Files
swift-mirror/lib/AST/RequirementMachine/PropertyUnification.cpp
Hamish Knight edca7c85ad Adopt ABORT throughout the compiler
Convert a bunch of places where we're dumping to stderr and calling
`abort` over to using `ABORT` such that the message gets printed to
the pretty stack trace. This ensures it gets picked up by
CrashReporter.
2025-05-19 20:55:01 +01:00

760 lines
27 KiB
C++

//===--- PropertyUnification.cpp - Rules added w/ building property map ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file is the core of the property map construction algorithm.
//
// The primary entry point is the PropertyBag::addProperty() method, which
// unifies multiple layout, superclass and concrete type requirements on a
// single term.
//
// This unification can add new rewrite rules, as well as record rewrite loops
// relating existing rules together. Property map construction is iterated with
// the Knuth-Bendix completion procedure until fixed point.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/LayoutConstraint.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include <algorithm>
#include <vector>
#include "PropertyMap.h"
using namespace swift;
using namespace rewriting;
/// Returns true if we have not processed this rule before.
bool PropertyMap::checkRuleOnce(unsigned ruleID) {
return CheckedRules.insert(ruleID).second;
}
/// Returns true if we have not processed this pair of rules before.
bool PropertyMap::checkRulePairOnce(unsigned firstRuleID,
unsigned secondRuleID) {
return CheckedRulePairs.insert(
std::make_pair(firstRuleID, secondRuleID)).second;
}
/// Given a key T, a rule (V.[p1] => V) where T == U.V, and a property [p2]
/// where [p1] < [p2], record a rule (T.[p2] => T) that is induced by
/// the original rule (V.[p1] => V).
///
/// This is used to define rewrite loops for relating pairs of rules where
/// one implies another:
///
/// - a more specific layout constraint implies a general layout constraint
/// - a more specific superclass bound implies a less specific superclass bound
/// - a superclass bound implies a layout constraint
/// - a concrete type that is a class implies a superclass bound
/// - a concrete type that is a class implies a layout constraint
///
static void recordRelation(Term key,
unsigned lhsRuleID,
Symbol rhsProperty,
RewriteSystem &system,
bool debug) {
const auto &lhsRule = system.getRule(lhsRuleID);
auto lhsProperty = lhsRule.getLHS().back();
ASSERT(key.size() >= lhsRule.getRHS().size());
CONDITIONAL_ASSERT((lhsProperty.getKind() == Symbol::Kind::Layout &&
rhsProperty.getKind() == Symbol::Kind::Layout) ||
(lhsProperty.getKind() == Symbol::Kind::Superclass &&
rhsProperty.getKind() == Symbol::Kind::Superclass) ||
(lhsProperty.getKind() == Symbol::Kind::Superclass &&
rhsProperty.getKind() == Symbol::Kind::Layout) ||
(lhsProperty.getKind() == Symbol::Kind::ConcreteType &&
rhsProperty.getKind() == Symbol::Kind::Superclass) ||
(lhsProperty.getKind() == Symbol::Kind::ConcreteType &&
rhsProperty.getKind() == Symbol::Kind::Layout));
if (debug) {
llvm::dbgs() << "%% Recording relation: ";
llvm::dbgs() << lhsRule.getLHS() << " < " << rhsProperty << "\n";
}
unsigned relationID = system.recordRelation(lhsProperty, rhsProperty);
// Build the following rewrite path:
//
// U.(V => V.[p1]).[p2] ⊗ U.V.Relation([p1].[p2] => [p1]) ⊗ U.(V.[p1] => V).
