Files
swift-mirror/lib/ClangImporter/ClangImporter.cpp
Steven Wu 531227d4b9 [Caching] Clear benign CodeGen options when building modules
Use `resetBenignCodeGenOptions()` from clang dependency scanner to clear
the swift explicit module build cc1 arguments. This fixes the problem
that CurrentWorkingDirectory is leaking through
`-fcoverage-compilation-dir` that can cause extra module variants when
caching is enabled. This also avoid the duplicating the logics for
clearing CodeGen options inside Swift.

rdar://151395300
2025-05-15 11:45:21 -07:00

8795 lines
326 KiB
C++

//===--- ClangImporter.cpp - Import Clang Modules -------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements support for loading Clang modules into Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/ClangImporter/ClangImporter.h"
#include "CFTypeInfo.h"
#include "ClangDerivedConformances.h"
#include "ClangDiagnosticConsumer.h"
#include "ClangIncludePaths.h"
#include "ImporterImpl.h"
#include "SwiftDeclSynthesizer.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/ClangModuleLoader.h"
#include "swift/AST/ConcreteDeclRef.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsClangImporter.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/Evaluator.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/ImportCache.h"
#include "swift/AST/LinkLibrary.h"
#include "swift/AST/Module.h"
#include "swift/AST/ModuleNameLookup.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Type.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/LLVM.h"
#include "swift/Basic/Platform.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/SourceLoc.h"
#include "swift/Basic/StringExtras.h"
#include "swift/Basic/Version.h"
#include "swift/ClangImporter/ClangImporterRequests.h"
#include "swift/ClangImporter/ClangModule.h"
#include "swift/Frontend/CompileJobCacheKey.h"
#include "swift/Parse/ParseVersion.h"
#include "swift/Strings.h"
#include "swift/Subsystems.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/Basic/DiagnosticOptions.h"
#include "clang/Basic/FileEntry.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LangStandard.h"
#include "clang/Basic/MacroBuilder.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CAS/CASOptions.h"
#include "clang/CAS/IncludeTree.h"
#include "clang/CodeGen/ObjectFilePCHContainerWriter.h"
#include "clang/Frontend/CompilerInvocation.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Frontend/IncludeTreePPActions.h"
#include "clang/Frontend/TextDiagnosticPrinter.h"
#include "clang/Frontend/Utils.h"
#include "clang/Index/IndexingAction.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Parse/Parser.h"
#include "clang/Rewrite/Frontend/Rewriters.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Sema.h"
#include "clang/Serialization/ASTReader.h"
#include "clang/Serialization/ASTWriter.h"
#include "clang/Serialization/ObjectFilePCHContainerReader.h"
#include "clang/Tooling/DependencyScanning/ModuleDepCollector.h"
#include "clang/Tooling/DependencyScanning/ScanAndUpdateArgs.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/CAS/CASReference.h"
#include "llvm/CAS/ObjectStore.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileCollector.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/PrefixMapper.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/TextAPI/InterfaceFile.h"
#include "llvm/TextAPI/TextAPIReader.h"
#include <algorithm>
#include <memory>
#include <optional>
#include <string>
#include <utility>
using namespace swift;
using namespace importer;
// Commonly-used Clang classes.
using clang::CompilerInstance;
using clang::CompilerInvocation;
#pragma mark Internal data structures
namespace {
class HeaderImportCallbacks : public clang::PPCallbacks {
ClangImporter::Implementation &Impl;
public:
HeaderImportCallbacks(ClangImporter::Implementation &impl)
: Impl(impl) {}
void handleImport(const clang::Module *imported) {
if (!imported)
return;
Impl.ImportedHeaderExports.push_back(
const_cast<clang::Module *>(imported));
}
void InclusionDirective(
clang::SourceLocation HashLoc, const clang::Token &IncludeTok,
StringRef FileName, bool IsAngled, clang::CharSourceRange FilenameRange,
clang::OptionalFileEntryRef File, StringRef SearchPath,
StringRef RelativePath, const clang::Module *SuggestedModule,
bool ModuleImported,
clang::SrcMgr::CharacteristicKind FileType) override {
handleImport(ModuleImported ? SuggestedModule : nullptr);
}
void moduleImport(clang::SourceLocation ImportLoc,
clang::ModuleIdPath Path,
const clang::Module *Imported) override {
handleImport(Imported);
}
};
class PCHDeserializationCallbacks : public clang::ASTDeserializationListener {
ClangImporter::Implementation &Impl;
public:
explicit PCHDeserializationCallbacks(ClangImporter::Implementation &impl)
: Impl(impl) {}
void ModuleImportRead(clang::serialization::SubmoduleID ID,
clang::SourceLocation ImportLoc) override {
if (Impl.IsReadingBridgingPCH) {
Impl.PCHImportedSubmodules.push_back(ID);
}
}
};
class HeaderParsingASTConsumer : public clang::ASTConsumer {
SmallVector<clang::DeclGroupRef, 4> DeclGroups;
PCHDeserializationCallbacks PCHCallbacks;
public:
explicit HeaderParsingASTConsumer(ClangImporter::Implementation &impl)
: PCHCallbacks(impl) {}
void
HandleTopLevelDeclInObjCContainer(clang::DeclGroupRef decls) override {
DeclGroups.push_back(decls);
}
ArrayRef<clang::DeclGroupRef> getAdditionalParsedDecls() {
return DeclGroups;
}
clang::ASTDeserializationListener *GetASTDeserializationListener() override {
return &PCHCallbacks;
}
void reset() {
DeclGroups.clear();
}
};
class ParsingAction : public clang::ASTFrontendAction {
ClangImporter &Importer;
ClangImporter::Implementation &Impl;
const ClangImporterOptions &ImporterOpts;
std::string SwiftPCHHash;
public:
explicit ParsingAction(ClangImporter &importer,
ClangImporter::Implementation &impl,
const ClangImporterOptions &importerOpts,
std::string swiftPCHHash)
: Importer(importer), Impl(impl), ImporterOpts(importerOpts),
SwiftPCHHash(swiftPCHHash) {}
std::unique_ptr<clang::ASTConsumer>
CreateASTConsumer(clang::CompilerInstance &CI, StringRef InFile) override {
return std::make_unique<HeaderParsingASTConsumer>(Impl);
}
bool BeginSourceFileAction(clang::CompilerInstance &CI) override {
auto PCH =
Importer.getOrCreatePCH(ImporterOpts, SwiftPCHHash, /*Cached=*/true);
if (PCH.has_value()) {
Impl.getClangInstance()->getPreprocessorOpts().ImplicitPCHInclude =
PCH.value();
Impl.IsReadingBridgingPCH = true;
Impl.setSinglePCHImport(PCH.value());
}
return true;
}
};
class StdStringMemBuffer : public llvm::MemoryBuffer {
const std::string storage;
const std::string name;
public:
StdStringMemBuffer(std::string &&source, StringRef name)
: storage(std::move(source)), name(name.str()) {
init(storage.data(), storage.data() + storage.size(),
/*null-terminated=*/true);
}
StringRef getBufferIdentifier() const override {
return name;
}
BufferKind getBufferKind() const override {
return MemoryBuffer_Malloc;
}
};
class ZeroFilledMemoryBuffer : public llvm::MemoryBuffer {
const std::string name;
public:
explicit ZeroFilledMemoryBuffer(size_t size, StringRef name)
: name(name.str()) {
assert(size > 0);
std::error_code error;
llvm::sys::MemoryBlock memory =
llvm::sys::Memory::allocateMappedMemory(size, nullptr,
llvm::sys::Memory::MF_READ,
error);
assert(!error && "failed to allocated read-only zero-filled memory");
init(static_cast<char *>(memory.base()),
static_cast<char *>(memory.base()) + memory.allocatedSize() - 1,
/*null-terminated*/true);
}
~ZeroFilledMemoryBuffer() override {
llvm::sys::MemoryBlock memory{const_cast<char *>(getBufferStart()),
getBufferSize()};
std::error_code error = llvm::sys::Memory::releaseMappedMemory(memory);
assert(!error && "failed to deallocate read-only zero-filled memory");
(void)error;
}
ZeroFilledMemoryBuffer(const ZeroFilledMemoryBuffer &) = delete;
ZeroFilledMemoryBuffer(ZeroFilledMemoryBuffer &&) = delete;
void operator=(const ZeroFilledMemoryBuffer &) = delete;
void operator=(ZeroFilledMemoryBuffer &&) = delete;
StringRef getBufferIdentifier() const override {
return name;
}
BufferKind getBufferKind() const override {
return MemoryBuffer_MMap;
}
};
} // end anonymous namespace
namespace {
class BridgingPPTracker : public clang::PPCallbacks {
ClangImporter::Implementation &Impl;
public:
BridgingPPTracker(ClangImporter::Implementation &Impl)
: Impl(Impl) {}
private:
static unsigned getNumModuleIdentifiers(const clang::Module *Mod) {
unsigned Result = 1;
while (Mod->Parent) {
Mod = Mod->Parent;
++Result;
}
return Result;
}
void InclusionDirective(clang::SourceLocation HashLoc,
const clang::Token &IncludeTok, StringRef FileName,
bool IsAngled, clang::CharSourceRange FilenameRange,
clang::OptionalFileEntryRef File,
StringRef SearchPath, StringRef RelativePath,
const clang::Module *SuggestedModule,
bool ModuleImported,
clang::SrcMgr::CharacteristicKind FileType) override {
if (!ModuleImported) {
if (File)
Impl.BridgeHeaderFiles.insert(*File);
return;
}
// Synthesize identifier locations.
SmallVector<clang::SourceLocation, 4> IdLocs;
for (unsigned I = 0, E = getNumModuleIdentifiers(SuggestedModule); I != E; ++I)
IdLocs.push_back(HashLoc);
handleImport(HashLoc, IdLocs, SuggestedModule);
}
void moduleImport(clang::SourceLocation ImportLoc,
clang::ModuleIdPath Path,
const clang::Module *Imported) override {
if (!Imported)
return;
SmallVector<clang::SourceLocation, 4> IdLocs;
for (auto &P : Path)
IdLocs.push_back(P.second);
handleImport(ImportLoc, IdLocs, Imported);
}
void handleImport(clang::SourceLocation ImportLoc,
ArrayRef<clang::SourceLocation> IdLocs,
const clang::Module *Imported) {
clang::ASTContext &ClangCtx = Impl.getClangASTContext();
clang::ImportDecl *ClangImport = clang::ImportDecl::Create(ClangCtx,
ClangCtx.getTranslationUnitDecl(),
ImportLoc,
const_cast<clang::Module*>(Imported),
IdLocs);
Impl.BridgeHeaderTopLevelImports.push_back(ClangImport);
}
void MacroDefined(const clang::Token &MacroNameTok,
const clang::MacroDirective *MD) override {
Impl.BridgeHeaderMacros.push_back(MacroNameTok.getIdentifierInfo());
}
};
class ClangImporterDependencyCollector : public clang::DependencyCollector
{
llvm::StringSet<> ExcludedPaths;
/// The FileCollector is used by LLDB to generate reproducers. It's not used
/// by Swift to track dependencies.
std::shared_ptr<llvm::FileCollectorBase> FileCollector;
const IntermoduleDepTrackingMode Mode;
public:
ClangImporterDependencyCollector(
IntermoduleDepTrackingMode Mode,
std::shared_ptr<llvm::FileCollectorBase> FileCollector)
: FileCollector(FileCollector), Mode(Mode) {}
void excludePath(StringRef filename) {
ExcludedPaths.insert(filename);
}
bool isClangImporterSpecialName(StringRef Filename) {
using ImporterImpl = ClangImporter::Implementation;
return (Filename == ImporterImpl::moduleImportBufferName
|| Filename == ImporterImpl::bridgingHeaderBufferName);
}
bool needSystemDependencies() override {
return Mode == IntermoduleDepTrackingMode::IncludeSystem;
}
bool sawDependency(StringRef Filename, bool FromClangModule,
bool IsSystem, bool IsClangModuleFile,
bool IsMissing) override {
if (!clang::DependencyCollector::sawDependency(Filename, FromClangModule,
IsSystem, IsClangModuleFile,
IsMissing))
return false;
// Currently preserving older ClangImporter behavior of ignoring .pcm
// file dependencies, but possibly revisit?
if (IsClangModuleFile
|| isClangImporterSpecialName(Filename)
|| ExcludedPaths.count(Filename))
return false;
return true;
}
void maybeAddDependency(StringRef Filename, bool FromModule, bool IsSystem,
bool IsModuleFile, bool IsMissing) override {
if (FileCollector)
FileCollector->addFile(Filename);
clang::DependencyCollector::maybeAddDependency(
Filename, FromModule, IsSystem, IsModuleFile, IsMissing);
}
};
} // end anonymous namespace
std::shared_ptr<clang::DependencyCollector>
ClangImporter::createDependencyCollector(
IntermoduleDepTrackingMode Mode,
std::shared_ptr<llvm::FileCollectorBase> FileCollector) {
return std::make_shared<ClangImporterDependencyCollector>(Mode,
FileCollector);
}
bool ClangImporter::isKnownCFTypeName(llvm::StringRef name) {
return CFPointeeInfo::isKnownCFTypeName(name);
}
void ClangImporter::Implementation::addBridgeHeaderTopLevelDecls(
clang::Decl *D) {
if (shouldIgnoreBridgeHeaderTopLevelDecl(D))
return;
BridgeHeaderTopLevelDecls.push_back(D);
}
bool importer::isForwardDeclOfType(const clang::Decl *D) {
if (auto *ID = dyn_cast<clang::ObjCInterfaceDecl>(D)) {
if (!ID->isThisDeclarationADefinition())
return true;
} else if (auto PD = dyn_cast<clang::ObjCProtocolDecl>(D)) {
if (!PD->isThisDeclarationADefinition())
return true;
} else if (auto TD = dyn_cast<clang::TagDecl>(D)) {
if (!TD->isThisDeclarationADefinition())
return true;
}
return false;
}
bool ClangImporter::Implementation::shouldIgnoreBridgeHeaderTopLevelDecl(
clang::Decl *D) {
return importer::isForwardDeclOfType(D);
}
ClangImporter::ClangImporter(ASTContext &ctx,
DependencyTracker *tracker,
DWARFImporterDelegate *dwarfImporterDelegate)
: ClangModuleLoader(tracker),
Impl(*new Implementation(ctx, tracker, dwarfImporterDelegate)) {
}
ClangImporter::~ClangImporter() {
delete &Impl;
}
#pragma mark Module loading
static bool clangSupportsPragmaAttributeWithSwiftAttr() {
clang::AttributeCommonInfo swiftAttrInfo(clang::SourceRange(),
clang::AttributeCommonInfo::AT_SwiftAttr,
clang::AttributeCommonInfo::Form::GNU());
auto swiftAttrParsedInfo = clang::ParsedAttrInfo::get(swiftAttrInfo);
return swiftAttrParsedInfo.IsSupportedByPragmaAttribute;
}
static inline bool isPCHFilenameExtension(StringRef path) {
return llvm::sys::path::extension(path)
.ends_with(file_types::getExtension(file_types::TY_PCH));
}
void importer::getNormalInvocationArguments(
std::vector<std::string> &invocationArgStrs, ASTContext &ctx,
bool ignoreClangTarget) {
const auto &LangOpts = ctx.LangOpts;
llvm::Triple triple = LangOpts.Target;
// Use clang specific target triple if given.
if (LangOpts.ClangTarget.has_value() && !ignoreClangTarget) {
triple = LangOpts.ClangTarget.value();
}
SearchPathOptions &searchPathOpts = ctx.SearchPathOpts;
ClangImporterOptions &importerOpts = ctx.ClangImporterOpts;
auto languageVersion = ctx.LangOpts.EffectiveLanguageVersion;
auto bridgingPCH = importerOpts.getPCHInputPath();
if (!bridgingPCH.empty())
invocationArgStrs.insert(invocationArgStrs.end(),
{"-include-pch", bridgingPCH});
// If there are no shims in the resource dir, add a search path in the SDK.
SmallString<128> shimsPath(searchPathOpts.RuntimeResourcePath);
llvm::sys::path::append(shimsPath, "shims");
if (!llvm::sys::fs::exists(shimsPath)) {
shimsPath = searchPathOpts.getSDKPath();
llvm::sys::path::append(shimsPath, "usr", "lib", "swift", "shims");
invocationArgStrs.insert(invocationArgStrs.end(),
{"-isystem", std::string(shimsPath.str())});
}
// Construct the invocation arguments for the current target.
// Add target-independent options first.
invocationArgStrs.insert(invocationArgStrs.end(), {
// Don't emit LLVM IR.
"-fsyntax-only",
// Enable block support.
