflictingRules.empty())
result |= GenericSignatureErrorFlags::HasInvalidRequirements;
for (const auto &rule : getLocalRules()) {
if (rule.isPermanent())
continue;
// The conditional requirement inference feature imports new protocol
// components after the basic rewrite system is already built, so that's
// why we end up with imported rules that appear to be in the local rules
// slice. Those rules are well-formed, but their isRedundant() bit isn't
// set, so we must ignore them here.
if (!isInMinimizationDomain(rule.getLHS().getRootProtocol()))
continue;
if (!rule.isRedundant()) {
if (!rule.isProtocolTypeAliasRule() &&
rule.containsNameSymbols())
result |= GenericSignatureErrorFlags::HasInvalidRequirements;
}
if (rule.isRecursive())
result |= GenericSignatureErrorFlags::HasInvalidRequirements;
if (!rule.isRedundant()) {
if (auto property = rule.isPropertyRule()) {
if (property->getKind() == Symbol::Kind::ConcreteConformance)
result |= GenericSignatureErrorFlags::HasConcreteConformances;
if (property->hasSubstitutions() &&
property->containsNameSymbols())
result |= GenericSignatureErrorFlags::HasInvalidRequirements;
}
}
}
return result;
}
/// Collect all non-permanent, non-redundant rules whose domain is equal to
/// one of the protocols in the connected component represented by this
/// rewrite system.
///
/// These rules form the requirement signatures of these protocols.
llvm::DenseMap<const ProtocolDecl *, RewriteSystem::MinimizedProtocolRules>
RewriteSystem::getMinimizedProtocolRules() const {
ASSERT(Minimized);
ASSERT(!Protos.empty());
llvm::DenseMap<const ProtocolDecl *, MinimizedProtocolRules> rules;
for (unsigned ruleID = FirstLocalRule, e = Rules.size();
ruleID < e; ++ruleID) {
const auto &rule = getRule(ruleID);
if (rule.isPermanent() ||
rule.isRedundant() ||
rule.isConflicting())
continue;
const auto *proto = rule.getLHS().getRootProtocol();
if (!isInMinimizationDomain(proto))
continue;
if (rule.isProtocolTypeAliasRule()) {
if (auto property = rule.isPropertyRule()) {
if (property->containsNameSymbols())
continue;
} else if (rule.getRHS().containsNameSymbols()) {
continue;
}
rules[proto].TypeAliases.push_back(ruleID);
} else {
if (rule.containsNameSymbols())
continue;
rules[proto].Requirements.push_back(ruleID);
}
}
return rules;
}
/// Collect all non-permanent, non-redundant rules whose left hand side
/// begins with a generic parameter symbol.
///
/// These rules form the top-level generic signature for this rewrite system.
std::vector<unsigned>
RewriteSystem::getMinimizedGenericSignatureRules() const {
ASSERT(Minimized);
ASSERT(Protos.empty());
std::vector<unsigned> rules;
for (unsigned ruleID = FirstLocalRule, e = Rules.size();
ruleID < e; ++ruleID) {
const auto &rule = getRule(ruleID);
if (rule.isPermanent() ||
rule.isRedundant() ||
rule.isConflicting() ||
rule.containsNameSymbols()) {
continue;
}
if (rule.getLHS()[0].getKind() != Symbol::Kind::PackElement &&
rule.getLHS()[0].getKind() != Symbol::Kind::GenericParam)
continue;
rules.push_back(ruleID);
}
return rules;
}
/// Verify that each loop begins and ends at its basepoint.
void RewriteSystem::verifyRewriteLoops() const {
for (const auto &loop : Loops) {
loop.verify(*this);
}
}
/// Assert if homotopy reduction failed to eliminate a redundant conformance,
/// since this suggests a misunderstanding on my part.