//
RewritePath path;
// Starting from U.V.[p2], apply the rule in reverse to get U.V.[p1].[p2].
path.add(RewriteStep::forRewriteRule(
/*startOffset=*/key.size() - lhsRule.getRHS().size(),
/*endOffset=*/1,
/*ruleID=*/lhsRuleID,
/*inverse=*/true));
// U.V.Relation([p1].[p2] => [p1]).
path.add(RewriteStep::forRelation(/*startOffset=*/key.size(),
relationID, /*inverse=*/false));
// U.(V.[p1] => V).
path.add(RewriteStep::forRewriteRule(
/*startOffset=*/key.size() - lhsRule.getRHS().size(),
/*endOffset=*/0,
/*ruleID=*/lhsRuleID,
/*inverse=*/false));
// Add the rule (T.[p2] => T) with the above rewrite path.
MutableTerm lhs(key);
lhs.add(rhsProperty);
MutableTerm rhs(key);
(void) system.addRule(lhs, rhs, &path);
}
/// Given two property rules that conflict because no concrete type
/// can satisfy both, record the conflict. If both have the same kind,
/// mark one or the other as conflicting, but not both.
void RewriteSystem::recordConflict(unsigned existingRuleID,
unsigned newRuleID) {
auto &existingRule = getRule(existingRuleID);
auto &newRule = getRule(newRuleID);
// FIXME: Property map construction shouldn't have to consider imported rules
// at all. We need to import the property map from each protocol component,
// just like we import rules.
if (!isInMinimizationDomain(newRule.getLHS().getRootProtocol()) &&
!isInMinimizationDomain(existingRule.getLHS().getRootProtocol())) {
return;
}
// Record the conflict for purposes of diagnostics.
ConflictingRules.emplace_back(existingRuleID, newRuleID);
if (Debug.contains(DebugFlags::ConflictingRules)) {
llvm::dbgs() << "Conflicting rules:\n";
llvm::dbgs() << "- " << existingRule << "\n";
llvm::dbgs() << "- " << newRule << "\n";
}
if (existingRule.getLHS().back().getKind() ==
newRule.getLHS().back().getKind()) {
CONDITIONAL_ASSERT(!existingRule.isIdentityConformanceRule() &&
!newRule.isIdentityConformanceRule());
// While we don't promise canonical minimization with conflicts,
// it's not really a big deal to spit out a generic signature with
// conflicts, as long as we diagnosed an error _somewhere_.
//
// However, the requirement lowering doesn't like to see two
// conflicting rules of the same kind, so we rule that out by
// marking the shorter rule as the conflict. Otherwise, we just
// leave both rules in place.
if (existingRule.getRHS().size() > newRule.getRHS().size() ||
(existingRule.getRHS().size() == newRule.getRHS().size() &&
existingRuleID < newRuleID)) {
existingRule.markConflicting();
} else {
newRule.markConflicting();
}
}
}
void PropertyMap::addConformanceProperty(
Term key, Symbol property, unsigned ruleID) {
auto *props = getOrCreateProperties(key);
props->ConformsTo.push_back(property.getProtocol());
props->ConformsToRules.push_back(ruleID);
}
void PropertyMap::addLayoutProperty(
Term key, Symbol property, unsigned ruleID) {
auto *props = getOrCreateProperties(key);
bool debug = Debug.contains(DebugFlags::ConcreteUnification);
auto newLayout = property.getLayoutConstraint();
if (!props->Layout) {
// If we haven't seen a layout requirement before, just record it.
props->Layout = newLayout;
props->LayoutRule = ruleID;
return;
}
// Otherwise, compute the intersection.
ASSERT(props->LayoutRule.has_value());
auto mergedLayout = props->Layout.merge(property.getLayoutConstraint());
// If the intersection is invalid, we have a conflict.
if (!mergedLayout->isKnownLayout()) {
System.recordConflict(*props->LayoutRule, ruleID);
// Replace the old layout. Since recordConflict() marks the older rule,
// this ensures that if we process multiple conflicting layout
// requirements, all but the final one will be marked conflicting.
props->Layout = newLayout;
props->LayoutRule = ruleID;
return;
}
// If the intersection is equal to the existing layout requirement,
// the new layout requirement is redundant.
if (mergedLayout == props->Layout) {
if (checkRulePairOnce(*props->LayoutRule, ruleID)) {
recordRelation(key, *props->LayoutRule, property, System, debug);
}
// If the intersection is equal to the new layout requirement, the
// existing layout requirement is redundant.