"-fblocks",
languageVersion.preprocessorDefinition("__swift__", {10000, 100, 1}),
"-fretain-comments-from-system-headers",
"-isystem", searchPathOpts.RuntimeResourcePath,
});
// Enable Position Independence. `-fPIC` is not supported on Windows, which
// is implicitly position independent.
if (!triple.isOSWindows())
invocationArgStrs.insert(invocationArgStrs.end(), {"-fPIC"});
// Enable modules.
invocationArgStrs.insert(invocationArgStrs.end(), {
"-fmodules",
"-Xclang", "-fmodule-feature", "-Xclang", "swift"
});
bool EnableCXXInterop = LangOpts.EnableCXXInterop;
if (LangOpts.EnableObjCInterop) {
invocationArgStrs.insert(invocationArgStrs.end(), {"-fobjc-arc"});
// TODO: Investigate whether 7.0 is a suitable default version.
if (!triple.isOSDarwin())
invocationArgStrs.insert(invocationArgStrs.end(),
{"-fobjc-runtime=ios-7.0"});
invocationArgStrs.insert(invocationArgStrs.end(), {
"-x", EnableCXXInterop ? "objective-c++" : "objective-c",
});
} else {
invocationArgStrs.insert(invocationArgStrs.end(), {
"-x", EnableCXXInterop ? "c++" : "c",
});
}
{
const clang::LangStandard &stdcxx =
#if defined(CLANG_DEFAULT_STD_CXX)
*clang::LangStandard::getLangStandardForName(CLANG_DEFAULT_STD_CXX);
#else
clang::LangStandard::getLangStandardForKind(
clang::LangStandard::lang_gnucxx17);
#endif
const clang::LangStandard &stdc =
#if defined(CLANG_DEFAULT_STD_C)
*clang::LangStandard::getLangStandardForName(CLANG_DEFAULT_STD_C);
#else
clang::LangStandard::getLangStandardForKind(
clang::LangStandard::lang_gnu11);
#endif
invocationArgStrs.insert(invocationArgStrs.end(), {
(Twine("-std=") + StringRef(EnableCXXInterop ? stdcxx.getName()
: stdc.getName())).str()
});
}
if (LangOpts.EnableCXXInterop) {
if (auto path = getCxxShimModuleMapPath(searchPathOpts, LangOpts, triple)) {
invocationArgStrs.push_back((Twine("-fmodule-map-file=") + *path).str());
}
}
if (LangOpts.hasFeature(Feature::SafeInteropWrappers))
invocationArgStrs.push_back("-fexperimental-bounds-safety-attributes");
// Set C language options.
if (triple.isOSDarwin()) {
invocationArgStrs.insert(invocationArgStrs.end(), {
// Avoid including the iso646.h header because some headers from OS X
// frameworks are broken by it.
"-D_ISO646_H_", "-D__ISO646_H",
// Request new APIs from AppKit.
"-DSWIFT_SDK_OVERLAY_APPKIT_EPOCH=2",
// Request new APIs from Foundation.
"-DSWIFT_SDK_OVERLAY_FOUNDATION_EPOCH=8",
// Request new APIs from SceneKit.
"-DSWIFT_SDK_OVERLAY2_SCENEKIT_EPOCH=3",
// Request new APIs from GameplayKit.
"-DSWIFT_SDK_OVERLAY_GAMEPLAYKIT_EPOCH=1",
// Request new APIs from SpriteKit.
"-DSWIFT_SDK_OVERLAY_SPRITEKIT_EPOCH=1",
// Request new APIs from CoreImage.
"-DSWIFT_SDK_OVERLAY_COREIMAGE_EPOCH=2",
// Request new APIs from libdispatch.
"-DSWIFT_SDK_OVERLAY_DISPATCH_EPOCH=2",
// Request new APIs from libpthread
"-DSWIFT_SDK_OVERLAY_PTHREAD_EPOCH=1",
// Request new APIs from CoreGraphics.
"-DSWIFT_SDK_OVERLAY_COREGRAPHICS_EPOCH=0",
// Request new APIs from UIKit.
"-DSWIFT_SDK_OVERLAY_UIKIT_EPOCH=2",
// Backwards compatibility for headers that were checking this instead of
// '__swift__'.
"-DSWIFT_CLASS_EXTRA=",
});
// Indicate that using '__attribute__((swift_attr))' with '@Sendable' and
// '@_nonSendable' on Clang declarations is fully supported, including the
// 'attribute push' pragma.
if (clangSupportsPragmaAttributeWithSwiftAttr())
invocationArgStrs.push_back("-D__SWIFT_ATTR_SUPPORTS_SENDABLE_DECLS=1");
if (triple.isXROS()) {
// FIXME: This is a gnarly hack until some macros get adjusted in the SDK.
invocationArgStrs.insert(invocationArgStrs.end(), {
"-DOS_OBJECT_HAVE_OBJC_SUPPORT=1",
});
}
// Get the version of this compiler and pass it to C/Objective-C
// declarations.
auto V = version::getCurrentCompilerVersion();
if (!V.empty()) {
// Note: Prior to Swift 5.7, the "Y" version component was omitted and the
// "X" component resided in its digits.
invocationArgStrs.insert(invocationArgStrs.end(), {
V.preprocessorDefinition("__SWIFT_COMPILER_VERSION",
{1000000000000, // X
1000000000, // Y
1000000, // Z
1000, // a
1}), // b
});
}
} else {
// Ideally we should turn this on for all Glibc targets that are actually
// using Glibc or a libc that respects that flag. This will cause some
// source breakage however (specifically with strerror_r()) on Linux
// without a workaround.
if (triple.isOSFuchsia() || triple.isAndroid() || triple.isMusl()) {
// Many of the modern libc features are hidden behind feature macros like
// _GNU_SOURCE or _XOPEN_SOURCE.
invocationArgStrs.insert(invocationArgStrs.end(), {
"-D_GNU_SOURCE",
});
}
if (triple.isOSWindows()) {
switch (triple.getArch()) {
default: llvm_unreachable("unsupported Windows architecture");
case llvm::Triple::arm:
case llvm::Triple::thumb:
invocationArgStrs.insert(invocationArgStrs.end(), {"-D_ARM_"});
break;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
invocationArgStrs.insert(invocationArgStrs.end(), {"-D_ARM64_"});
break;
case llvm::Triple::x86:
invocationArgStrs.insert(invocationArgStrs.end(), {"-D_X86_"});
break;
case llvm::Triple::x86_64:
invocationArgStrs.insert(invocationArgStrs.end(), {"-D_AMD64_"});
break;
}
}
}
// If we support SendingArgsAndResults, set the -D flag to signal that it
// is supported.
if (LangOpts.hasFeature(Feature::SendingArgsAndResults))
invocationArgStrs.push_back("-D__SWIFT_ATTR_SUPPORTS_SENDING=1");
// Indicate that the compiler will respect macros applied to imported
// declarations via '__attribute__((swift_attr("@...")))'.
if (LangOpts.hasFeature(Feature::MacrosOnImports))
invocationArgStrs.push_back("-D__SWIFT_ATTR_SUPPORTS_MACROS=1");
if (searchPathOpts.getSDKPath().empty()) {
invocationArgStrs.push_back("-Xclang");
invocationArgStrs.push_back("-nostdsysteminc");
} else {
if (triple.isWindowsMSVCEnvironment()) {
llvm::SmallString<261> path; // MAX_PATH + 1
path = searchPathOpts.getSDKPath();
llvm::sys::path::append(path, "usr", "include");
llvm::sys::path::native(path);
invocationArgStrs.push_back("-isystem");
invocationArgStrs.push_back(std::string(path.str()));
} else {
// On Darwin, Clang uses -isysroot to specify the include
// system root. On other targets, it seems to use --sysroot.
if (triple.isOSDarwin()) {
invocationArgStrs.push_back("-isysroot");
invocationArgStrs.push_back(searchPathOpts.getSDKPath().str());
} else {
if (auto sysroot = searchPathOpts.getSysRoot()) {
invocationArgStrs.push_back("--sysroot");
invocationArgStrs.push_back(sysroot->str());
} else {
invocationArgStrs.push_back("--sysroot");
invocationArgStrs.push_back(searchPathOpts.getSDKPath().str());
}
}
}
}
const std::string &moduleCachePath = importerOpts.ModuleCachePath;
const std::string &scannerCachePath = importerOpts.ClangScannerModuleCachePath;
// If a scanner cache is specified, this must be a scanning action. Prefer this
// path for the Clang scanner to cache its Scanning PCMs.
if (!scannerCachePath.empty()) {
invocationArgStrs.push_back("-fmodules-cache-path=");
invocationArgStrs.back().append(scannerCachePath);
} else if (!moduleCachePath.empty() && !importerOpts.DisableImplicitClangModules) {
invocationArgStrs.push_back("-fmodules-cache-path=");
invocationArgStrs.back().append(moduleCachePath);
}
if (importerOpts.DisableImplicitClangModules) {
invocationArgStrs.push_back("-fno-implicit-modules");
invocationArgStrs.push_back("-fno-implicit-module-maps");
}
if (ctx.SearchPathOpts.DisableModulesValidateSystemDependencies) {
invocationArgStrs.push_back("-fno-modules-validate-system-headers");
} else {
invocationArgStrs.push_back("-fmodules-validate-system-headers");
}
if (importerOpts.DetailedPreprocessingRecord) {
invocationArgStrs.insert(invocationArgStrs.end(), {
"-Xclang", "-detailed-preprocessing-record",
"-Xclang", "-fmodule-format=raw",
});
} else {
invocationArgStrs.insert(invocationArgStrs.end(), {
"-Xclang", "-fmodule-format=obj",
});
}
// Enable API notes alongside headers/in frameworks.
invocationArgStrs.push_back("-fapinotes-modules");
invocationArgStrs.push_back("-fapinotes-swift-version=" +
languageVersion.asAPINotesVersionString());
// Prefer `-sdk` paths.
if (!searchPathOpts.getSDKPath().empty()) {
llvm::SmallString<261> path{searchPathOpts.getSDKPath()};
llvm::sys::path::append(path, "usr", "lib", "swift", "apinotes");
invocationArgStrs.push_back("-iapinotes-modules");
invocationArgStrs.push_back(path.str().str());
}
// Fallback to "legacy" `-resource-dir` paths.
{
llvm::SmallString<261> path{searchPathOpts.RuntimeResourcePath};
llvm::sys::path::append(path, "apinotes");
invocationArgStrs.push_back("-iapinotes-modules");
invocationArgStrs.push_back(path.str().str());
}
}
static void
getEmbedBitcodeInvocationArguments(std::vector<std::string> &invocationArgStrs,
ASTContext &ctx) {
invocationArgStrs.insert(invocationArgStrs.end(), {
// Backend mode.
"-fembed-bitcode",
// ...but Clang isn't doing the emission.
"-fsyntax-only",
"-x", "ir",
});
}
void
importer::addCommonInvocationArguments(
std::vector<std::string> &invocationArgStrs,
ASTContext &ctx, bool requiresBuiltinHeadersInSystemModules,
bool ignoreClangTarget) {
using ImporterImpl = ClangImporter::Implementation;
llvm::Triple triple = ctx.LangOpts.Target;
// Use clang specific target triple if given.
if (ctx.LangOpts.ClangTarget.has_value() && !ignoreClangTarget) {
triple = ctx.LangOpts.ClangTarget.value();
}
SearchPathOptions &searchPathOpts = ctx.SearchPathOpts;
const ClangImporterOptions &importerOpts = ctx.ClangImporterOpts;
invocationArgStrs.push_back("-target");
invocationArgStrs.push_back(triple.str());
if (ctx.LangOpts.SDKVersion) {
invocationArgStrs.push_back("-Xclang");
invocationArgStrs.push_back(
"-target-sdk-version=" + ctx.LangOpts.SDKVersion->getAsString());
}
invocationArgStrs.push_back(ImporterImpl::moduleImportBufferName);
if (ctx.LangOpts.EnableAppExtensionRestrictions) {
invocationArgStrs.push_back("-fapplication-extension");
}
if (!importerOpts.TargetCPU.empty()) {
switch (triple.getArch()) {
case llvm::Triple::x86:
case llvm::Triple::x86_64:
// For x86, `-mcpu` is deprecated and an alias of `-mtune`. We need to
// pass `-march` and `-mtune` to behave like `-mcpu` on other targets.
invocationArgStrs.push_back("-march=" + importerOpts.TargetCPU);
invocationArgStrs.push_back("-mtune=" + importerOpts.TargetCPU);
break;
default:
invocationArgStrs.push_back("-mcpu=" + importerOpts.TargetCPU);
break;
}
} else if (triple.getArch() == llvm::Triple::systemz) {
invocationArgStrs.push_back("-march=z13");
}
if (triple.getArch() == llvm::Triple::x86_64) {
// Enable double wide atomic intrinsics on every x86_64 target.
// (This is the default on Darwin, but not so on other platforms.)
invocationArgStrs.push_back("-mcx16");
}
if (triple.isOSDarwin()) {
if (auto variantTriple = ctx.LangOpts.TargetVariant) {
// Passing the -target-variant along to clang causes clang's
// CodeGenerator to emit zippered .o files.
invocationArgStrs.push_back("-darwin-target-variant");
if (ctx.LangOpts.ClangTargetVariant.has_value() && !ignoreClangTarget)
variantTriple = ctx.LangOpts.ClangTargetVariant.value();
invocationArgStrs.push_back(variantTriple->str());
}
if (ctx.LangOpts.VariantSDKVersion) {
invocationArgStrs.push_back("-Xclang");
invocationArgStrs.push_back(
("-darwin-target-variant-sdk-version=" +
ctx.LangOpts.VariantSDKVersion->getAsString()));
}
}
if (std::optional<StringRef> R = searchPathOpts.getWinSDKRoot()) {
invocationArgStrs.emplace_back("-Xmicrosoft-windows-sdk-root");
invocationArgStrs.emplace_back(*R);
}
if (std::optional<StringRef> V = searchPathOpts.getWinSDKVersion()) {
invocationArgStrs.emplace_back("-Xmicrosoft-windows-sdk-version");
invocationArgStrs.emplace_back(*V);
}
if (std::optional<StringRef> R = searchPathOpts.getVCToolsRoot()) {
invocationArgStrs.emplace_back("-Xmicrosoft-visualc-tools-root");
invocationArgStrs.emplace_back(*R);
}
if (std::optional<StringRef> V = searchPathOpts.getVCToolsVersion()) {
invocationArgStrs.emplace_back("-Xmicrosoft-visualc-tools-version");
invocationArgStrs.emplace_back(*V);
}
if (!importerOpts.Optimization.empty()) {
invocationArgStrs.push_back(importerOpts.Optimization);
}
const std::string &overrideResourceDir = importerOpts.OverrideResourceDir;
if (overrideResourceDir.empty()) {
llvm::SmallString<128> resourceDir(searchPathOpts.RuntimeResourcePath);
// Adjust the path to refer to our copy of the Clang resource directory
// under 'lib/swift/clang', which is either a real resource directory or a
// symlink to one inside of a full Clang installation.
//
// The rationale for looking under the Swift resource directory and not
// assuming that the Clang resource directory is located next to it is that
// Swift, when installed separately, should not need to install files in
// directories that are not "owned" by it.
llvm::sys::path::append(resourceDir, "clang");
// Set the Clang resource directory to the path we computed.
invocationArgStrs.push_back("-resource-dir");
invocationArgStrs.push_back(std::string(resourceDir.str()));
} else {
invocationArgStrs.push_back("-resource-dir");
invocationArgStrs.push_back(overrideResourceDir);
}
if (!importerOpts.IndexStorePath.empty()) {
invocationArgStrs.push_back("-index-store-path");
invocationArgStrs.push_back(importerOpts.IndexStorePath);
}
invocationArgStrs.push_back("-fansi-escape-codes");
if (importerOpts.ValidateModulesOnce) {
invocationArgStrs.push_back("-fmodules-validate-once-per-build-session");
invocationArgStrs.push_back("-fbuild-session-file=" + importerOpts.BuildSessionFilePath);
}
for (auto extraArg : importerOpts.ExtraArgs) {
invocationArgStrs.push_back(extraArg);
}
for (const auto &framepath : searchPathOpts.getFrameworkSearchPaths()) {
if (!framepath.Path.empty()) {
if (framepath.IsSystem) {
invocationArgStrs.push_back("-iframework");
invocationArgStrs.push_back(framepath.Path);
} else {
invocationArgStrs.push_back("-F" + framepath.Path);
}
}
}
for (const auto &path : searchPathOpts.getImportSearchPaths()) {
if (!path.Path.empty()) {
if (path.IsSystem) {
invocationArgStrs.push_back("-isystem");
invocationArgStrs.push_back(path.Path);
} else {
invocationArgStrs.push_back("-I" + path.Path);
}
}
}
for (auto &overlay : searchPathOpts.VFSOverlayFiles) {
invocationArgStrs.push_back("-ivfsoverlay");
invocationArgStrs.push_back(overlay);
}
if (requiresBuiltinHeadersInSystemModules) {
invocationArgStrs.push_back("-Xclang");
invocationArgStrs.push_back("-fbuiltin-headers-in-system-modules");
}
}
bool ClangImporter::canReadPCH(StringRef PCHFilename) {
if (!llvm::sys::fs::exists(PCHFilename))
return false;
// FIXME: The following attempts to do an initial ReadAST invocation to verify
// the PCH, without causing trouble for the existing CompilerInstance.
// Look into combining creating the ASTReader along with verification + update
// if necessary, so that we can create and use one ASTReader in the common case
// when there is no need for update.
clang::CompilerInstance CI(Impl.Instance->getPCHContainerOperations(),
&Impl.Instance->getModuleCache());
auto invocation =
std::make_shared<clang::CompilerInvocation>(*Impl.Invocation);
invocation->getPreprocessorOpts().DisablePCHOrModuleValidation =
clang::DisableValidationForModuleKind::None;
invocation->getHeaderSearchOpts().ModulesValidateSystemHeaders = true;
invocation->getLangOpts().NeededByPCHOrCompilationUsesPCH = true;
invocation->getLangOpts().CacheGeneratedPCH = true;
// ClangImporter::create adds a remapped MemoryBuffer that we don't need
// here. Moreover, it's a raw pointer owned by the preprocessor options; if
// we don't clear the range then both the original and new CompilerInvocation
// will try to free it.
invocation->getPreprocessorOpts().RemappedFileBuffers.clear();
CI.setInvocation(std::move(invocation));
CI.setTarget(&Impl.Instance->getTarget());
CI.setDiagnostics(
&*clang::CompilerInstance::createDiagnostics(new clang::DiagnosticOptions()));
// Note: Reusing the file manager is safe; this is a component that's already
// reused when building PCM files for the module cache.
CI.createSourceManager(Impl.Instance->getFileManager());
auto &clangSrcMgr = CI.getSourceManager();
auto FID = clangSrcMgr.createFileID(
std::make_unique<ZeroFilledMemoryBuffer>(1, "<main>"));
clangSrcMgr.setMainFileID(FID);
auto &diagConsumer = CI.getDiagnosticClient();
diagConsumer.BeginSourceFile(CI.getLangOpts());
SWIFT_DEFER {
diagConsumer.EndSourceFile();
};
// Pass in TU_Complete, which is the default mode for the Preprocessor
// constructor and the right one for reading a PCH.