void RewriteSystem::verifyRedundantConformances(
const llvm::DenseSet<unsigned> &redundantConformances) const {
for (unsigned ruleID : redundantConformances) {
const auto &rule = getRule(ruleID);
ASSERT(!rule.isPermanent() &&
"Permanent rule cannot be redundant");
ASSERT(!rule.isIdentityConformanceRule() &&
"Identity conformance cannot be redundant");
ASSERT(rule.isAnyConformanceRule() &&
"Redundant conformance is not a conformance rule?");
if (!rule.isRedundant()) {
ABORT([&](auto &out) {
out << "Homotopy reduction did not eliminate redundant conformance?\n";
out << "(#" << ruleID << ") " << rule << "\n\n";
dump(out);
});
}
}
}
// Assert if homotopy reduction failed to eliminate a rewrite rule it was
// supposed to delete.
void RewriteSystem::verifyMinimizedRules(
const llvm::DenseSet<unsigned> &redundantConformances) const {
unsigned redundantRuleCount = 0;
for (unsigned ruleID = FirstLocalRule, e = Rules.size();
ruleID < e; ++ruleID) {
const auto &rule = getRule(ruleID);
// Ignore the rewrite rule if it is not part of our minimization domain.
if (!isInMinimizationDomain(rule.getLHS().getRootProtocol())) {
if (rule.isRedundant()) {
ABORT([&](auto &out) {
out << "Redundant rule outside minimization domain: " << rule
<< "\n\n";
dump(out);
});
}
continue;
}
// Note that sometimes permanent rules can be simplified, but they can never
// be redundant.
if (rule.isPermanent()) {
if (rule.isRedundant()) {
ABORT([&](auto &out) {
out << "Permanent rule is redundant: " << rule << "\n\n";
dump(out);
});
}
continue;
}
if (rule.isRedundant())
++redundantRuleCount;
// LHS-simplified rules should be redundant, unless they're protocol
// conformance rules, which unfortunately might not be redundant, because
// we try to keep them in the original protocol definition for
// compatibility with the GenericSignatureBuilder's minimization algorithm.
if (rule.isLHSSimplified() &&
!rule.isRedundant() &&
!rule.isProtocolConformanceRule()) {
ABORT([&](auto &out) {
out << "Simplified rule is not redundant: " << rule << "\n\n";
dump(out);
});
}
// RHS-simplified and substitution-simplified rules should be redundant.
if ((rule.isRHSSimplified() ||
rule.isSubstitutionSimplified()) &&
!rule.isRedundant()) {
ABORT([&](auto &out) {
out << "Simplified rule is not redundant: " << rule << "\n\n";
dump(out);
});
}
if (rule.isRedundant() &&
rule.isAnyConformanceRule() &&
!rule.isRHSSimplified() &&
!rule.isSubstitutionSimplified() &&
!rule.containsNameSymbols() &&
!redundantConformances.count(ruleID)) {
ABORT([&](auto &out) {
out << "Minimal conformance is redundant: " << rule << "\n\n";
dump(out);
});
}
}
if (RedundantRules.size() != redundantRuleCount) {
ABORT([&](auto &out) {
out << "Expected " << RedundantRules.size() << " redundant rules "
<< "but counted " << redundantRuleCount << "\n";
dump(out);
});
}
// Replacement paths for redundant rules can only reference other redundant
// rules if those redundant rules were made redundant later, ie if they
// appear later in the array.
llvm::DenseSet<unsigned> laterRedundantRules;
for (const auto &pair : llvm::reverse(RedundantRules)) {
const auto &rule = getRule(pair.first);
if (!rule.isRedundant()) {
ABORT([&](auto &out) {
out << "Recorded replacement path for non-redundant rule " << rule
<< "\n";
dump(out);
});
}
for (const auto &step : pair.second) {
if (step.Kind == RewriteStep::Rule) {
unsigned otherRuleID = step.getRuleID();
const auto &otherRule = getRule(otherRuleID);
if (otherRule.isRedundant() &&
!laterRedundantRules.count(otherRuleID)) {
ABORT([&](auto &out) {
out << "Redundant requirement path contains a redundant rule "
<< otherRule << "\n";
dump(out);
});
}
}
}
laterRedundantRules.insert(pair.first);
}
}