} else if (mergedLayout == newLayout) {
if (checkRulePairOnce(ruleID, *props->LayoutRule)) {
auto oldProperty = System.getRule(*props->LayoutRule).getLHS().back();
recordRelation(key, ruleID, oldProperty, System, debug);
}
props->LayoutRule = ruleID;
} else {
ABORT("Arbitrary intersection of layout requirements isn't supported yet");
}
}
/// Given a term T == U.V, an existing rule (V.[superclass: C] => V), and
/// a superclass declaration D of C, record a new rule (T.[superclass: C'] => T)
/// where C' is the substituted superclass type of C for D.
///
/// For example, suppose we have
///
/// class Derived : Base<Int> {}
/// class Base<T> {}
///
/// Given C == Derived and D == Base, then C' == Base<Int>.
void PropertyMap::recordSuperclassRelation(Term key,
Symbol superclassType,
unsigned superclassRuleID,
const ClassDecl *otherClass) {
auto derivedType = superclassType.getConcreteType();
CONDITIONAL_ASSERT(otherClass->isSuperclassOf(
derivedType->getClassOrBoundGenericClass()));
auto baseType = derivedType->getSuperclassForDecl(otherClass)
->getCanonicalType();
SmallVector<Term, 3> baseSubstitutions;
auto baseSchema = Context.getRelativeSubstitutionSchemaFromType(
baseType, superclassType.getSubstitutions(),
baseSubstitutions);
auto baseSymbol = Symbol::forSuperclass(baseSchema, baseSubstitutions,
Context);
bool debug = Debug.contains(DebugFlags::ConcreteUnification);
recordRelation(key, superclassRuleID, baseSymbol, System, debug);
}
/// When a type parameter has two superclasses, we have to both unify the
/// type constructor arguments, and record the most derived superclass.
///
/// For example, if we have this setup:
///
/// class Base<T, T> {}
/// class Middle<U> : Base<T, T> {}
/// class Derived : Middle<Int> {}
///
/// T : Base<U, V>
/// T : Derived
///
/// The most derived superclass requirement is 'T : Derived'.
///
/// The corresponding superclass of 'Derived' is 'Base<Int, Int>', so we
/// unify the type constructor arguments of 'Base<U, V>' and 'Base<Int, Int>',
/// which generates two induced rules:
///
/// U.[concrete: Int] => U
/// V.[concrete: Int] => V
void PropertyMap::addSuperclassProperty(
Term key, Symbol property, unsigned ruleID) {
auto *props = getOrCreateProperties(key);
bool debug = Debug.contains(DebugFlags::ConcreteUnification);
const auto *superclassDecl = property.getConcreteType()
->getClassOrBoundGenericClass();
ASSERT(superclassDecl != nullptr);
if (checkRuleOnce(ruleID)) {
// A rule (T.[superclass: C] => T) induces a rule (T.[layout: L] => T),
// where L is either AnyObject or _NativeObject.
auto layout =
LayoutConstraint::getLayoutConstraint(
superclassDecl->getLayoutConstraintKind(),
Context.getASTContext());
auto layoutSymbol = Symbol::forLayout(layout, Context);
recordRelation(key, ruleID, layoutSymbol, System, debug);
}
// If this is the first superclass requirement we've seen for this term,
// just record it and we're done.
if (!props->SuperclassDecl) {
if (debug) {
llvm::dbgs() << "% New superclass " << superclassDecl->getName()
<< " for " << key << "\n";
}
props->SuperclassDecl = superclassDecl;
ASSERT(props->Superclasses.empty());
auto &req = props->Superclasses[superclassDecl];
ASSERT(!req.SuperclassType.has_value());
ASSERT(req.SuperclassRules.empty());
req.SuperclassType = property;
req.SuperclassRules.emplace_back(property, ruleID);
return;
}
if (debug) {
llvm::dbgs() << "% New superclass " << superclassDecl->getName()
<< " for " << key << " is ";
}
// Otherwise, we compare it against the existing superclass requirement.