CI.createPreprocessor(clang::TU_Complete);
CI.createASTContext();
CI.createASTReader();
clang::ASTReader &Reader = *CI.getASTReader();
auto failureCapabilities =
clang::ASTReader::ARR_Missing |
clang::ASTReader::ARR_OutOfDate |
clang::ASTReader::ARR_VersionMismatch;
// If a PCH was output with errors, it may not have serialized all its
// inputs. If there was a change to the search path or a headermap now
// exists where it didn't previously, it's possible those inputs will now be
// found. Ideally we would only rebuild in this particular case rather than
// any error in general, but explicit module builds are the real solution
// there. For now, just treat PCH with errors as out of date.
failureCapabilities |= clang::ASTReader::ARR_TreatModuleWithErrorsAsOutOfDate;
auto result = Reader.ReadAST(PCHFilename, clang::serialization::MK_PCH,
clang::SourceLocation(), failureCapabilities);
switch (result) {
case clang::ASTReader::Success:
return true;
case clang::ASTReader::Failure:
case clang::ASTReader::Missing:
case clang::ASTReader::OutOfDate:
case clang::ASTReader::VersionMismatch:
return false;
case clang::ASTReader::ConfigurationMismatch:
case clang::ASTReader::HadErrors:
assert(0 && "unexpected ASTReader failure for PCH validation");
return false;
}
llvm_unreachable("unhandled result");
}
std::string ClangImporter::getOriginalSourceFile(StringRef PCHFilename) {
return clang::ASTReader::getOriginalSourceFile(
PCHFilename.str(), Impl.Instance->getFileManager(),
Impl.Instance->getPCHContainerReader(), Impl.Instance->getDiagnostics());
}
std::optional<std::string>
ClangImporter::getPCHFilename(const ClangImporterOptions &ImporterOptions,
StringRef SwiftPCHHash, bool &isExplicit) {
auto bridgingPCH = ImporterOptions.getPCHInputPath();
if (!bridgingPCH.empty()) {
isExplicit = true;
return bridgingPCH;
}
isExplicit = false;
const auto &BridgingHeader = ImporterOptions.BridgingHeader;
const auto &PCHOutputDir = ImporterOptions.PrecompiledHeaderOutputDir;
if (SwiftPCHHash.empty() || BridgingHeader.empty() || PCHOutputDir.empty()) {
return std::nullopt;
}
SmallString<256> PCHBasename { llvm::sys::path::filename(BridgingHeader) };
llvm::sys::path::replace_extension(PCHBasename, "");
PCHBasename.append("-swift_");
PCHBasename.append(SwiftPCHHash);
PCHBasename.append("-clang_");
PCHBasename.append(getClangModuleHash());
PCHBasename.append(".pch");
SmallString<256> PCHFilename { PCHOutputDir };
llvm::sys::path::append(PCHFilename, PCHBasename);
return PCHFilename.str().str();
}
std::optional<std::string>
ClangImporter::getOrCreatePCH(const ClangImporterOptions &ImporterOptions,
StringRef SwiftPCHHash, bool Cached) {
bool isExplicit;
auto PCHFilename = getPCHFilename(ImporterOptions, SwiftPCHHash,
isExplicit);
if (!PCHFilename.has_value()) {
return std::nullopt;
}
if (!isExplicit && !ImporterOptions.PCHDisableValidation &&
!canReadPCH(PCHFilename.value())) {
StringRef parentDir = llvm::sys::path::parent_path(PCHFilename.value());
std::error_code EC = llvm::sys::fs::create_directories(parentDir);
if (EC) {
llvm::errs() << "failed to create directory '" << parentDir << "': "
<< EC.message();
return std::nullopt;
}
auto FailedToEmit = emitBridgingPCH(ImporterOptions.BridgingHeader,
PCHFilename.value(), Cached);
if (FailedToEmit) {
return std::nullopt;
}
}
return PCHFilename.value();
}
std::vector<std::string>
ClangImporter::getClangDriverArguments(ASTContext &ctx, bool ignoreClangTarget) {
assert(!ctx.ClangImporterOpts.DirectClangCC1ModuleBuild &&
"direct-clang-cc1-module-build should not call this function");
std::vector<std::string> invocationArgStrs;
// When creating from driver commands, clang expects this to be like an actual
// command line. So we need to pass in "clang" for argv[0]
invocationArgStrs.push_back(ctx.ClangImporterOpts.clangPath);
switch (ctx.ClangImporterOpts.Mode) {
case ClangImporterOptions::Modes::Normal:
case ClangImporterOptions::Modes::PrecompiledModule:
getNormalInvocationArguments(invocationArgStrs, ctx, ignoreClangTarget);
break;
case ClangImporterOptions::Modes::EmbedBitcode:
getEmbedBitcodeInvocationArguments(invocationArgStrs, ctx);
break;
}
addCommonInvocationArguments(invocationArgStrs, ctx,
requiresBuiltinHeadersInSystemModules, ignoreClangTarget);
return invocationArgStrs;
}
std::optional<std::vector<std::string>> ClangImporter::getClangCC1Arguments(
ASTContext &ctx, llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS,
bool ignoreClangTarget) {
std::unique_ptr<clang::CompilerInvocation> CI;
// Set up a temporary diagnostic client to report errors from parsing the
// command line, which may be important for Swift clients if, for example,
// they're using -Xcc options. Unfortunately this diagnostic engine has to
// use the default options because the /actual/ options haven't been parsed
// yet.
//
// The long-term client for Clang diagnostics is set up afterwards, after the
// clang::CompilerInstance is created.
llvm::IntrusiveRefCntPtr<clang::DiagnosticOptions> tempDiagOpts{
new clang::DiagnosticOptions};
auto *tempDiagClient =
new ClangDiagnosticConsumer(Impl, *tempDiagOpts,
ctx.ClangImporterOpts.DumpClangDiagnostics);
auto clangDiags = clang::CompilerInstance::createDiagnostics(
tempDiagOpts.get(), tempDiagClient,
/*owned*/ true);
// If using direct cc1 module build, use extra args to setup ClangImporter.
if (ctx.ClangImporterOpts.DirectClangCC1ModuleBuild) {
llvm::SmallVector<const char *> clangArgs;
clangArgs.reserve(ctx.ClangImporterOpts.ExtraArgs.size());
llvm::for_each(
ctx.ClangImporterOpts.ExtraArgs,
[&](const std::string &Arg) { clangArgs.push_back(Arg.c_str()); });
// Try parse extra args, if failed, return nullopt.
CI = std::make_unique<clang::CompilerInvocation>();
if (!clang::CompilerInvocation::CreateFromArgs(*CI, clangArgs,
*clangDiags))
return std::nullopt;
// Forwards some options from swift to clang even using direct mode. This is
// to reduce the number of argument passing on the command-line and swift
// compiler can be more efficient to compute swift cache key without having
// the knowledge about clang command-line options.
if (ctx.CASOpts.EnableCaching) {
CI->getCASOpts() = ctx.CASOpts.CASOpts;
// When clangImporter is used to compile (generate .pcm or .pch), need to
// inherit the include tree from swift args (last one wins) and clear the
// input file.
if ((CI->getFrontendOpts().ProgramAction ==
clang::frontend::ActionKind::GenerateModule ||
CI->getFrontendOpts().ProgramAction ==
clang::frontend::ActionKind::GeneratePCH) &&
!ctx.CASOpts.ClangIncludeTree.empty()) {
CI->getFrontendOpts().CASIncludeTreeID = ctx.CASOpts.ClangIncludeTree;
CI->getFrontendOpts().Inputs.clear();
}
}
// If clang target is ignored, using swift target.
if (ignoreClangTarget) {
CI->getTargetOpts().Triple = ctx.LangOpts.Target.str();
if (ctx.LangOpts.TargetVariant.has_value())
CI->getTargetOpts().DarwinTargetVariantTriple = ctx.LangOpts.TargetVariant->str();
}
// Forward the index store path. That information is not passed to scanner
// and it is cached invariant so we don't want to re-scan if that changed.
CI->getFrontendOpts().IndexStorePath = ctx.ClangImporterOpts.IndexStorePath;
} else {
// Otherwise, create cc1 arguments from driver args.
auto driverArgs = getClangDriverArguments(ctx, ignoreClangTarget);
llvm::SmallVector<const char *> invocationArgs;
invocationArgs.reserve(driverArgs.size());
llvm::for_each(driverArgs, [&](const std::string &Arg) {
invocationArgs.push_back(Arg.c_str());
});
if (ctx.ClangImporterOpts.DumpClangDiagnostics) {
llvm::errs() << "clang importer driver args: '";
llvm::interleave(
invocationArgs, [](StringRef arg) { llvm::errs() << arg; },
[] { llvm::errs() << "' '"; });
llvm::errs() << "'\n\n";
}
clang::CreateInvocationOptions CIOpts;
CIOpts.VFS = VFS;
CIOpts.Diags = clangDiags;
CIOpts.RecoverOnError = false;
CIOpts.ProbePrecompiled = true;
CI = clang::createInvocation(invocationArgs, std::move(CIOpts));
if (!CI)
return std::nullopt;
}
// FIXME: clang fails to generate a module if there is a `-fmodule-map-file`
// argument pointing to a missing file.
// Such missing module files occur frequently in SourceKit. If the files are
// missing, SourceKit fails to build SwiftShims (which wouldn't have required
// the missing module file), thus fails to load the stdlib and hence looses
// all semantic functionality.
// To work around this issue, drop all `-fmodule-map-file` arguments pointing
// to missing files and report the error that clang would throw manually.
// rdar://77516546 is tracking that the clang importer should be more
// resilient and provide a module even if there were building it.
auto TempVFS = clang::createVFSFromCompilerInvocation(
*CI, *clangDiags,
VFS ? VFS : Impl.SwiftContext.SourceMgr.getFileSystem());
std::vector<std::string> FilteredModuleMapFiles;
for (auto ModuleMapFile : CI->getFrontendOpts().ModuleMapFiles) {
if (ctx.CASOpts.HasImmutableFileSystem) {
// There is no need to add any module map file here. Issue a warning and
// drop the option.
Impl.diagnose(SourceLoc(), diag::module_map_ignored, ModuleMapFile);
} else if (TempVFS->exists(ModuleMapFile)) {
FilteredModuleMapFiles.push_back(ModuleMapFile);
} else {
Impl.diagnose(SourceLoc(), diag::module_map_not_found, ModuleMapFile);
}
}
CI->getFrontendOpts().ModuleMapFiles = FilteredModuleMapFiles;
// Clear clang debug flags.
CI->getCodeGenOpts().DwarfDebugFlags.clear();
return CI->getCC1CommandLine();
}
std::unique_ptr<clang::CompilerInvocation> ClangImporter::createClangInvocation(
ClangImporter *importer, const ClangImporterOptions &importerOpts,
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS,
const std::vector<std::string> &CC1Args) {
std::vector<const char *> invocationArgs;
invocationArgs.reserve(CC1Args.size());
llvm::for_each(CC1Args, [&](const std::string &Arg) {
invocationArgs.push_back(Arg.c_str());
});
// Create a diagnostics engine for creating clang compiler invocation. The
// option here is either generated by dependency scanner or just round tripped
// from `getClangCC1Arguments` so we don't expect it to fail. Use a simple
// printing diagnostics consumer for debugging any unexpected error.
auto diagOpts = llvm::makeIntrusiveRefCnt<clang::DiagnosticOptions>();
clang::DiagnosticsEngine clangDiags(
new clang::DiagnosticIDs(), diagOpts,
new clang::TextDiagnosticPrinter(llvm::errs(), diagOpts.get()));
// Finally, use the CC1 command-line and the diagnostic engine
// to instantiate our Invocation.
auto CI = std::make_unique<clang::CompilerInvocation>();
if (!clang::CompilerInvocation::CreateFromArgs(
*CI, invocationArgs, clangDiags, importerOpts.clangPath.c_str()))
return nullptr;
return CI;
}
std::unique_ptr<ClangImporter>
ClangImporter::create(ASTContext &ctx,
std::string swiftPCHHash, DependencyTracker *tracker,
DWARFImporterDelegate *dwarfImporterDelegate,
bool ignoreFileMapping) {
std::unique_ptr<ClangImporter> importer{
new ClangImporter(ctx, tracker, dwarfImporterDelegate)};
auto &importerOpts = ctx.ClangImporterOpts;
auto bridgingPCH = importerOpts.getPCHInputPath();
if (!bridgingPCH.empty()) {
importer->Impl.setSinglePCHImport(bridgingPCH);
importer->Impl.IsReadingBridgingPCH = true;
if (tracker) {
// Currently ignoring dependency on bridging .pch files because they are
// temporaries; if and when they are no longer temporaries, this condition
// should be removed.
auto &coll = static_cast<ClangImporterDependencyCollector &>(
*tracker->getClangCollector());
coll.excludePath(bridgingPCH);
}
}
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS =
ctx.SourceMgr.getFileSystem();
ClangInvocationFileMapping fileMapping =
getClangInvocationFileMapping(ctx, nullptr, ignoreFileMapping);
importer->requiresBuiltinHeadersInSystemModules =
fileMapping.requiresBuiltinHeadersInSystemModules;
// Avoid creating indirect file system when using include tree.
if (!ctx.CASOpts.HasImmutableFileSystem) {
// Wrap Swift's FS to allow Clang to override the working directory
VFS = llvm::vfs::RedirectingFileSystem::create(
fileMapping.redirectedFiles, true, *ctx.SourceMgr.getFileSystem());
if (importerOpts.DumpClangDiagnostics) {
llvm::errs() << "clang importer redirected file mappings:\n";
for (const auto &mapping : fileMapping.redirectedFiles) {
llvm::errs() << " mapping real file '" << mapping.second
<< "' to virtual file '" << mapping.first << "'\n";
}
llvm::errs() << "\n";
}
if (!fileMapping.overridenFiles.empty()) {
llvm::IntrusiveRefCntPtr<llvm::vfs::InMemoryFileSystem> overridenVFS =
new llvm::vfs::InMemoryFileSystem();
for (const auto &file : fileMapping.overridenFiles) {
if (importerOpts.DumpClangDiagnostics) {
llvm::errs() << "clang importer overriding file '" << file.first
<< "' with the following contents:\n";
llvm::errs() << file.second << "\n";
}
auto contents = ctx.Allocate<char>(file.second.size() + 1);
std::copy(file.second.begin(), file.second.end(), contents.begin());
// null terminate the buffer.
contents[contents.size() - 1] = '\0';
overridenVFS->addFile(file.first, 0,
llvm::MemoryBuffer::getMemBuffer(StringRef(
contents.begin(), contents.size() - 1)));
}
llvm::IntrusiveRefCntPtr<llvm::vfs::OverlayFileSystem> overlayVFS =
new llvm::vfs::OverlayFileSystem(VFS);
VFS = overlayVFS;
overlayVFS->pushOverlay(overridenVFS);
}
}
// Create a new Clang compiler invocation.
{
if (auto ClangArgs = importer->getClangCC1Arguments(ctx, VFS))
importer->Impl.ClangArgs = *ClangArgs;
else
return nullptr;
ArrayRef<std::string> invocationArgStrs = importer->Impl.ClangArgs;
if (importerOpts.DumpClangDiagnostics) {
llvm::errs() << "clang importer cc1 args: '";
llvm::interleave(
invocationArgStrs, [](StringRef arg) { llvm::errs() << arg; },
[] { llvm::errs() << "' '"; });
llvm::errs() << "'\n";
}
importer->Impl.Invocation = createClangInvocation(
importer.get(), importerOpts, VFS, importer->Impl.ClangArgs);
if (!importer->Impl.Invocation)
return nullptr;
}
{
// Create an almost-empty memory buffer.
auto sourceBuffer = llvm::MemoryBuffer::getMemBuffer(
"extern int __swift __attribute__((unavailable));",
Implementation::moduleImportBufferName);
clang::PreprocessorOptions &ppOpts =
importer->Impl.Invocation->getPreprocessorOpts();
ppOpts.addRemappedFile(Implementation::moduleImportBufferName,
sourceBuffer.release());
}
// Install a Clang module file extension to build Swift name lookup tables.
importer->Impl.Invocation->getFrontendOpts().ModuleFileExtensions.push_back(
std::make_shared<SwiftNameLookupExtension>(
importer->Impl.BridgingHeaderLookupTable, importer->Impl.LookupTables,
importer->Impl.SwiftContext,
importer->Impl.getBufferImporterForDiagnostics(),
importer->Impl.platformAvailability, &importer->Impl));
// Create a compiler instance.
{
// The Clang modules produced by ClangImporter are always embedded in an
// ObjectFilePCHContainer and contain -gmodules debug info.
importer->Impl.Invocation->getCodeGenOpts().DebugTypeExtRefs = true;
auto PCHContainerOperations =
std::make_shared<clang::PCHContainerOperations>();
PCHContainerOperations->registerWriter(
std::make_unique<clang::ObjectFilePCHContainerWriter>());
PCHContainerOperations->registerReader(
std::make_unique<clang::ObjectFilePCHContainerReader>());
importer->Impl.Instance.reset(
new clang::CompilerInstance(std::move(PCHContainerOperations)));
}
auto &instance = *importer->Impl.Instance;
instance.setInvocation(importer->Impl.Invocation);
if (tracker)
instance.addDependencyCollector(tracker->getClangCollector());
{
// Now set up the real client for Clang diagnostics---configured with proper
// options---as opposed to the temporary one we made above.
auto actualDiagClient = std::make_unique<ClangDiagnosticConsumer>(
importer->Impl, instance.getDiagnosticOpts(),
importerOpts.DumpClangDiagnostics);
instance.createDiagnostics(actualDiagClient.release());
}
// Set up the file manager.