ASSERT(!props->Superclasses.empty());
if (superclassDecl == props->SuperclassDecl) {
if (debug) {
llvm::dbgs() << "equal to existing superclass\n";
}
// Perform concrete type unification at this level of the class
// hierarchy.
auto &req = props->Superclasses[superclassDecl];
ASSERT(req.SuperclassType.has_value());
ASSERT(!req.SuperclassRules.empty());
unifyConcreteTypes(key, req.SuperclassType, req.SuperclassRules,
property, ruleID);
} else if (superclassDecl->isSuperclassOf(props->SuperclassDecl)) {
if (debug) {
llvm::dbgs() << "less specific than existing superclass "
<< props->SuperclassDecl->getName() << "\n";
}
// Record a relation where existing superclass implies the new superclass.
const auto &existingReq = props->Superclasses[props->SuperclassDecl];
for (auto pair : existingReq.SuperclassRules) {
if (checkRulePairOnce(pair.second, ruleID)) {
recordSuperclassRelation(key, pair.first, pair.second,
superclassDecl);
}
}
// Record the new rule at the less specific level of the class
// hierarchy, performing concrete type unification if we've
// already seen another rule at that level.
auto &req = props->Superclasses[superclassDecl];
unifyConcreteTypes(key, req.SuperclassType, req.SuperclassRules,
property, ruleID);
} else if (props->SuperclassDecl->isSuperclassOf(superclassDecl)) {
if (debug) {
llvm::dbgs() << "more specific than existing superclass "
<< props->SuperclassDecl->getName() << "\n";
}
// Record a relation where new superclass implies the existing superclass.
const auto &existingReq = props->Superclasses[props->SuperclassDecl];
for (auto pair : existingReq.SuperclassRules) {
if (checkRulePairOnce(pair.second, ruleID)) {
recordSuperclassRelation(key, property, ruleID,
props->SuperclassDecl);
}
}
// Record the new rule at the more specific level of the class
// hierarchy.
auto &req = props->Superclasses[superclassDecl];
ASSERT(!req.SuperclassType.has_value());
ASSERT(req.SuperclassRules.empty());
req.SuperclassType = property;
req.SuperclassRules.emplace_back(property, ruleID);
props->SuperclassDecl = superclassDecl;
} else {
if (debug) {
llvm::dbgs() << "not related to existing superclass "
<< props->SuperclassDecl->getName() << "\n";
}
auto &req = props->Superclasses[props->SuperclassDecl];
for (const auto &pair : req.SuperclassRules) {
if (checkRulePairOnce(pair.second, ruleID))
System.recordConflict(pair.second, ruleID);
}
}
}
/// Given two concrete type rules, record a rewrite loop relating them,
/// record induced rules, and relate the induced rules to the concrete
/// type rules.
void PropertyMap::unifyConcreteTypes(Term key,
Symbol lhsProperty, unsigned lhsRuleID,
Symbol rhsProperty, unsigned rhsRuleID) {
if (!checkRulePairOnce(lhsRuleID, rhsRuleID))
return;
auto &lhsRule = System.getRule(lhsRuleID);
auto &rhsRule = System.getRule(rhsRuleID);
ASSERT(rhsRule.getRHS() == key);
bool debug = Debug.contains(DebugFlags::ConcreteUnification);
if (debug) {
llvm::dbgs() << "% Unifying " << lhsProperty
<< " with " << rhsProperty << "\n";
}
std::optional<unsigned> lhsDifferenceID;
std::optional<unsigned> rhsDifferenceID;
bool conflict = System.computeTypeDifference(key,
lhsProperty,
rhsProperty,
lhsDifferenceID,
rhsDifferenceID);
if (conflict) {
// FIXME: Diagnose the conflict
if (debug) {
llvm::dbgs() << "%% Concrete type conflict\n";
}
System.recordConflict(lhsRuleID, rhsRuleID);
return;
}
// Handle the case where (LHS ∧ RHS) is distinct from both LHS and RHS:
// - First, record a new rule.
// - Next, process the LHS -> (LHS ∧ RHS) difference.
// - Finally, process the RHS -> (LHS ∧ RHS) difference.
if (lhsDifferenceID && rhsDifferenceID) {
const auto &lhsDifference = System.getTypeDifference(*lhsDifferenceID);
const auto &rhsDifference = System.getTypeDifference(*rhsDifferenceID);
ASSERT(lhsDifference.RHS == rhsDifference.RHS);
auto newProperty = lhsDifference.RHS;
ASSERT(newProperty == rhsDifference.RHS);
MutableTerm rhsTerm(key);
MutableTerm lhsTerm(key);
lhsTerm.add(newProperty);
// This rule does not need a rewrite path because it will be related
// to the two existing rules by the processTypeDifference() calls below.
System.addRule(lhsTerm, rhsTerm);
// Recover a rewrite path from T to T.[LHS ∧ RHS].
RewritePath path;
System.buildRewritePathForJoiningTerms(rhsTerm, lhsTerm, &path);
if (debug) {
llvm::dbgs() << "%% Induced rule " << lhsTerm
<< " == " << rhsTerm << "\n";
}
// Process LHS -> (LHS ∧ RHS).
System.processTypeDifference(lhsDifference, *lhsDifferenceID,
lhsRuleID, path);
// Process RHS -> (LHS ∧ RHS).
System.processTypeDifference(rhsDifference, *rhsDifferenceID,
rhsRuleID, path);
return;
}
// Handle the case where RHS == (LHS ∧ RHS) by processing LHS -> (LHS ∧ RHS).
if (lhsDifferenceID) {
ASSERT(!rhsDifferenceID);
const auto &lhsDifference = System.getTypeDifference(*lhsDifferenceID);
ASSERT(lhsProperty == lhsDifference.LHS);
ASSERT(rhsProperty == lhsDifference.RHS);
// Build a rewrite path (T.[RHS] => T).
RewritePath path;
path.add(RewriteStep::forRewriteRule(
/*startOffset=*/0, /*endOffset=*/0,
/*ruleID=*/rhsRuleID, /*inverse=*/false));
System.processTypeDifference(lhsDifference, *lhsDifferenceID,
lhsRuleID, path);
return;
}
// Handle the case where LHS == (LHS ∧ RHS) by processing RHS -> (LHS ∧ RHS).
if (rhsDifferenceID) {
ASSERT(!lhsDifferenceID);
const auto &rhsDifference = System.getTypeDifference(*rhsDifferenceID);
ASSERT(rhsProperty == rhsDifference.LHS);
ASSERT(lhsProperty == rhsDifference.RHS);
// Build a rewrite path (T.[LHS] => T).
RewritePath path;
unsigned lhsPrefix = key.size() - lhsRule.getRHS().size();
if (lhsPrefix > 0) {
path.add(RewriteStep::forPrefixSubstitutions(
lhsPrefix, /*endOffset=*/0, /*inverse=*/true));
}
path.add(RewriteStep::forRewriteRule(
/*startOffset=*/lhsPrefix, /*endOffset=*/0,
/*ruleID=*/lhsRuleID, /*inverse=*/false));
System.processTypeDifference(rhsDifference, *rhsDifferenceID,
rhsRuleID, path);
return;
}
ASSERT(lhsProperty == rhsProperty);
if (lhsRuleID != rhsRuleID) {
// If the rules are different but the concrete types are identical, then
// the key is some term U.V, the existing rule is a rule of the form:
//
// V.[concrete: G<...> with <X, Y>]
//
// and the new rule is a rule of the form:
//
// U.V.[concrete: G<...> with <U.X, U.Y>]
//
// Record a loop relating the two rules via a rewrite step to prefix 'U' to
// the symbol's substitutions.