{
VFS = clang::createVFSFromCompilerInvocation(
instance.getInvocation(), instance.getDiagnostics(), std::move(VFS));
instance.createFileManager(VFS);
}
// Don't stop emitting messages if we ever can't load a module.
// FIXME: This is actually a general problem: any "fatal" error could mess up
// the CompilerInvocation when we're not in "show diagnostics after fatal
// error" mode.
clang::DiagnosticsEngine &clangDiags = instance.getDiagnostics();
clangDiags.setSeverity(clang::diag::err_module_not_found,
clang::diag::Severity::Error,
clang::SourceLocation());
clangDiags.setSeverity(clang::diag::err_module_not_built,
clang::diag::Severity::Error,
clang::SourceLocation());
clangDiags.setFatalsAsError(ctx.Diags.getShowDiagnosticsAfterFatalError());
// Use Clang to configure/save options for Swift IRGen/CodeGen
if (ctx.LangOpts.ClangTarget.has_value()) {
// If '-clang-target' is set, create a mock invocation with the Swift triple
// to configure CodeGen and Target options for Swift compilation.
auto swiftTargetClangArgs = importer->getClangCC1Arguments(ctx, VFS, true);
if (!swiftTargetClangArgs)
return nullptr;
auto swiftTargetClangInvocation = createClangInvocation(
importer.get(), importerOpts, VFS, *swiftTargetClangArgs);
if (!swiftTargetClangInvocation)
return nullptr;
auto targetInfo = clang::TargetInfo::CreateTargetInfo(
clangDiags, swiftTargetClangInvocation->TargetOpts);
// Ensure the target info has configured target-specific defines
std::string defineBuffer;
llvm::raw_string_ostream predefines(defineBuffer);
clang::MacroBuilder builder(predefines);
targetInfo->getTargetDefines(instance.getLangOpts(), builder);
importer->Impl.setSwiftTargetInfo(targetInfo);
importer->Impl.setSwiftCodeGenOptions(new clang::CodeGenOptions(
swiftTargetClangInvocation->getCodeGenOpts()));
} else {
// Just use the existing Invocation's directly
importer->Impl.setSwiftTargetInfo(clang::TargetInfo::CreateTargetInfo(
clangDiags, importer->Impl.Invocation->TargetOpts));
importer->Impl.setSwiftCodeGenOptions(
new clang::CodeGenOptions(importer->Impl.Invocation->getCodeGenOpts()));
}
// Create the associated action.
importer->Impl.Action.reset(new ParsingAction(*importer,
importer->Impl,
importerOpts,
swiftPCHHash));
auto *action = importer->Impl.Action.get();
// Execute the action. We effectively inline most of
// CompilerInstance::ExecuteAction here, because we need to leave the AST
// open for future module loading.
// FIXME: This has to be cleaned up on the Clang side before we can improve
// things here.
// Create the target instance.
instance.setTarget(
clang::TargetInfo::CreateTargetInfo(clangDiags,
instance.getInvocation().TargetOpts));
if (!instance.hasTarget())
return nullptr;
// Inform the target of the language options.
//
// FIXME: We shouldn't need to do this, the target should be immutable once
// created. This complexity should be lifted elsewhere.
instance.getTarget().adjust(clangDiags, instance.getLangOpts());
if (importerOpts.Mode == ClangImporterOptions::Modes::EmbedBitcode)
return importer;
// ClangImporter always sets this in Normal mode, so we need to make sure to
// set it before bailing out early when configuring ClangImporter for
// precompiled modules. This is not a benign langopt, so forgetting this (for
// example, if we combined the early exit below with the one above) would make
// the compiler instance used to emit PCMs incompatible with the one used to
// read them later.
instance.getLangOpts().NeededByPCHOrCompilationUsesPCH = true;
// Clang implicitly enables this by default in C++20 mode.
instance.getLangOpts().ModulesLocalVisibility = false;
if (importerOpts.Mode == ClangImporterOptions::Modes::PrecompiledModule)
return importer;
instance.initializeDelayedInputFileFromCAS();
if (instance.getFrontendOpts().Inputs.empty())
return nullptr; // no inputs available.
bool canBegin = action->BeginSourceFile(instance,
instance.getFrontendOpts().Inputs[0]);
if (!canBegin)
return nullptr; // there was an error related to the compiler arguments.
clang::Preprocessor &clangPP = instance.getPreprocessor();
clangPP.enableIncrementalProcessing();
// Setup Preprocessor callbacks before initialing the parser to make sure
// we catch implicit includes.
auto ppTracker = std::make_unique<BridgingPPTracker>(importer->Impl);
clangPP.addPPCallbacks(std::move(ppTracker));
instance.createASTReader();
// Manually run the action, so that the TU stays open for additional parsing.
instance.createSema(action->getTranslationUnitKind(), nullptr);
importer->Impl.Parser.reset(new clang::Parser(clangPP, instance.getSema(),
/*SkipFunctionBodies=*/false));
clangPP.EnterMainSourceFile();
importer->Impl.Parser->Initialize();
importer->Impl.nameImporter.reset(new NameImporter(
importer->Impl.SwiftContext, importer->Impl.platformAvailability,
importer->Impl.getClangSema(), &importer->Impl));
// FIXME: These decls are not being parsed correctly since (a) some of the
// callbacks are still being added, and (b) the logic to parse them has
// changed.
clang::Parser::DeclGroupPtrTy parsed;
clang::Sema::ModuleImportState importState =
clang::Sema::ModuleImportState::NotACXX20Module;
while (!importer->Impl.Parser->ParseTopLevelDecl(parsed, importState)) {
for (auto *D : parsed.get()) {
importer->Impl.addBridgeHeaderTopLevelDecls(D);
if (auto named = dyn_cast<clang::NamedDecl>(D)) {
addEntryToLookupTable(*importer->Impl.BridgingHeaderLookupTable, named,
*importer->Impl.nameImporter);
}
}
}
// FIXME: This is missing implicit includes.
auto *CB = new HeaderImportCallbacks(importer->Impl);
clangPP.addPPCallbacks(std::unique_ptr<clang::PPCallbacks>(CB));
// Create the selectors we'll be looking for.
auto &clangContext = importer->Impl.Instance->getASTContext();
importer->Impl.objectAtIndexedSubscript
= clangContext.Selectors.getUnarySelector(
&clangContext.Idents.get("objectAtIndexedSubscript"));
const clang::IdentifierInfo *setObjectAtIndexedSubscriptIdents[2] = {
&clangContext.Idents.get("setObject"),
&clangContext.Idents.get("atIndexedSubscript"),
};
importer->Impl.setObjectAtIndexedSubscript
= clangContext.Selectors.getSelector(2, setObjectAtIndexedSubscriptIdents);
importer->Impl.objectForKeyedSubscript
= clangContext.Selectors.getUnarySelector(
&clangContext.Idents.get("objectForKeyedSubscript"));
const clang::IdentifierInfo *setObjectForKeyedSubscriptIdents[2] = {
&clangContext.Idents.get("setObject"),
&clangContext.Idents.get("forKeyedSubscript"),
};
importer->Impl.setObjectForKeyedSubscript
= clangContext.Selectors.getSelector(2, setObjectForKeyedSubscriptIdents);
// Set up the imported header module.
auto *importedHeaderModule = ModuleDecl::create(
ctx.getIdentifier(CLANG_HEADER_MODULE_NAME), ctx,
[&](ModuleDecl *importedHeaderModule, auto addFile) {
importer->Impl.ImportedHeaderUnit = new (ctx)
ClangModuleUnit(*importedHeaderModule, importer->Impl, nullptr);
addFile(importer->Impl.ImportedHeaderUnit);
});
importedHeaderModule->setHasResolvedImports();
importedHeaderModule->setIsNonSwiftModule(true);
importer->Impl.IsReadingBridgingPCH = false;
return importer;
}
bool ClangImporter::addSearchPath(StringRef newSearchPath, bool isFramework,
bool isSystem) {
clang::FileManager &fileMgr = Impl.Instance->getFileManager();
auto optionalEntry = fileMgr.getOptionalDirectoryRef(newSearchPath);
if (!optionalEntry)
return true;
auto entry = *optionalEntry;
auto &headerSearchInfo = Impl.getClangPreprocessor().getHeaderSearchInfo();
auto exists = std::any_of(headerSearchInfo.search_dir_begin(),
headerSearchInfo.search_dir_end(),
[&](const clang::DirectoryLookup &lookup) -> bool {
if (isFramework)
return lookup.getFrameworkDir() == &entry.getDirEntry();
return lookup.getDir() == &entry.getDirEntry();
});
if (exists) {
// Don't bother adding a search path that's already there. Clang would have
// removed it via deduplication at the time the search path info gets built.
return false;
}
auto kind = isSystem ? clang::SrcMgr::C_System : clang::SrcMgr::C_User;
headerSearchInfo.AddSearchPath({entry, kind, isFramework},
/*isAngled=*/true);
// In addition to changing the current preprocessor directly, we still need
// to change the options structure for future module-building.
Impl.Instance->getHeaderSearchOpts().AddPath(newSearchPath,
isSystem ? clang::frontend::System : clang::frontend::Angled,
isFramework,
/*IgnoreSysRoot=*/true);
return false;
}
clang::SourceLocation
ClangImporter::Implementation::getNextIncludeLoc() {
clang::SourceManager &srcMgr = getClangInstance()->getSourceManager();
if (!DummyIncludeBuffer.isValid()) {
clang::SourceLocation includeLoc =
srcMgr.getLocForStartOfFile(srcMgr.getMainFileID());
// Picking the beginning of the main FileID as include location is also what
// the clang PCH mechanism is doing (see
// clang::ASTReader::getImportLocation()). Choose the next source location
// here to avoid having the exact same import location as the clang PCH.
// Otherwise, if we are using a PCH for bridging header, we'll have
// problems with source order comparisons of clang source locations not
// being deterministic.
includeLoc = includeLoc.getLocWithOffset(1);
DummyIncludeBuffer = srcMgr.createFileID(
std::make_unique<ZeroFilledMemoryBuffer>(
256*1024, StringRef(moduleImportBufferName)),
clang::SrcMgr::C_User, /*LoadedID*/0, /*LoadedOffset*/0, includeLoc);
}
clang::SourceLocation clangImportLoc =
srcMgr.getLocForStartOfFile(DummyIncludeBuffer)
.getLocWithOffset(IncludeCounter++);
assert(srcMgr.isInFileID(clangImportLoc, DummyIncludeBuffer) &&
"confused Clang's source manager with our fake locations");
return clangImportLoc;
}
bool ClangImporter::Implementation::importHeader(
ModuleDecl *adapter, StringRef headerName, SourceLoc diagLoc,
bool trackParsedSymbols,
std::unique_ptr<llvm::MemoryBuffer> sourceBuffer,
bool implicitImport) {
// Progress update for the debugger.
SwiftContext.PreModuleImportHook(
headerName, ASTContext::ModuleImportKind::BridgingHeader);
// Don't even try to load the bridging header if the Clang AST is in a bad
// state. It could cause a crash.
auto &clangDiags = getClangASTContext().getDiagnostics();
if (clangDiags.hasUnrecoverableErrorOccurred() &&
!getClangInstance()->getPreprocessorOpts().AllowPCHWithCompilerErrors)
return true;
assert(adapter);
ImportedHeaderOwners.push_back(adapter);
bool hadError = clangDiags.hasErrorOccurred();
clang::SourceManager &sourceMgr = getClangInstance()->getSourceManager();
clang::FileID bufferID = sourceMgr.createFileID(std::move(sourceBuffer),
clang::SrcMgr::C_User,
/*LoadedID=*/0,
/*LoadedOffset=*/0,
getNextIncludeLoc());
auto &consumer =
static_cast<HeaderParsingASTConsumer &>(Instance->getASTConsumer());
consumer.reset();
clang::Preprocessor &pp = getClangPreprocessor();
pp.EnterSourceFile(bufferID, /*Dir=*/nullptr, /*Loc=*/{});
// Force the import to occur.
pp.LookAhead(0);
SmallVector<clang::DeclGroupRef, 16> allParsedDecls;
auto handleParsed = [&](clang::DeclGroupRef parsed) {
if (trackParsedSymbols) {
for (auto *D : parsed) {
addBridgeHeaderTopLevelDecls(D);
}
}
allParsedDecls.push_back(parsed);
};
clang::Parser::DeclGroupPtrTy parsed;
clang::Sema::ModuleImportState importState =
clang::Sema::ModuleImportState::NotACXX20Module;
while (!Parser->ParseTopLevelDecl(parsed, importState)) {
if (parsed)
handleParsed(parsed.get());
for (auto additionalParsedGroup : consumer.getAdditionalParsedDecls())
handleParsed(additionalParsedGroup);
consumer.reset();
}
// We're trying to discourage (and eventually deprecate) the use of implicit
// bridging-header imports triggered by IMPORTED_HEADER blocks in
// modules. There are two sub-cases to consider:
//
// #1 The implicit import actually occurred.
//
// #2 The user explicitly -import-objc-header'ed some header or PCH that
// makes the implicit import redundant.
//
// It's not obvious how to exactly differentiate these cases given the
// interface clang gives us, but we only want to warn on case #1, and the
// non-emptiness of allParsedDecls is a _definite_ sign that we're in case
// #1. So we treat that as an approximation of the condition we're after, and
// accept that we might fail to warn in the odd case where "the import
// occurred" but didn't introduce any new decls.
//
// We also want to limit (for now) the warning in case #1 to invocations that
// requested an explicit bridging header, because otherwise the warning will
// complain in a very common scenario (unit test w/o bridging header imports
// application w/ bridging header) that we don't yet have Xcode automation
// to correct. The fix would be explicitly importing on the command line.
if (implicitImport && !allParsedDecls.empty() &&
BridgingHeaderExplicitlyRequested) {
diagnose(
diagLoc, diag::implicit_bridging_header_imported_from_module,
llvm::sys::path::filename(headerName), adapter->getName());
}
// We can't do this as we're parsing because we may want to resolve naming
// conflicts between the things we've parsed.
std::function<void(clang::Decl *)> visit = [&](clang::Decl *decl) {
// Iterate into extern "C" {} type declarations.
if (auto linkageDecl = dyn_cast<clang::LinkageSpecDecl>(decl)) {
for (auto *decl : linkageDecl->noload_decls()) {
visit(decl);
}
}
if (auto named = dyn_cast<clang::NamedDecl>(decl)) {
addEntryToLookupTable(*BridgingHeaderLookupTable, named,
getNameImporter());
}
};
for (auto group : allParsedDecls) {
for (auto *D : group) {
visit(D);
}
}
pp.EndSourceFile();
bumpGeneration();
// Add any defined macros to the bridging header lookup table.
addMacrosToLookupTable(*BridgingHeaderLookupTable, getNameImporter());
// Finish loading any extra modules that were (transitively) imported.
handleDeferredImports(diagLoc);
// Wrap all Clang imports under a Swift import decl.
for (auto &Import : BridgeHeaderTopLevelImports) {
if (auto *ClangImport = Import.dyn_cast<clang::ImportDecl*>()) {
Import = createImportDecl(SwiftContext, adapter, ClangImport, {});
}
}
// Finalize the lookup table, which may fail.
finalizeLookupTable(*BridgingHeaderLookupTable, getNameImporter(),
getBufferImporterForDiagnostics());
// FIXME: What do we do if there was already an error?
if (!hadError && clangDiags.hasErrorOccurred() &&
!getClangInstance()->getPreprocessorOpts().AllowPCHWithCompilerErrors) {
diagnose(diagLoc, diag::bridging_header_error, headerName);
return true;
}
return false;
}
bool ClangImporter::importHeader(StringRef header, ModuleDecl *adapter,
off_t expectedSize, time_t expectedModTime,
StringRef cachedContents, SourceLoc diagLoc) {
clang::FileManager &fileManager = Impl.Instance->getFileManager();
auto headerFile = fileManager.getFile(header, /*OpenFile=*/true);
// Prefer importing the header directly if the header content matches by
// checking size and mod time. This allows correct import if some no-modular
// headers are already imported into clang importer. If mod time is zero, then
// the module should be built from CAS and there is no mod time to verify.
if (headerFile && (*headerFile)->getSize() == expectedSize &&
(expectedModTime == 0 ||
(*headerFile)->getModificationTime() == expectedModTime)) {
return importBridgingHeader(header, adapter, diagLoc, false, true);
}
// If we've made it to here, this is some header other than the bridging
// header, which means we can no longer rely on one file's modification time
// to invalidate code completion caches. :-(
Impl.setSinglePCHImport(std::nullopt);
if (!cachedContents.empty() && cachedContents.back() == '\0')
cachedContents = cachedContents.drop_back();
std::unique_ptr<llvm::MemoryBuffer> sourceBuffer{
llvm::MemoryBuffer::getMemBuffer(cachedContents, header)
};
return Impl.importHeader(adapter, header, diagLoc, /*trackParsedSymbols=*/false,
std::move(sourceBuffer), true);
}
bool ClangImporter::importBridgingHeader(StringRef header, ModuleDecl *adapter,
SourceLoc diagLoc,
bool trackParsedSymbols,
bool implicitImport) {
if (isPCHFilenameExtension(header)) {
return bindBridgingHeader(adapter, diagLoc);
}
clang::FileManager &fileManager = Impl.Instance->getFileManager();
auto headerFile = fileManager.getFile(header, /*OpenFile=*/true);
if (!headerFile) {
Impl.diagnose(diagLoc, diag::bridging_header_missing, header);
return true;
}
llvm::SmallString<128> importLine;
if (Impl.SwiftContext.LangOpts.EnableObjCInterop)
importLine = "#import \"";
else
importLine = "#include \"";
importLine += header;
importLine += "\"\n";
std::unique_ptr<llvm::MemoryBuffer> sourceBuffer{
llvm::MemoryBuffer::getMemBufferCopy(
importLine, Implementation::bridgingHeaderBufferName)
};
return Impl.importHeader(adapter, header, diagLoc, trackParsedSymbols,
std::move(sourceBuffer), implicitImport);
}
bool ClangImporter::bindBridgingHeader(ModuleDecl *adapter, SourceLoc diagLoc) {
Impl.ImportedHeaderOwners.push_back(adapter);
// We already imported this with -include-pch above, so we should have
// collected a bunch of PCH-encoded module imports that we just need to
// replay in handleDeferredImports.