//
// Since the new rule appears without context, it becomes redundant.
RewritePath path;
path.add(RewriteStep::forRewriteRule(
/*startOffset=*/0, /*endOffset=*/0,
/*ruleID=*/rhsRuleID, /*inverse=*/false));
RewritePath unificationPath;
System.buildRewritePathForUnifier(key, lhsRuleID, path, &unificationPath);
System.recordRewriteLoop(MutableTerm(rhsRule.getLHS()), unificationPath);
}
}
/// Relate a concrete type rule to all existing concrete type rules for this
/// key, and recompute the best concrete type property and rule seen so far.
///
/// Used by addSuperclassProperty() and addConcreteTypeProperty().
void PropertyMap::unifyConcreteTypes(
Term key, std::optional<Symbol> &bestProperty,
llvm::SmallVectorImpl<std::pair<Symbol, unsigned>> &existingRules,
Symbol property, unsigned ruleID) {
// Unify this rule with all other concrete type rules we've seen so far,
// to record rewrite loops relating the rules and their projections.
for (auto pair : existingRules) {
unifyConcreteTypes(key, pair.first, pair.second, property, ruleID);
}
// Record the new rule.
existingRules.emplace_back(property, ruleID);
// Now, figure out the best concrete type seen so far. If this is the
// first rule, it's the best one.
if (!bestProperty) {
bestProperty = property;
return;
}
// Otherwise, compute the meet with the existing best property.
std::optional<unsigned> lhsDifferenceID;
std::optional<unsigned> rhsDifferenceID;
bool conflict = System.computeTypeDifference(key,
*bestProperty, property,
lhsDifferenceID,
rhsDifferenceID);
if (conflict)
return;
if (lhsDifferenceID) {
bestProperty = System.getTypeDifference(*lhsDifferenceID).RHS;
} else if (rhsDifferenceID) {
bestProperty = System.getTypeDifference(*rhsDifferenceID).RHS;
} else {
ASSERT(*bestProperty == property);
}
}
/// When a type parameter has two concrete types, we have to unify the
/// type constructor arguments.
///
/// For example, suppose that we have two concrete same-type requirements:
///
/// T == Foo<X.Y, Z, String>
/// T == Foo<Int, A.B, W>
///
/// These lower to the following two rules:
///
/// T.[concrete: Foo<τ_0_0, τ_0_1, String> with {X.Y, Z}] => T
/// T.[concrete: Foo<Int, τ_0_0, τ_0_1> with {A.B, W}] => T
///
/// The two concrete type symbols will be added to the property bag of 'T',
/// and we will eventually end up in this method, where we will generate three
/// induced rules:
///
/// X.Y.[concrete: Int] => X.Y
/// A.B => Z
/// W.[concrete: String] => W
void PropertyMap::addConcreteTypeProperty(
Term key, Symbol property, unsigned ruleID) {
auto *props = getOrCreateProperties(key);
unifyConcreteTypes(key,
props->ConcreteType,
props->ConcreteTypeRules,
property, ruleID);
}
/// Record a protocol conformance, layout or superclass constraint on the given
/// key. Must be called in monotonically non-decreasing key order.
void PropertyMap::addProperty(
Term key, Symbol property, unsigned ruleID) {
CONDITIONAL_ASSERT(property.isProperty());
CONDITIONAL_ASSERT(*System.getRule(ruleID).isPropertyRule() == property);
switch (property.getKind()) {
case Symbol::Kind::Protocol:
addConformanceProperty(key, property, ruleID);
return;
case Symbol::Kind::Layout:
addLayoutProperty(key, property, ruleID);
return;
case Symbol::Kind::Superclass:
addSuperclassProperty(key, property, ruleID);
return;
case Symbol::Kind::ConcreteType:
addConcreteTypeProperty(key, property, ruleID);
return;
case Symbol::Kind::ConcreteConformance:
// Concrete conformance rules are not recorded in the property map, since
// they're not needed for unification, and generic signature queries don't
// care about them.