Impl.handleDeferredImports(diagLoc);
return false;
}
static llvm::Expected<llvm::cas::ObjectRef>
setupIncludeTreeInput(clang::CompilerInvocation &invocation,
StringRef headerPath, StringRef pchIncludeTree) {
auto DB = invocation.getCASOpts().getOrCreateDatabases();
if (!DB)
return DB.takeError();
auto CAS = DB->first;
auto Cache = DB->second;
auto ID = CAS->parseID(pchIncludeTree);
if (!ID)
return ID.takeError();
auto Ref = CAS->getReference(*ID);
if (!Ref)
return llvm::cas::ObjectStore::createUnknownObjectError(*ID);
auto Key = ClangImporter::createEmbeddedBridgingHeaderCacheKey(*CAS, *Ref);
if (!Key)
return Key.takeError();
auto Lookup = Cache->get(CAS->getID(*Key));
if (!Lookup)
return Lookup.takeError();
std::optional<llvm::cas::ObjectRef> includeTreeRef;
if (*Lookup) {
includeTreeRef = CAS->getReference(**Lookup);
if (!includeTreeRef)
return llvm::cas::ObjectStore::createUnknownObjectError(**Lookup);
} else
// Failed to look up. This is from a caching build that doesn't use bridging
// header chaining due to an older swift-driver. Just use the include tree
// for PCH directly.
includeTreeRef = *Ref;
invocation.getFrontendOpts().Inputs.push_back(clang::FrontendInputFile(
*includeTreeRef, headerPath, clang::Language::ObjC));
return *includeTreeRef;
}
std::string ClangImporter::getBridgingHeaderContents(
StringRef headerPath, off_t &fileSize, time_t &fileModTime,
StringRef pchIncludeTree) {
auto invocation =
std::make_shared<clang::CompilerInvocation>(*Impl.Invocation);
invocation->getFrontendOpts().DisableFree = false;
invocation->getFrontendOpts().Inputs.clear();
std::optional<llvm::cas::ObjectRef> includeTreeRef;
if (pchIncludeTree.empty())
invocation->getFrontendOpts().Inputs.push_back(
clang::FrontendInputFile(headerPath, clang::Language::ObjC));
else if (auto err =
setupIncludeTreeInput(*invocation, headerPath, pchIncludeTree)
.moveInto(includeTreeRef)) {
Impl.diagnose({}, diag::err_rewrite_bridging_header,
toString(std::move(err)));
return "";
}
invocation->getPreprocessorOpts().resetNonModularOptions();
clang::CompilerInstance rewriteInstance(
Impl.Instance->getPCHContainerOperations(),
&Impl.Instance->getModuleCache());
rewriteInstance.setInvocation(invocation);
rewriteInstance.createDiagnostics(new clang::IgnoringDiagConsumer);
clang::FileManager &fileManager = Impl.Instance->getFileManager();
rewriteInstance.setFileManager(&fileManager);
rewriteInstance.createSourceManager(fileManager);
rewriteInstance.setTarget(&Impl.Instance->getTarget());
std::string result;
bool success = llvm::CrashRecoveryContext().RunSafelyOnThread([&] {
// A much simpler version of clang::RewriteIncludesAction that lets us
// write to an in-memory buffer.
class RewriteIncludesAction : public clang::PreprocessorFrontendAction {
raw_ostream &OS;
std::optional<llvm::cas::ObjectRef> includeTreeRef;
void ExecuteAction() override {
clang::CompilerInstance &compiler = getCompilerInstance();
// If the input is include tree, setup the IncludeTreePPAction.
if (includeTreeRef) {
auto IncludeTreeRoot = clang::cas::IncludeTreeRoot::get(
compiler.getOrCreateObjectStore(), *includeTreeRef);
if (!IncludeTreeRoot)
llvm::report_fatal_error(IncludeTreeRoot.takeError());
auto PPCachedAct =
clang::createPPActionsFromIncludeTree(*IncludeTreeRoot);
if (!PPCachedAct)
llvm::report_fatal_error(PPCachedAct.takeError());
compiler.getPreprocessor().setPPCachedActions(
std::move(*PPCachedAct));
}
clang::RewriteIncludesInInput(compiler.getPreprocessor(), &OS,
compiler.getPreprocessorOutputOpts());
}
public:
explicit RewriteIncludesAction(
raw_ostream &os, std::optional<llvm::cas::ObjectRef> includeTree)
: OS(os), includeTreeRef(includeTree) {}
};
llvm::raw_string_ostream os(result);
RewriteIncludesAction action(os, includeTreeRef);
rewriteInstance.ExecuteAction(action);
});
success |= !rewriteInstance.getDiagnostics().hasErrorOccurred();
if (!success) {
Impl.diagnose({}, diag::could_not_rewrite_bridging_header);
return "";
}
if (auto fileInfo = fileManager.getFile(headerPath)) {
fileSize = (*fileInfo)->getSize();
fileModTime = (*fileInfo)->getModificationTime();
}
return result;
}
/// Returns the appropriate source input language based on language options.
static clang::Language getLanguageFromOptions(
const clang::LangOptions &LangOpts) {
if (LangOpts.OpenCL)
return clang::Language::OpenCL;
if (LangOpts.CUDA)
return clang::Language::CUDA;
if (LangOpts.ObjC)
return LangOpts.CPlusPlus ?
clang::Language::ObjCXX : clang::Language::ObjC;
return LangOpts.CPlusPlus ? clang::Language::CXX : clang::Language::C;
}
/// Wraps the given frontend action in an index data recording action if the
/// frontend options have an index store path specified.
static
std::unique_ptr<clang::FrontendAction> wrapActionForIndexingIfEnabled(
const clang::FrontendOptions &FrontendOpts,
std::unique_ptr<clang::FrontendAction> action) {
if (!FrontendOpts.IndexStorePath.empty()) {
return clang::index::createIndexDataRecordingAction(
FrontendOpts, std::move(action));
}
return action;
}
std::unique_ptr<clang::CompilerInstance>
ClangImporter::cloneCompilerInstanceForPrecompiling() {
auto invocation =
std::make_shared<clang::CompilerInvocation>(*Impl.Invocation);
auto &PPOpts = invocation->getPreprocessorOpts();
PPOpts.resetNonModularOptions();
auto &FrontendOpts = invocation->getFrontendOpts();
FrontendOpts.DisableFree = false;
if (FrontendOpts.CASIncludeTreeID.empty())
FrontendOpts.Inputs.clear();
// Share the CASOption and the underlying CAS.
invocation->setCASOption(Impl.Invocation->getCASOptsPtr());
auto clonedInstance = std::make_unique<clang::CompilerInstance>(
Impl.Instance->getPCHContainerOperations(),
&Impl.Instance->getModuleCache());
clonedInstance->setInvocation(std::move(invocation));
clonedInstance->createDiagnostics(&Impl.Instance->getDiagnosticClient(),
/*ShouldOwnClient=*/false);
clang::FileManager &fileManager = Impl.Instance->getFileManager();
clonedInstance->setFileManager(&fileManager);
clonedInstance->createSourceManager(fileManager);
clonedInstance->setTarget(&Impl.Instance->getTarget());
clonedInstance->setOutputBackend(Impl.SwiftContext.OutputBackend);
return clonedInstance;
}
bool ClangImporter::emitBridgingPCH(
StringRef headerPath, StringRef outputPCHPath, bool cached) {
auto emitInstance = cloneCompilerInstanceForPrecompiling();
auto &invocation = emitInstance->getInvocation();
auto &LangOpts = invocation.getLangOpts();
LangOpts.NeededByPCHOrCompilationUsesPCH = true;
LangOpts.CacheGeneratedPCH = cached;
auto language = getLanguageFromOptions(LangOpts);
auto inputFile = clang::FrontendInputFile(headerPath, language);
auto &FrontendOpts = invocation.getFrontendOpts();
if (invocation.getFrontendOpts().CASIncludeTreeID.empty())
FrontendOpts.Inputs = {inputFile};
FrontendOpts.OutputFile = outputPCHPath.str();
FrontendOpts.ProgramAction = clang::frontend::GeneratePCH;
auto action = wrapActionForIndexingIfEnabled(
FrontendOpts, std::make_unique<clang::GeneratePCHAction>());
emitInstance->ExecuteAction(*action);
if (emitInstance->getDiagnostics().hasErrorOccurred() &&
!emitInstance->getPreprocessorOpts().AllowPCHWithCompilerErrors) {
Impl.diagnose({}, diag::bridging_header_pch_error,
outputPCHPath, headerPath);
return true;
}
return false;
}
bool ClangImporter::runPreprocessor(
StringRef inputPath, StringRef outputPath) {
auto emitInstance = cloneCompilerInstanceForPrecompiling();
auto &invocation = emitInstance->getInvocation();
auto &LangOpts = invocation.getLangOpts();
auto &OutputOpts = invocation.getPreprocessorOutputOpts();
OutputOpts.ShowCPP = 1;
OutputOpts.ShowComments = 0;
OutputOpts.ShowLineMarkers = 0;
OutputOpts.ShowMacros = 0;
OutputOpts.ShowMacroComments = 0;
auto language = getLanguageFromOptions(LangOpts);
auto inputFile = clang::FrontendInputFile(inputPath, language);
auto &FrontendOpts = invocation.getFrontendOpts();
if (invocation.getFrontendOpts().CASIncludeTreeID.empty())
FrontendOpts.Inputs = {inputFile};
FrontendOpts.OutputFile = outputPath.str();
FrontendOpts.ProgramAction = clang::frontend::PrintPreprocessedInput;
auto action = wrapActionForIndexingIfEnabled(
FrontendOpts, std::make_unique<clang::PrintPreprocessedAction>());
emitInstance->ExecuteAction(*action);
return emitInstance->getDiagnostics().hasErrorOccurred();
}
bool ClangImporter::emitPrecompiledModule(
StringRef moduleMapPath, StringRef moduleName, StringRef outputPath) {
auto emitInstance = cloneCompilerInstanceForPrecompiling();
auto &invocation = emitInstance->getInvocation();
auto &LangOpts = invocation.getLangOpts();
LangOpts.setCompilingModule(clang::LangOptions::CMK_ModuleMap);
LangOpts.ModuleName = moduleName.str();
LangOpts.CurrentModule = LangOpts.ModuleName;
auto language = getLanguageFromOptions(LangOpts);
auto &FrontendOpts = invocation.getFrontendOpts();
if (invocation.getFrontendOpts().CASIncludeTreeID.empty()) {
auto inputFile = clang::FrontendInputFile(
moduleMapPath,
clang::InputKind(language, clang::InputKind::ModuleMap, false),
FrontendOpts.IsSystemModule);
FrontendOpts.Inputs = {inputFile};
}
FrontendOpts.OriginalModuleMap = moduleMapPath.str();
FrontendOpts.OutputFile = outputPath.str();
FrontendOpts.ProgramAction = clang::frontend::GenerateModule;
auto action = wrapActionForIndexingIfEnabled(
FrontendOpts,
std::make_unique<clang::GenerateModuleFromModuleMapAction>());
emitInstance->ExecuteAction(*action);
if (emitInstance->getDiagnostics().hasErrorOccurred() &&
!FrontendOpts.AllowPCMWithCompilerErrors) {
Impl.diagnose({}, diag::emit_pcm_error, outputPath, moduleMapPath);
return true;
}
return false;
}
bool ClangImporter::dumpPrecompiledModule(
StringRef modulePath, StringRef outputPath) {
auto dumpInstance = cloneCompilerInstanceForPrecompiling();
auto &invocation = dumpInstance->getInvocation();
auto inputFile = clang::FrontendInputFile(
modulePath, clang::InputKind(
clang::Language::Unknown, clang::InputKind::Precompiled, false));
auto &FrontendOpts = invocation.getFrontendOpts();
if (invocation.getFrontendOpts().CASIncludeTreeID.empty())
FrontendOpts.Inputs = {inputFile};
FrontendOpts.OutputFile = outputPath.str();
auto action = std::make_unique<clang::DumpModuleInfoAction>();
dumpInstance->ExecuteAction(*action);
if (dumpInstance->getDiagnostics().hasErrorOccurred()) {
Impl.diagnose({}, diag::dump_pcm_error, modulePath);
return true;
}
return false;
}
void ClangImporter::collectVisibleTopLevelModuleNames(
SmallVectorImpl<Identifier> &names) const {
SmallVector<clang::Module *, 32> Modules;
Impl.getClangPreprocessor().getHeaderSearchInfo().collectAllModules(Modules);
for (auto &M : Modules) {
if (!M->isAvailable())
continue;
names.push_back(
Impl.SwiftContext.getIdentifier(M->getTopLevelModuleName()));
}
}
void ClangImporter::collectSubModuleNames(
ImportPath::Module path,
std::vector<std::string> &names) const {
auto &clangHeaderSearch = Impl.getClangPreprocessor().getHeaderSearchInfo();
// Look up the top-level module first.
clang::Module *clangModule = clangHeaderSearch.lookupModule(
path.front().Item.str(), /*ImportLoc=*/clang::SourceLocation(),
/*AllowSearch=*/true, /*AllowExtraModuleMapSearch=*/true);
if (!clangModule)
return;
clang::Module *submodule = clangModule;
for (auto component : path.getSubmodulePath()) {
submodule = submodule->findSubmodule(component.Item.str());
if (!submodule)
return;
}
for (auto sub : submodule->submodules())
names.push_back(sub->Name);
}
bool ClangImporter::isModuleImported(const clang::Module *M) {
return M->NameVisibility == clang::Module::NameVisibilityKind::AllVisible;
}
static llvm::VersionTuple getCurrentVersionFromTBD(llvm::vfs::FileSystem &FS,
StringRef path,
StringRef moduleName) {
std::string fwName = (moduleName + ".framework").str();
auto pos = path.find(fwName);
if (pos == StringRef::npos)
return {};
llvm::SmallString<256> buffer(path.substr(0, pos + fwName.size()));
llvm::sys::path::append(buffer, moduleName + ".tbd");
auto tbdPath = buffer.str();
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> tbdBufOrErr =
FS.getBufferForFile(tbdPath);
// .tbd file doesn't exist, exit.
if (!tbdBufOrErr)
return {};
auto tbdFileOrErr =
llvm::MachO::TextAPIReader::get(tbdBufOrErr.get()->getMemBufferRef());
if (auto err = tbdFileOrErr.takeError()) {
consumeError(std::move(err));
return {};
}
auto tbdCV = (*tbdFileOrErr)->getCurrentVersion();
return llvm::VersionTuple(tbdCV.getMajor(), tbdCV.getMinor(),
tbdCV.getSubminor());
}
bool ClangImporter::canImportModule(ImportPath::Module modulePath,
SourceLoc loc,
ModuleVersionInfo *versionInfo,
bool isTestableDependencyLookup) {
// Look up the top-level module to see if it exists.
auto topModule = modulePath.front();
clang::Module *clangModule = Impl.lookupModule(topModule.Item.str());
if (!clangModule) {
return false;
}
clang::Module::Requirement r;
clang::Module::UnresolvedHeaderDirective mh;
clang::Module *m;
auto &ctx = Impl.getClangASTContext();
auto &lo = ctx.getLangOpts();
auto &ti = getModuleAvailabilityTarget();
auto available = clangModule->isAvailable(lo, ti, r, mh, m);
if (!available)
return false;
if (modulePath.hasSubmodule()) {
for (auto &component : modulePath.getSubmodulePath()) {
clangModule = clangModule->findSubmodule(component.Item.str());
// Special case: a submodule named "Foo.Private" can be moved to a
// top-level module named "Foo_Private". Clang has special support for
// this.
if (!clangModule && component.Item.str() == "Private" &&
(&component) == (&modulePath.getRaw()[1])) {
clangModule =
Impl.lookupModule((topModule.Item.str() + "_Private").str());
}
if (!clangModule || !clangModule->isAvailable(lo, ti, r, mh, m)) {
return false;
}
}
}
if (!versionInfo)
return true;
assert(available);
StringRef path = getClangASTContext().getSourceManager()
.getFilename(clangModule->DefinitionLoc);
// Look for the .tbd file inside .framework dir to get the project version
// number.
llvm::VersionTuple currentVersion = getCurrentVersionFromTBD(
Impl.Instance->getVirtualFileSystem(), path, topModule.Item.str());
versionInfo->setVersion(currentVersion,
ModuleVersionSourceKind::ClangModuleTBD);
return true;
}
clang::Module *
ClangImporter::Implementation::lookupModule(StringRef moduleName) {
auto &clangHeaderSearch = getClangPreprocessor().getHeaderSearchInfo();
// Explicit module. Try load from modulemap.
auto &PP = Instance->getPreprocessor();
auto &MM = PP.getHeaderSearchInfo().getModuleMap();
auto loadFromMM = [&]() -> clang::Module * {
auto *II = PP.getIdentifierInfo(moduleName);
if (auto clangModule = MM.getCachedModuleLoad(*II))
return *clangModule;
return nullptr;
};
// Check if it is already loaded.
if (auto *clangModule = loadFromMM())
return clangModule;
// If not, try load it.
auto &PrebuiltModules = Instance->getHeaderSearchOpts().PrebuiltModuleFiles;
auto moduleFile = PrebuiltModules.find(moduleName);
if (moduleFile == PrebuiltModules.end()) {
if (getClangASTContext().getLangOpts().ImplicitModules)
return clangHeaderSearch.lookupModule(
moduleName, /*ImportLoc=*/clang::SourceLocation(),
/*AllowSearch=*/true, /*AllowExtraModuleMapSearch=*/true);
return nullptr;
}
clang::serialization::ModuleFile *Loaded = nullptr;
if (!Instance->loadModuleFile(moduleFile->second, Loaded))
return nullptr; // error loading, return not found.
return loadFromMM();
}
ModuleDecl *ClangImporter::Implementation::loadModuleClang(
SourceLoc importLoc, ImportPath::Module path) {
auto realModuleName = SwiftContext.getRealModuleName(path.front().Item).str();
// Convert the Swift import path over to a Clang import path.