return;
case Symbol::Kind::Name:
case Symbol::Kind::GenericParam:
case Symbol::Kind::AssociatedType:
case Symbol::Kind::Shape:
case Symbol::Kind::PackElement:
break;
}
llvm_unreachable("Bad symbol kind");
}
/// Post-pass to handle unification and conflict checking between pairs of
/// rules of different kinds:
///
/// - concrete vs superclass
/// - concrete vs layout
///
/// Note that we allow a subclass existential 'any C & P' to satisfy a
/// superclass requirement 'C' as long as 'P' is an @objc protocol.
///
/// This is not fully sound because 'any C & P' is not substitutable for
/// 'C' if the code calls static method or required initializers on 'C',
/// but existing code out there relies on this working.
///
/// A more refined check would ensure that 'C' had no required initializers
/// and that 'P' was self-conforming; or we could ban this entirely in a
/// future -swift-version mode.
void PropertyMap::checkConcreteTypeRequirements() {
bool debug = Debug.contains(DebugFlags::ConcreteUnification);
for (auto *props : Entries) {
for (auto pair : props->ConcreteTypeRules) {
auto concreteType = pair.first;
unsigned concreteTypeRule = pair.second;
// If the concrete type is not a class and we have a superclass
// requirement, we have a conflict.
if (!concreteType.getConcreteType()->getClassOrBoundGenericClass() &&
!(concreteType.getConcreteType()->isObjCExistentialType() &&
concreteType.getConcreteType()->getSuperclass()) &&
props->hasSuperclassBound()) {
const auto &req = props->getSuperclassRequirement();
for (auto pair : req.SuperclassRules) {
if (checkRulePairOnce(concreteTypeRule, pair.second))
System.recordConflict(concreteTypeRule, pair.second);
}
}
// If the concrete type does not satisfy a class layout constraint and
// we have such a layout requirement, we have a conflict.
if (!concreteType.getConcreteType()->satisfiesClassConstraint() &&
props->LayoutRule &&
props->Layout->isClass()) {
if (checkRulePairOnce(concreteTypeRule, *props->LayoutRule))
System.recordConflict(concreteTypeRule, *props->LayoutRule);
}
if (checkRuleOnce(concreteTypeRule)) {
if (concreteType.getConcreteType()->satisfiesClassConstraint()) {
Type superclassType = concreteType.getConcreteType();
if (!superclassType->getClassOrBoundGenericClass())
superclassType = superclassType->getSuperclass();
if (superclassType) {
// A rule (T.[concrete: C] => T) where C is a class type induces a rule
// (T.[superclass: C] => T).
auto superclassSymbol = Symbol::forSuperclass(
superclassType->getCanonicalType(),
concreteType.getSubstitutions(),
Context);
recordRelation(props->getKey(), concreteTypeRule,
superclassSymbol, System, debug);
}
// A rule (T.[concrete: C] => T) where C is a class type induces a rule
// (T.[layout: L] => T), where L is either AnyObject or _NativeObject.
auto layoutConstraint = LayoutConstraintKind::Class;
if (superclassType)
if (auto *classDecl = superclassType->getClassOrBoundGenericClass())
layoutConstraint = classDecl->getLayoutConstraintKind();
auto layout =
LayoutConstraint::getLayoutConstraint(
layoutConstraint, Context.getASTContext());
auto layoutSymbol = Symbol::forLayout(layout, Context);
recordRelation(props->getKey(), concreteTypeRule,
layoutSymbol, System, debug);
}
}
}
}
}