SmallVector<std::pair<clang::IdentifierInfo *, clang::SourceLocation>, 4>
clangPath;
bool isTopModuleComponent = true;
for (auto component : path) {
StringRef item = isTopModuleComponent? realModuleName:
component.Item.str();
isTopModuleComponent = false;
clangPath.emplace_back(
getClangPreprocessor().getIdentifierInfo(item),
exportSourceLoc(component.Loc));
}
auto &diagEngine = Instance->getDiagnostics();
auto &rawDiagClient = *diagEngine.getClient();
auto &diagClient = static_cast<ClangDiagnosticConsumer &>(rawDiagClient);
auto loadModule = [&](clang::ModuleIdPath path,
clang::Module::NameVisibilityKind visibility)
-> clang::ModuleLoadResult {
auto importRAII =
diagClient.handleImport(clangPath.front().first, diagEngine,
importLoc);
std::string preservedIndexStorePathOption;
auto &clangFEOpts = Instance->getFrontendOpts();
if (!clangFEOpts.IndexStorePath.empty()) {
StringRef moduleName = path[0].first->getName();
// Ignore the SwiftShims module for the index data.
if (moduleName == SwiftContext.SwiftShimsModuleName.str()) {
preservedIndexStorePathOption = clangFEOpts.IndexStorePath;
clangFEOpts.IndexStorePath.clear();
}
}
clang::SourceLocation clangImportLoc = getNextIncludeLoc();
clang::ModuleLoadResult result =
Instance->loadModule(clangImportLoc, path, visibility,
/*IsInclusionDirective=*/false);
if (!preservedIndexStorePathOption.empty()) {
// Restore the -index-store-path option.
clangFEOpts.IndexStorePath = preservedIndexStorePathOption;
}
if (result && (visibility == clang::Module::AllVisible)) {
getClangPreprocessor().makeModuleVisible(result, clangImportLoc);
}
return result;
};
// Now load the top-level module, so that we can check if the submodule
// exists without triggering a fatal error.
auto clangModule = loadModule(clangPath.front(), clang::Module::AllVisible);
if (!clangModule)
return nullptr;
// If we're asked to import the top-level module then we're done here.
auto *topSwiftModule = finishLoadingClangModule(clangModule, importLoc);
if (path.size() == 1) {
return topSwiftModule;
}
// Verify that the submodule exists.
clang::Module *submodule = clangModule;
for (auto &component : path.getSubmodulePath()) {
submodule = submodule->findSubmodule(component.Item.str());
// Special case: a submodule named "Foo.Private" can be moved to a top-level
// module named "Foo_Private". Clang has special support for this.
// We're limiting this to just submodules named "Private" because this will
// put the Clang AST in a fatal error state if it /doesn't/ exist.
if (!submodule && component.Item.str() == "Private" &&
(&component) == (&path.getRaw()[1])) {
submodule = loadModule(llvm::ArrayRef(clangPath).slice(0, 2),
clang::Module::Hidden);
}
if (!submodule) {
// FIXME: Specialize the error for a missing submodule?
return nullptr;
}
}
// Finally, load the submodule and make it visible.
clangModule = loadModule(clangPath, clang::Module::AllVisible);
if (!clangModule)
return nullptr;
return finishLoadingClangModule(clangModule, importLoc);
}
ModuleDecl *
ClangImporter::loadModule(SourceLoc importLoc,
ImportPath::Module path,
bool AllowMemoryCache) {
return Impl.loadModule(importLoc, path);
}
ModuleDecl *ClangImporter::Implementation::loadModule(
SourceLoc importLoc, ImportPath::Module path) {
ModuleDecl *MD = nullptr;
ASTContext &ctx = getNameImporter().getContext();
// `CxxStdlib` is the only accepted spelling of the C++ stdlib module name.
if (path.front().Item.is("std") ||
path.front().Item.str().starts_with("std_"))
return nullptr;
if (path.front().Item == ctx.Id_CxxStdlib) {
ImportPath::Builder adjustedPath(ctx.getIdentifier("std"), importLoc);
adjustedPath.append(path.getSubmodulePath());
path = adjustedPath.copyTo(ctx).getModulePath(ImportKind::Module);
}
if (!DisableSourceImport)
MD = loadModuleClang(importLoc, path);
if (!MD)
MD = loadModuleDWARF(importLoc, path);
return MD;
}
ModuleDecl *ClangImporter::Implementation::finishLoadingClangModule(
const clang::Module *clangModule, SourceLoc importLoc) {
assert(clangModule);
// Bump the generation count.
bumpGeneration();
// Force load overlays for all imported modules.
// FIXME: This forces the creation of wrapper modules for all imports as
// well, and may do unnecessary work.
ClangModuleUnit *wrapperUnit = getWrapperForModule(clangModule, importLoc);
ModuleDecl *result = wrapperUnit->getParentModule();
auto &moduleWrapper = ModuleWrappers[clangModule];
if (!moduleWrapper.getInt()) {
moduleWrapper.setInt(true);
(void) namelookup::getAllImports(result);
}
// Register '.h' inputs of each Clang module dependency with
// the dependency tracker. In implicit builds such dependencies are registered
// during the on-demand construction of Clang module. In Explicit Module
// Builds, since we load pre-built PCMs directly, we do not get to do so. So
// instead, manually register all `.h` inputs of Clang module dependnecies.
if (SwiftDependencyTracker &&
!Instance->getInvocation().getLangOpts().ImplicitModules) {
if (auto moduleRef = clangModule->getASTFile()) {
auto *moduleFile = Instance->getASTReader()->getModuleManager().lookup(
*moduleRef);
llvm::SmallString<0> pathBuf;
pathBuf.reserve(256);
Instance->getASTReader()->visitInputFileInfos(
*moduleFile, /*IncludeSystem=*/true,
[&](const clang::serialization::InputFileInfo &IFI, bool isSystem) {
auto Filename = clang::ASTReader::ResolveImportedPath(
pathBuf, IFI.UnresolvedImportedFilename, *moduleFile);
SwiftDependencyTracker->addDependency(*Filename, isSystem);
});
}
}
if (clangModule->isSubModule()) {
finishLoadingClangModule(clangModule->getTopLevelModule(), importLoc);
} else {
if (!SwiftContext.getLoadedModule(result->getName()))
SwiftContext.addLoadedModule(result);
}
return result;
}
// Run through the set of deferred imports -- either those referenced by
// submodule ID from a bridging PCH, or those already loaded as clang::Modules
// in response to an import directive in a bridging header -- and call
// finishLoadingClangModule on each.
void ClangImporter::Implementation::handleDeferredImports(SourceLoc diagLoc) {
clang::ASTReader &R = *Instance->getASTReader();
llvm::SmallSet<clang::serialization::SubmoduleID, 32> seenSubmodules;
for (clang::serialization::SubmoduleID ID : PCHImportedSubmodules) {
if (!seenSubmodules.insert(ID).second)
continue;
ImportedHeaderExports.push_back(R.getSubmodule(ID));
}
PCHImportedSubmodules.clear();
// Avoid a for-in loop because in unusual situations we can end up pulling in
// another bridging header while we finish loading the modules that are
// already here. This is a brittle situation but it's outside what's
// officially supported with bridging headers: app targets and unit tests
// only. Unfortunately that's not enforced.
for (size_t i = 0; i < ImportedHeaderExports.size(); ++i) {
(void)finishLoadingClangModule(ImportedHeaderExports[i], diagLoc);
}
}
ModuleDecl *ClangImporter::getImportedHeaderModule() const {
return Impl.ImportedHeaderUnit->getParentModule();
}
ModuleDecl *
ClangImporter::getWrapperForModule(const clang::Module *mod,
bool returnOverlayIfPossible) const {
auto clangUnit = Impl.getWrapperForModule(mod);
if (returnOverlayIfPossible && clangUnit->getOverlayModule())
return clangUnit->getOverlayModule();
return clangUnit->getParentModule();
}
PlatformAvailability::PlatformAvailability(const LangOptions &langOpts)
: platformKind(targetPlatform(langOpts)) {
switch (platformKind) {
case PlatformKind::iOS:
case PlatformKind::iOSApplicationExtension:
case PlatformKind::macCatalyst:
case PlatformKind::macCatalystApplicationExtension:
case PlatformKind::tvOS:
case PlatformKind::tvOSApplicationExtension:
deprecatedAsUnavailableMessage =
"APIs deprecated as of iOS 7 and earlier are unavailable in Swift";
asyncDeprecatedAsUnavailableMessage =
"APIs deprecated as of iOS 12 and earlier are not imported as 'async'";
break;
case PlatformKind::watchOS:
case PlatformKind::watchOSApplicationExtension:
deprecatedAsUnavailableMessage = "";
asyncDeprecatedAsUnavailableMessage =
"APIs deprecated as of watchOS 5 and earlier are not imported as "
"'async'";
break;
case PlatformKind::macOS:
case PlatformKind::macOSApplicationExtension:
deprecatedAsUnavailableMessage =
"APIs deprecated as of macOS 10.9 and earlier are unavailable in Swift";
asyncDeprecatedAsUnavailableMessage =
"APIs deprecated as of macOS 10.14 and earlier are not imported as "
"'async'";
break;
case PlatformKind::visionOS:
case PlatformKind::visionOSApplicationExtension:
break;
case PlatformKind::OpenBSD:
deprecatedAsUnavailableMessage = "";
break;
case PlatformKind::Windows:
deprecatedAsUnavailableMessage = "";
break;
case PlatformKind::none:
break;
}
}
bool PlatformAvailability::isPlatformRelevant(StringRef name) const {
switch (platformKind) {
case PlatformKind::macOS:
return name == "macos";
case PlatformKind::macOSApplicationExtension:
return name == "macos" || name == "macos_app_extension";
case PlatformKind::iOS:
return name == "ios";
case PlatformKind::iOSApplicationExtension:
return name == "ios" || name == "ios_app_extension";
case PlatformKind::macCatalyst:
return name == "ios" || name == "maccatalyst";
case PlatformKind::macCatalystApplicationExtension:
return name == "ios" || name == "ios_app_extension" ||
name == "maccatalyst" || name == "maccatalyst_app_extension";
case PlatformKind::tvOS:
return name == "tvos";
case PlatformKind::tvOSApplicationExtension:
return name == "tvos" || name == "tvos_app_extension";
case PlatformKind::watchOS:
return name == "watchos";
case PlatformKind::watchOSApplicationExtension:
return name == "watchos" || name == "watchos_app_extension";
case PlatformKind::visionOS:
return name == "xros" || name == "visionos";
case PlatformKind::visionOSApplicationExtension:
return name == "xros" || name == "xros_app_extension" ||
name == "visionos" || name == "visionos_app_extension";
case PlatformKind::OpenBSD:
return name == "openbsd";
case PlatformKind::Windows:
return name == "windows";
case PlatformKind::none:
return false;
}
llvm_unreachable("Unexpected platform");
}
bool PlatformAvailability::treatDeprecatedAsUnavailable(
const clang::Decl *clangDecl, const llvm::VersionTuple &version,
bool isAsync) const {
assert(!version.empty() && "Must provide version when deprecated");
unsigned major = version.getMajor();
std::optional<unsigned> minor = version.getMinor();
switch (platformKind) {
case PlatformKind::none:
llvm_unreachable("version but no platform?");
case PlatformKind::macOS:
case PlatformKind::macOSApplicationExtension:
// Anything deprecated by macOS 10.14 is unavailable for async import
// in Swift.
if (isAsync && !clangDecl->hasAttr<clang::SwiftAsyncAttr>()) {
return major < 10 ||
(major == 10 && (!minor.has_value() || minor.value() <= 14));
}
// Anything deprecated in OSX 10.9.x and earlier is unavailable in Swift.
return major < 10 ||
(major == 10 && (!minor.has_value() || minor.value() <= 9));
case PlatformKind::iOS:
case PlatformKind::iOSApplicationExtension:
case PlatformKind::tvOS:
case PlatformKind::tvOSApplicationExtension:
// Anything deprecated by iOS 12 is unavailable for async import
// in Swift.
if (isAsync && !clangDecl->hasAttr<clang::SwiftAsyncAttr>()) {
return major <= 12;
}
// Anything deprecated in iOS 7.x and earlier is unavailable in Swift.
return major <= 7;
case PlatformKind::macCatalyst:
case PlatformKind::macCatalystApplicationExtension:
// ClangImporter does not yet support macCatalyst.
return false;
case PlatformKind::watchOS:
case PlatformKind::watchOSApplicationExtension:
// Anything deprecated by watchOS 5.0 is unavailable for async import
// in Swift.
if (isAsync && !clangDecl->hasAttr<clang::SwiftAsyncAttr>()) {
return major <= 5;
}
// No deprecation filter on watchOS
return false;
case PlatformKind::visionOS:
case PlatformKind::visionOSApplicationExtension:
// No deprecation filter on xrOS
return false;
case PlatformKind::OpenBSD:
// No deprecation filter on OpenBSD
return false;
case PlatformKind::Windows:
// No deprecation filter on Windows
return false;
}
llvm_unreachable("Unexpected platform");
}
ClangImporter::Implementation::Implementation(
ASTContext &ctx, DependencyTracker *dependencyTracker,
DWARFImporterDelegate *dwarfImporterDelegate)
: SwiftContext(ctx), ImportForwardDeclarations(
ctx.ClangImporterOpts.ImportForwardDeclarations),
DisableSwiftBridgeAttr(ctx.ClangImporterOpts.DisableSwiftBridgeAttr),
BridgingHeaderExplicitlyRequested(
!ctx.ClangImporterOpts.BridgingHeader.empty()),
DisableOverlayModules(ctx.ClangImporterOpts.DisableOverlayModules),
EnableClangSPI(ctx.ClangImporterOpts.EnableClangSPI),
IsReadingBridgingPCH(false),
CurrentVersion(ImportNameVersion::fromOptions(ctx.LangOpts)),
Walker(DiagnosticWalker(*this)), BuffersForDiagnostics(ctx.SourceMgr),
BridgingHeaderLookupTable(new SwiftLookupTable(nullptr)),
platformAvailability(ctx.LangOpts), nameImporter(),
DisableSourceImport(ctx.ClangImporterOpts.DisableSourceImport),
SwiftDependencyTracker(dependencyTracker),
DWARFImporter(dwarfImporterDelegate) {}
ClangImporter::Implementation::~Implementation() {
#ifndef NDEBUG
SwiftContext.SourceMgr.verifyAllBuffers();
#endif
}
ClangImporter::Implementation::DiagnosticWalker::DiagnosticWalker(
ClangImporter::Implementation &Impl)
: Impl(Impl) {}
bool ClangImporter::Implementation::DiagnosticWalker::TraverseDecl(
clang::Decl *D) {
if (!D)
return true;
// In some cases, diagnostic notes about types (ex: built-in types) do not
// have an obvious source location at which to display diagnostics. We
// provide the location of the closest decl as a reasonable choice.
llvm::SaveAndRestore<clang::SourceLocation> sar{TypeReferenceSourceLocation,
D->getBeginLoc()};
return clang::RecursiveASTVisitor<DiagnosticWalker>::TraverseDecl(D);
}
bool ClangImporter::Implementation::DiagnosticWalker::TraverseParmVarDecl(
clang::ParmVarDecl *D) {
// When the ClangImporter imports functions / methods, the return
// type is first imported, followed by parameter types in order of
// declaration. If any type fails to import, the import of the function /
// method is aborted. This means any parameters after the first to fail to
// import (the first could be the return type) will not have diagnostics
// attached. Even though these remaining parameters may have unimportable
// types, we avoid diagnosing these types as a type diagnosis without a
// "parameter not imported" note on the referencing param decl is inconsistent
// behaviour and could be confusing.
if (Impl.ImportDiagnostics[D].size()) {
// Since the parameter decl in question has been diagnosed (we didn't bail
// before importing this param) continue the traversal as normal.
return clang::RecursiveASTVisitor<DiagnosticWalker>::TraverseParmVarDecl(D);
}
// If the decl in question has not been diagnosed, traverse "as normal" except
// avoid traversing to the referenced typed. Note the traversal has been
// simplified greatly and may need to be modified to support some future
// diagnostics.
if (!getDerived().shouldTraversePostOrder())
if (!WalkUpFromParmVarDecl(D))
return false;
if (clang::DeclContext *declContext = dyn_cast<clang::DeclContext>(D)) {
for (auto *Child : declContext->decls()) {
if (!canIgnoreChildDeclWhileTraversingDeclContext(Child))
if (!TraverseDecl(Child))
return false;
}
}
if (getDerived().shouldTraversePostOrder())
if (!WalkUpFromParmVarDecl(D))
return false;
return true;
}
bool ClangImporter::Implementation::DiagnosticWalker::VisitDecl(
clang::Decl *D) {
Impl.emitDiagnosticsForTarget(D);
return true;
}
bool ClangImporter::Implementation::DiagnosticWalker::VisitMacro(
const clang::MacroInfo *MI) {
Impl.emitDiagnosticsForTarget(MI);
for (const clang::Token &token : MI->tokens()) {
Impl.emitDiagnosticsForTarget(&token);
}
return true;
}
bool ClangImporter::Implementation::DiagnosticWalker::
VisitObjCObjectPointerType(clang::ObjCObjectPointerType *T) {
// If an ObjCInterface is pointed to, diagnose it.
if (const clang::ObjCInterfaceDecl *decl = T->getInterfaceDecl()) {
Impl.emitDiagnosticsForTarget(decl);
}
// Diagnose any protocols the pointed to type conforms to.
for (auto cp = T->qual_begin(), cpEnd = T->qual_end(); cp != cpEnd; ++cp) {
Impl.emitDiagnosticsForTarget(*cp);
}
return true;
}
bool ClangImporter::Implementation::DiagnosticWalker::VisitType(
clang::Type *T) {
if (TypeReferenceSourceLocation.isValid())
Impl.emitDiagnosticsForTarget(T, TypeReferenceSourceLocation);
return true;
}
ClangModuleUnit *ClangImporter::Implementation::getWrapperForModule(
const clang::Module *underlying, SourceLoc diagLoc) {
auto &cacheEntry = ModuleWrappers[underlying];
if (ClangModuleUnit *cached = cacheEntry.getPointer())
return cached;
// FIXME: Handle hierarchical names better.
Identifier name = underlying->Name == "std"
? SwiftContext.Id_CxxStdlib
: SwiftContext.getIdentifier(underlying->Name);
ImplicitImportInfo implicitImportInfo;
if (auto mainModule = SwiftContext.MainModule) {
implicitImportInfo = mainModule->getImplicitImportInfo();
}
ClangModuleUnit *file = nullptr;
auto wrapper = ModuleDecl::create(name, SwiftContext, implicitImportInfo,
[&](ModuleDecl *wrapper, auto addFile) {
file = new (SwiftContext) ClangModuleUnit(*wrapper, *this, underlying);
addFile(file);
});
wrapper->setIsSystemModule(underlying->IsSystem);
wrapper->setIsNonSwiftModule();
wrapper->setHasResolvedImports();
if (!underlying->ExportAsModule.empty())
wrapper->setExportAsName(
SwiftContext.getIdentifier(underlying->ExportAsModule));
SwiftContext.getClangModuleLoader()->findOverlayFiles(diagLoc, wrapper, file);
cacheEntry.setPointer(file);
return file;
}
ClangModuleUnit *ClangImporter::Implementation::getClangModuleForDecl(
const clang::Decl *D,
bool allowForwardDeclaration) {
auto maybeModule = getClangSubmoduleForDecl(D, allowForwardDeclaration);
if (!maybeModule)
return nullptr;
if (!maybeModule.value())
return ImportedHeaderUnit;
// Get the parent module because currently we don't represent submodules with
// ClangModuleUnit.
auto *M = maybeModule.value()->getTopLevelModule();
return getWrapperForModule(M);
}
void ClangImporter::Implementation::addImportDiagnostic(
ImportDiagnosticTarget target, Diagnostic &&diag,
clang::SourceLocation loc) {
ImportDiagnostic importDiag = ImportDiagnostic(target, diag, loc);
if (SwiftContext.LangOpts.DisableExperimentalClangImporterDiagnostics)
return;
auto [_, inserted] = CollectedDiagnostics.insert(importDiag);
if (!inserted)
return;
ImportDiagnostics[target].push_back(importDiag);
}
#pragma mark Source locations
clang::SourceLocation
ClangImporter::Implementation::exportSourceLoc(SourceLoc loc) {
// FIXME: Implement!
return clang::SourceLocation();
}
SourceLoc
ClangImporter::Implementation::importSourceLoc(clang::SourceLocation loc) {
return BuffersForDiagnostics.resolveSourceLocation(Instance->getSourceManager(), loc);
}
SourceRange
ClangImporter::Implementation::importSourceRange(clang::SourceRange range) {
return SourceRange(importSourceLoc(range.getBegin()), importSourceLoc(range.getEnd()));
}
#pragma mark Importing names
clang::DeclarationName
ClangImporter::Implementation::exportName(Identifier name) {
// FIXME: When we start dealing with C++, we can map over some operator
// names.
if (name.empty() || name.isOperator())
return clang::DeclarationName();
// Map the identifier. If it's some kind of keyword, it can't be mapped.
auto ident = &Instance->getASTContext().Idents.get(name.str());
if (ident->getTokenID() != clang::tok::identifier)
return clang::DeclarationName();
return ident;
}
Identifier
ClangImporter::Implementation::importIdentifier(
const clang::IdentifierInfo *identifier,
StringRef removePrefix)
{
if (!identifier) return Identifier();
StringRef name = identifier->getName();
// Remove the prefix, if any.
if (!removePrefix.empty()) {
if (name.starts_with(removePrefix)) {
name = name.slice(removePrefix.size(), name.size());
}
}
// Get the Swift identifier.
return SwiftContext.getIdentifier(name);
}
ObjCSelector ClangImporter::Implementation::importSelector(
clang::Selector selector) {
auto &ctx = SwiftContext;
// Handle zero-argument selectors directly.
if (selector.isUnarySelector()) {
Identifier name;
if (auto id = selector.getIdentifierInfoForSlot(0))
name = ctx.getIdentifier(id->getName());
return ObjCSelector(ctx, 0, name);
}
SmallVector<Identifier, 2> pieces;
for (auto i = 0u, n = selector.getNumArgs(); i != n; ++i) {
Identifier piece;
if (auto id = selector.getIdentifierInfoForSlot(i))
piece = ctx.getIdentifier(id->getName());
pieces.push_back(piece);
}
return ObjCSelector(ctx, pieces.size(), pieces);
}
clang::Selector
ClangImporter::Implementation::exportSelector(DeclName name,
bool allowSimpleName) {
if (!allowSimpleName && name.isSimpleName())
return {};
clang::ASTContext &ctx = getClangASTContext();
SmallVector<const clang::IdentifierInfo *, 8> pieces;
pieces.push_back(exportName(name.getBaseIdentifier()).getAsIdentifierInfo());
auto argNames = name.getArgumentNames();
if (argNames.empty())
return ctx.Selectors.getNullarySelector(pieces.front());
if (!argNames.front().empty())
return {};
argNames = argNames.slice(1);
for (Identifier argName : argNames)
pieces.push_back(exportName(argName).getAsIdentifierInfo());
return ctx.Selectors.getSelector(pieces.size(), pieces.data());
}
clang::Selector
ClangImporter::Implementation::exportSelector(ObjCSelector selector) {
SmallVector<const clang::IdentifierInfo *, 4> pieces;
for (auto piece : selector.getSelectorPieces())
pieces.push_back(exportName(piece).getAsIdentifierInfo());
return getClangASTContext().Selectors.getSelector(selector.getNumArgs(),
pieces.data());
}
/// Determine whether the given method potentially conflicts with the
/// setter for a property in the given protocol.
static bool
isPotentiallyConflictingSetter(const clang::ObjCProtocolDecl *proto,
const clang::ObjCMethodDecl *method) {
auto sel = method->getSelector();
if (sel.getNumArgs() != 1)
return false;
const clang::IdentifierInfo *setterID = sel.getIdentifierInfoForSlot(0);
if (!setterID || !setterID->getName().starts_with("set"))
return false;
for (auto *prop : proto->properties()) {
if (prop->getSetterName() == sel)
return true;
}
return false;
}
bool importer::shouldSuppressDeclImport(const clang::Decl *decl) {
if (auto objcMethod = dyn_cast<clang::ObjCMethodDecl>(decl)) {
// First check if we're actually in a Swift class.
auto dc = decl->getDeclContext();
if (hasNativeSwiftDecl(cast<clang::ObjCContainerDecl>(dc)))
return true;
// If this member is a method that is a getter or setter for a
// property, don't add it into the table. property names and
// getter names (by choosing to only have a property).
//
// Note that this is suppressed for certain accessibility declarations,
// which are imported as getter/setter pairs and not properties.
if (objcMethod->isPropertyAccessor()) {
// Suppress the import of this method when the corresponding
// property is not suppressed.
return !shouldSuppressDeclImport(
objcMethod->findPropertyDecl(/*CheckOverrides=*/false));
}
// If the method was declared within a protocol, check that it
// does not conflict with the setter of a property.
if (auto proto = dyn_cast<clang::ObjCProtocolDecl>(dc))
return isPotentiallyConflictingSetter(proto, objcMethod);
return false;
}
if (auto objcProperty = dyn_cast<clang::ObjCPropertyDecl>(decl)) {
// First check if we're actually in a Swift class.
auto dc = objcProperty->getDeclContext();
if (hasNativeSwiftDecl(cast<clang::ObjCContainerDecl>(dc)))
return true;
// Suppress certain properties; import them as getter/setter pairs instead.
if (shouldImportPropertyAsAccessors(objcProperty))
return true;
// Check whether there is a superclass method for the getter that
// is *not* suppressed, in which case we will need to suppress
// this property.
auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(dc);
if (!objcClass) {
if (auto objcCategory = dyn_cast<clang::ObjCCategoryDecl>(dc)) {
// If the enclosing category is invalid, suppress this declaration.
if (objcCategory->isInvalidDecl()) return true;
objcClass = objcCategory->getClassInterface();
}
}
if (objcClass) {
if (auto objcSuperclass = objcClass->getSuperClass()) {
auto getterMethod =
objcSuperclass->lookupMethod(objcProperty->getGetterName(),
objcProperty->isInstanceProperty());
if (getterMethod && !shouldSuppressDeclImport(getterMethod))
return true;
}
}
return false;
}
if (isa<clang::BuiltinTemplateDecl>(decl)) {
return true;
}
return false;
}
#pragma mark Name lookup
const clang::TypedefNameDecl *
ClangImporter::Implementation::lookupTypedef(clang::DeclarationName name) {
clang::Sema &sema = Instance->getSema();
clang::LookupResult lookupResult(sema, name,
clang::SourceLocation(),
clang::Sema::LookupOrdinaryName);
if (sema.LookupName(lookupResult, sema.TUScope)) {
for (auto decl : lookupResult) {
if (auto typedefDecl =
dyn_cast<clang::TypedefNameDecl>(decl->getUnderlyingDecl()))
return typedefDecl;
}
}
return nullptr;
}
static bool isDeclaredInModule(const ClangModuleUnit *ModuleFilter,
const Decl *VD) {
// Sometimes imported decls get put into the clang header module. If we
// found one of these decls, don't filter it out.
if (VD->getModuleContext()->getName().str() == CLANG_HEADER_MODULE_NAME) {
return true;
}
// Because the ClangModuleUnit saved as a decl context will be saved as the top-level module, but
// the ModuleFilter we're given might be a submodule (if a submodule was passed to
// getTopLevelDecls, for example), we should compare the underlying Clang modules to determine
// module membership.
if (auto ClangNode = VD->getClangNode()) {
if (auto *ClangModule = ClangNode.getOwningClangModule()) {
return ModuleFilter->getClangModule() == ClangModule;
}
}
auto ContainingUnit = VD->getDeclContext()->getModuleScopeContext();
return ModuleFilter == ContainingUnit;
}
static const clang::Module *
getClangOwningModule(ClangNode Node, const clang::ASTContext &ClangCtx) {
assert(!Node.getAsModule() && "not implemented for modules");
if (const clang::Decl *D = Node.getAsDecl()) {
auto ExtSource = ClangCtx.getExternalSource();
assert(ExtSource);
auto originalDecl = D;
if (auto functionDecl = dyn_cast<clang::FunctionDecl>(D)) {
if (auto pattern = functionDecl->getTemplateInstantiationPattern()) {
// Function template instantiations don't have an owning Clang module.
// Let's use the owning module of the template pattern.
originalDecl = pattern;
}
}
if (!originalDecl->hasOwningModule()) {
if (auto cxxRecordDecl = dyn_cast<clang::CXXRecordDecl>(D)) {
if (auto pattern = cxxRecordDecl->getTemplateInstantiationPattern()) {
// Class template instantiations sometimes don't have an owning Clang
// module, if the instantiation is not typedef-ed.
originalDecl = pattern;
}
}
}
return ExtSource->getModule(originalDecl->getOwningModuleID());
}
if (const clang::ModuleMacro *M = Node.getAsModuleMacro())
return M->getOwningModule();
// A locally-defined MacroInfo does not have an owning module.
assert(Node.getAsMacroInfo());
return nullptr;
}
static const clang::Module *
getClangTopLevelOwningModule(ClangNode Node,
const clang::ASTContext &ClangCtx) {
const clang::Module *OwningModule = getClangOwningModule(Node, ClangCtx);
if (!OwningModule)
return nullptr;
return OwningModule->getTopLevelModule();
}
static bool isVisibleFromModule(const ClangModuleUnit *ModuleFilter,
ValueDecl *VD) {
assert(ModuleFilter);
auto ContainingUnit = VD->getDeclContext()->getModuleScopeContext();
if (ModuleFilter == ContainingUnit)
return true;
// The rest of this function is looking to see if the Clang entity that
// caused VD to be imported has redeclarations in the filter module.
auto Wrapper = dyn_cast<ClangModuleUnit>(ContainingUnit);
if (!Wrapper)
return false;
ASTContext &Ctx = ContainingUnit->getASTContext();
auto *Importer = static_cast<ClangImporter *>(Ctx.getClangModuleLoader());
auto ClangNode = Importer->getEffectiveClangNode(VD);
// Macros can be "redeclared" by putting an equivalent definition in two
// different modules. (We don't actually check the equivalence.)
// FIXME: We're also not checking if the redeclaration is in /this/ module.
if (ClangNode.getAsMacro())
return true;
const clang::Decl *D = ClangNode.castAsDecl();
auto &ClangASTContext = ModuleFilter->getClangASTContext();
// We don't handle Clang submodules; pop everything up to the top-level
// module.
auto OwningClangModule = getClangTopLevelOwningModule(ClangNode,
ClangASTContext);
if (OwningClangModule == ModuleFilter->getClangModule())
return true;
// If this decl was implicitly synthesized by the compiler, and is not
// supposed to be owned by any module, return true.
if (Importer->isSynthesizedAndVisibleFromAllModules(D)) {
return true;
}
// Friends from class templates don't have an owning module. Just return true.
if (isa<clang::FunctionDecl>(D) &&
cast<clang::FunctionDecl>(D)->isThisDeclarationInstantiatedFromAFriendDefinition())
return true;
// Handle redeclarable Clang decls by checking each redeclaration.
bool IsTagDecl = isa<clang::TagDecl>(D);
if (!(IsTagDecl || isa<clang::FunctionDecl>(D) || isa<clang::VarDecl>(D) ||
isa<clang::TypedefNameDecl>(D) || isa<clang::NamespaceDecl>(D))) {
return false;
}
for (auto Redeclaration : D->redecls()) {
if (Redeclaration == D)
continue;
// For enums, structs, and unions, only count definitions when looking to
// see what other modules they appear in.
if (IsTagDecl) {
auto TD = cast<clang::TagDecl>(Redeclaration);
if (!TD->isCompleteDefinition() &&
!TD->isThisDeclarationADemotedDefinition())
continue;
}
auto OwningClangModule = getClangTopLevelOwningModule(Redeclaration,
ClangASTContext);
if (OwningClangModule == ModuleFilter->getClangModule())
return true;
}
return false;
}
namespace {
class ClangVectorDeclConsumer : public clang::VisibleDeclConsumer {
std::vector<clang::NamedDecl *> results;
public:
ClangVectorDeclConsumer() = default;
void FoundDecl(clang::NamedDecl *ND, clang::NamedDecl *Hiding,
clang::DeclContext *Ctx, bool InBaseClass) override {
if (!ND->getIdentifier())
return;
if (ND->isModulePrivate())
return;
results.push_back(ND);
}
llvm::MutableArrayRef<clang::NamedDecl *> getResults() {
return results;
}
};
class FilteringVisibleDeclConsumer : public swift::VisibleDeclConsumer {
swift::VisibleDeclConsumer &NextConsumer;
const ClangModuleUnit *ModuleFilter;
public:
FilteringVisibleDeclConsumer(swift::VisibleDeclConsumer &consumer,
const ClangModuleUnit *CMU)
: NextConsumer(consumer), ModuleFilter(CMU) {
assert(CMU);
}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) override {
if (!VD->hasClangNode() || isVisibleFromModule(ModuleFilter, VD))
NextConsumer.foundDecl(VD, Reason, dynamicLookupInfo);
}
};
class FilteringDeclaredDeclConsumer : public swift::VisibleDeclConsumer {
swift::VisibleDeclConsumer &NextConsumer;
const ClangModuleUnit *ModuleFilter;
public:
FilteringDeclaredDeclConsumer(swift::VisibleDeclConsumer &consumer,
const ClangModuleUnit *CMU)
: NextConsumer(consumer), ModuleFilter(CMU) {
assert(CMU);
}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) override {
if (isDeclaredInModule(ModuleFilter, VD)) {
NextConsumer.foundDecl(VD, Reason, dynamicLookupInfo);
}
}
};
/// A hack to hide particular types in the "Darwin" module on Apple platforms.
class DarwinLegacyFilterDeclConsumer : public swift::VisibleDeclConsumer {
swift::VisibleDeclConsumer &NextConsumer;
clang::ASTContext &ClangASTContext;
bool shouldDiscard(ValueDecl *VD) {
if (!VD->hasClangNode())
return false;
const clang::Module *clangModule = getClangOwningModule(VD->getClangNode(),
ClangASTContext);
if (!clangModule)
return false;
if (clangModule->Name == "MacTypes") {
if (!VD->hasName() || VD->getBaseName().isSpecial())
return true;
return llvm::StringSwitch<bool>(VD->getBaseName().userFacingName())
.Cases("OSErr", "OSStatus", "OptionBits", false)
.Cases("FourCharCode", "OSType", false)
.Case("Boolean", false)
.Case("kUnknownType", false)
.Cases("UTF32Char", "UniChar", "UTF16Char", "UTF8Char", false)
.Case("ProcessSerialNumber", false)
.Default(true);
}
if (clangModule->Parent &&
clangModule->Parent->Name == "CarbonCore") {
return llvm::StringSwitch<bool>(clangModule->Name)
.Cases("BackupCore", "DiskSpaceRecovery", "MacErrors", false)
.Case("UnicodeUtilities", false)
.Default(true);
}
if (clangModule->Parent &&
clangModule->Parent->Name == "OSServices") {
// Note that this is a list of things to /drop/ rather than to /keep/.
// We're more likely to see new, modern headers added to OSServices.
return llvm::StringSwitch<bool>(clangModule->Name)
.Cases("IconStorage", "KeychainCore", "Power", true)
.Cases("SecurityCore", "SystemSound", true)
.Cases("WSMethodInvocation", "WSProtocolHandler", "WSTypes", true)
.Default(false);
}
return false;
}
public:
DarwinLegacyFilterDeclConsumer(swift::VisibleDeclConsumer &consumer,
clang::ASTContext &clangASTContext)
: NextConsumer(consumer), ClangASTContext(clangASTContext) {}
static bool needsFiltering(const clang::Module *topLevelModule) {
return topLevelModule && (topLevelModule->Name == "Darwin" ||
topLevelModule->Name == "CoreServices");
}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo dynamicLookupInfo) override {
if (!shouldDiscard(VD))
NextConsumer.foundDecl(VD, Reason, dynamicLookupInfo);
}
};
} // unnamed namespace
/// Translate a MacroDefinition to a ClangNode, either a ModuleMacro for
/// a definition imported from a module or a MacroInfo for a macro defined
/// locally.
ClangNode getClangNodeForMacroDefinition(clang::MacroDefinition &M) {
if (!M.getModuleMacros().empty())
return ClangNode(M.getModuleMacros().back()->getMacroInfo());
if (auto *MD = M.getLocalDirective())
return ClangNode(MD->getMacroInfo());
return ClangNode();
}
void ClangImporter::lookupBridgingHeaderDecls(
llvm::function_ref<bool(ClangNode)> filter,
llvm::function_ref<void(Decl*)> receiver) const {
for (auto &Import : Impl.BridgeHeaderTopLevelImports) {
auto ImportD = Import.get<ImportDecl*>();
if (filter(ImportD->getClangDecl()))
receiver(ImportD);
}
for (auto *ClangD : Impl.BridgeHeaderTopLevelDecls) {
if (filter(ClangD)) {
if (auto *ND = dyn_cast<clang::NamedDecl>(ClangD)) {
if (Decl *imported = Impl.importDeclReal(ND, Impl.CurrentVersion))
receiver(imported);
}
}
}
auto &ClangPP = Impl.getClangPreprocessor();
for (clang::IdentifierInfo *II : Impl.BridgeHeaderMacros) {
auto MD = ClangPP.getMacroDefinition(II);
if (auto macroNode = getClangNodeForMacroDefinition(MD)) {
if (filter(macroNode)) {
auto MI = macroNode.getAsMacro();
Identifier Name = Impl.getNameImporter().importMacroName(II, MI);
if (Decl *imported = Impl.importMacro(Name, macroNode))
receiver(imported);
}
}
}
}
bool ClangImporter::lookupDeclsFromHeader(StringRef Filename,
llvm::function_ref<bool(ClangNode)> filter,
llvm::function_ref<void(Decl*)> receiver) const {
llvm::Expected<clang::FileEntryRef> ExpectedFile =
getClangPreprocessor().getFileManager().getFileRef(Filename);
if (!ExpectedFile)
return true;
clang::FileEntryRef File = *ExpectedFile;
auto &ClangCtx = getClangASTContext();
auto &ClangSM = ClangCtx.getSourceManager();
auto &ClangPP = getClangPreprocessor();
// Look up the header in the includes of the bridging header.
if (Impl.BridgeHeaderFiles.count(File)) {
auto headerFilter = [&](ClangNode ClangN) -> bool {
if (ClangN.isNull())
return false;
auto ClangLoc = ClangSM.getFileLoc(ClangN.getLocation());
if (ClangLoc.isInvalid())
return false;
clang::OptionalFileEntryRef LocRef =
ClangSM.getFileEntryRefForID(ClangSM.getFileID(ClangLoc));
if (!LocRef || *LocRef != File)
return false;
return filter(ClangN);
};
lookupBridgingHeaderDecls(headerFilter, receiver);
return false;
}
clang::FileID FID = ClangSM.translateFile(File);
if (FID.isInvalid())
return false;
// Look up the header in the ASTReader.
if (ClangSM.isLoadedFileID(FID)) {
// Decls.
SmallVector<clang::Decl *, 32> Decls;
unsigned Length = ClangSM.getFileIDSize(FID);
ClangCtx.getExternalSource()->FindFileRegionDecls(FID, 0, Length, Decls);
for (auto *ClangD : Decls) {
if (Impl.shouldIgnoreBridgeHeaderTopLevelDecl(ClangD))
continue;
if (filter(ClangD)) {
if (auto *ND = dyn_cast<clang::NamedDecl>(ClangD)) {
if (Decl *imported = Impl.importDeclReal(ND, Impl.CurrentVersion))
receiver(imported);
}
}
}
// Macros.
for (const auto &Iter : ClangPP.macros()) {
auto *II = Iter.first;
auto MD = ClangPP.getMacroDefinition(II);
MD.forAllDefinitions([&](clang::MacroInfo *Info) {
if (Info->isBuiltinMacro())
return;
auto Loc = Info->getDefinitionLoc();
if (Loc.isInvalid() || ClangSM.getFileID(Loc) != FID)
return;
ClangNode MacroNode = Info;
if (filter(MacroNode)) {
auto Name = Impl.getNameImporter().importMacroName(II, Info);
if (auto *Imported = Impl.importMacro(Name, MacroNode))
receiver(Imported);
}
});
}
// FIXME: Module imports inside that header.
return false;
}
return true; // no info found about that header.
}
void ClangImporter::lookupValue(DeclName name, VisibleDeclConsumer &consumer) {
Impl.forEachLookupTable([&](SwiftLookupTable &table) -> bool {
Impl.lookupValue(table, name, consumer);
return false;
});
}
ClangNode ClangImporter::getEffectiveClangNode(const Decl *decl) const {
// Directly...
if (auto clangNode = decl->getClangNode())
return clangNode;
// Or via the nested "Code" enum.
if (auto *errorWrapper = dyn_cast<StructDecl>(decl)) {
if (auto *code = Impl.lookupErrorCodeEnum(errorWrapper))
if (auto clangNode = code->getClangNode())
return clangNode;
}
return ClangNode();
}
void ClangImporter::lookupTypeDecl(
StringRef rawName, ClangTypeKind kind,
llvm::function_ref<void(TypeDecl *)> receiver) {
clang::DeclarationName clangName(
&Impl.Instance->getASTContext().Idents.get(rawName));
SmallVector<clang::Sema::LookupNameKind, 1> lookupKinds;
switch (kind) {
case ClangTypeKind::Typedef:
lookupKinds.push_back(clang::Sema::LookupOrdinaryName);
break;
case ClangTypeKind::Tag:
lookupKinds.push_back(clang::Sema::LookupTagName);
lookupKinds.push_back(clang::Sema::LookupNamespaceName);
break;
case ClangTypeKind::ObjCProtocol:
lookupKinds.push_back(clang::Sema::LookupObjCProtocolName);
break;
}
// Perform name lookup into the global scope.
auto &sema = Impl.Instance->getSema();
bool foundViaClang = false;
for (auto lookupKind : lookupKinds) {
clang::LookupResult lookupResult(sema, clangName, clang::SourceLocation(),
lookupKind);
if (!Impl.DisableSourceImport &&
sema.LookupName(lookupResult, /*Scope=*/ sema.TUScope)) {
for (auto clangDecl : lookupResult) {
if (!isa<clang::TypeDecl>(clangDecl) &&
!isa<clang::NamespaceDecl>(clangDecl) &&
!isa<clang::ObjCContainerDecl>(clangDecl) &&
!isa<clang::ObjCCompatibleAliasDecl>(clangDecl)) {
continue;
}
Decl *imported = Impl.importDecl(clangDecl, Impl.CurrentVersion);
// Namespaces are imported as extensions for enums.
if (auto ext = dyn_cast_or_null<ExtensionDecl>(imported)) {
imported = ext->getExtendedNominal();
}
if (auto *importedType = dyn_cast_or_null<TypeDecl>(imported)) {
foundViaClang = true;
receiver(importedType);
}
}
}
}
// If Clang couldn't find the type, query the DWARFImporterDelegate.
if (!foundViaClang)
Impl.lookupTypeDeclDWARF(rawName, kind, receiver);
}
void ClangImporter::lookupRelatedEntity(
StringRef rawName, ClangTypeKind kind, StringRef relatedEntityKind,
llvm::function_ref<void(TypeDecl *)> receiver) {
using CISTAttr = ClangImporterSynthesizedTypeAttr;
if (relatedEntityKind ==
CISTAttr::manglingNameForKind(CISTAttr::Kind::NSErrorWrapper) ||
relatedEntityKind ==
CISTAttr::manglingNameForKind(CISTAttr::Kind::NSErrorWrapperAnon)) {
auto underlyingKind = ClangTypeKind::Tag;
if (relatedEntityKind ==
CISTAttr::manglingNameForKind(CISTAttr::Kind::NSErrorWrapperAnon)) {
underlyingKind = ClangTypeKind::Typedef;
}
lookupTypeDecl(rawName, underlyingKind,
[this, receiver] (const TypeDecl *foundType) {
auto *enumDecl =
dyn_cast_or_null<clang::EnumDecl>(foundType->getClangDecl());
if (!enumDecl)
return;
if (!Impl.getEnumInfo(enumDecl).isErrorEnum())
return;
auto *enclosingType =
dyn_cast<NominalTypeDecl>(foundType->getDeclContext());
if (!enclosingType)
return;
receiver(enclosingType);
});
}
}
void ClangModuleUnit::lookupVisibleDecls(ImportPath::Access accessPath,
VisibleDeclConsumer &consumer,
NLKind lookupKind) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
// FIXME: Respect the access path.
FilteringVisibleDeclConsumer filterConsumer(consumer, this);
DarwinLegacyFilterDeclConsumer darwinFilterConsumer(filterConsumer,
getClangASTContext());
swift::VisibleDeclConsumer *actualConsumer = &filterConsumer;
if (lookupKind == NLKind::UnqualifiedLookup &&
DarwinLegacyFilterDeclConsumer::needsFiltering(clangModule)) {
actualConsumer = &darwinFilterConsumer;
}
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupVisibleDecls(*lookupTable, *actualConsumer);
}
}
namespace {
class VectorDeclPtrConsumer : public swift::VisibleDeclConsumer {
public:
SmallVectorImpl<Decl *> &Results;
explicit VectorDeclPtrConsumer(SmallVectorImpl<Decl *> &Decls)
: Results(Decls) {}
void foundDecl(ValueDecl *VD, DeclVisibilityKind Reason,
DynamicLookupInfo) override {
Results.push_back(VD);
}
};
} // unnamed namespace
void ClangModuleUnit::getTopLevelDecls(SmallVectorImpl<Decl*> &results) const {
VectorDeclPtrConsumer consumer(results);
FilteringDeclaredDeclConsumer filterConsumer(consumer, this);
DarwinLegacyFilterDeclConsumer darwinFilterConsumer(filterConsumer,
getClangASTContext());
const clang::Module *topLevelModule =
clangModule ? clangModule->getTopLevelModule() : nullptr;
swift::VisibleDeclConsumer *actualConsumer = &filterConsumer;
if (DarwinLegacyFilterDeclConsumer::needsFiltering(topLevelModule))
actualConsumer = &darwinFilterConsumer;
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(topLevelModule)) {
// Search it.
owner.lookupVisibleDecls(*lookupTable, *actualConsumer);
// Add the extensions produced by importing categories.
for (auto category : lookupTable->categories()) {
if (category->getOwningModule() == clangModule) {
if (auto extension = cast_or_null<ExtensionDecl>(
owner.importDecl(category, owner.CurrentVersion,
/*UseCanonical*/false))) {
results.push_back(extension);
}
}
}
auto findEnclosingExtension = [](Decl *importedDecl) -> ExtensionDecl * {
for (auto importedDC = importedDecl->getDeclContext();
!importedDC->isModuleContext();
importedDC = importedDC->getParent()) {
if (auto ext = dyn_cast<ExtensionDecl>(importedDC))
return ext;
}
return nullptr;
};
// Retrieve all of the globals that will be mapped to members.
llvm::SmallPtrSet<ExtensionDecl *, 8> knownExtensions;
for (auto entry : lookupTable->allGlobalsAsMembers()) {
auto decl = entry.get<clang::NamedDecl *>();
if (decl->getOwningModule() != clangModule) continue;
Decl *importedDecl = owner.importDecl(decl, owner.CurrentVersion);
if (!importedDecl) continue;
// Find the enclosing extension, if there is one.
ExtensionDecl *ext = findEnclosingExtension(importedDecl);
if (ext && knownExtensions.insert(ext).second)
results.push_back(ext);
// If this is a compatibility typealias, the canonical type declaration
// may exist in another extension.
auto alias = dyn_cast<TypeAliasDecl>(importedDecl);
if (!alias || !alias->isCompatibilityAlias()) continue;
auto aliasedTy = alias->getUnderlyingType();
ext = nullptr;
importedDecl = nullptr;
// Note: We can't use getAnyGeneric() here because `aliasedTy`
// might be typealias.
if (auto Ty = dyn_cast<TypeAliasType>(aliasedTy.getPointer()))
importedDecl = Ty->getDecl();
else if (auto Ty = dyn_cast<AnyGenericType>(aliasedTy.getPointer()))
importedDecl = Ty->getDecl();
if (!importedDecl) continue;
ext = findEnclosingExtension(importedDecl);
if (ext && knownExtensions.insert(ext).second)
results.push_back(ext);
}
}
}
ImportDecl *swift::createImportDecl(ASTContext &Ctx,
DeclContext *DC,
ClangNode ClangN,
ArrayRef<clang::Module *> Exported) {
auto *ImportedMod = ClangN.getClangModule();
assert(ImportedMod);
ImportPath::Builder importPath;
auto *TmpMod = ImportedMod;
while (TmpMod) {
// If this is a C++ stdlib module, print its name as `CxxStdlib` instead of
// `std`. `CxxStdlib` is the only accepted spelling of the C++ stdlib module
// name in Swift.
Identifier moduleName = !TmpMod->isSubModule() && TmpMod->Name == "std"
? Ctx.Id_CxxStdlib
: Ctx.getIdentifier(TmpMod->Name);
importPath.push_back(moduleName);
TmpMod = TmpMod->Parent;
}
std::reverse(importPath.begin(), importPath.end());
bool IsExported = false;
for (auto *ExportedMod : Exported) {
if (ImportedMod == ExportedMod) {
IsExported = true;
break;
}
}
auto *ID = ImportDecl::create(Ctx, DC, SourceLoc(),
ImportKind::Module, SourceLoc(),
importPath.get(), ClangN);
if (IsExported)
ID->getAttrs().add(new (Ctx) ExportedAttr(/*IsImplicit=*/false));
return ID;
}
static void getImportDecls(ClangModuleUnit *ClangUnit, const clang::Module *M,
SmallVectorImpl<Decl *> &Results) {
assert(M);
SmallVector<clang::Module *, 1> Exported;
M->getExportedModules(Exported);
ASTContext &Ctx = ClangUnit->getASTContext();
for (auto *ImportedMod : M->Imports) {
auto *ID = createImportDecl(Ctx, ClangUnit, ImportedMod, Exported);
Results.push_back(ID);
}
}
void ClangModuleUnit::getDisplayDecls(SmallVectorImpl<Decl*> &results, bool recursive) const {
if (clangModule)
getImportDecls(const_cast<ClangModuleUnit *>(this), clangModule, results);
getTopLevelDecls(results);
}
void ClangModuleUnit::lookupValue(DeclName name, NLKind lookupKind,
OptionSet<ModuleLookupFlags> flags,
SmallVectorImpl<ValueDecl*> &results) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
VectorDeclConsumer vectorWriter(results);
FilteringVisibleDeclConsumer filteringConsumer(vectorWriter, this);
DarwinLegacyFilterDeclConsumer darwinFilterConsumer(filteringConsumer,
getClangASTContext());
swift::VisibleDeclConsumer *consumer = &filteringConsumer;
if (lookupKind == NLKind::UnqualifiedLookup &&
DarwinLegacyFilterDeclConsumer::needsFiltering(clangModule)) {
consumer = &darwinFilterConsumer;
}
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupValue(*lookupTable, name, *consumer);
}
}
bool ClangImporter::Implementation::isVisibleClangEntry(
const clang::NamedDecl *clangDecl) {
// For a declaration, check whether the declaration is hidden.
clang::Sema &clangSema = getClangSema();
if (clangSema.isVisible(clangDecl)) return true;
// Is any redeclaration visible?
for (auto redecl : clangDecl->redecls()) {
if (clangSema.isVisible(cast<clang::NamedDecl>(redecl))) return true;
}
return false;
}
bool ClangImporter::Implementation::isVisibleClangEntry(
SwiftLookupTable::SingleEntry entry) {
if (auto clangDecl = entry.dyn_cast<clang::NamedDecl *>()) {
return isVisibleClangEntry(clangDecl);
}
// If it's a macro from a module, check whether the module has been imported.
if (auto moduleMacro = entry.dyn_cast<clang::ModuleMacro *>()) {
clang::Module *module = moduleMacro->getOwningModule();
return module->NameVisibility == clang::Module::AllVisible;
}
return true;
}
TypeDecl *
ClangModuleUnit::lookupNestedType(Identifier name,
const NominalTypeDecl *baseType) const {
// Special case for error code enums: try looking directly into the struct
// first. But only if it looks like a synthesized error wrapped struct.
if (name == getASTContext().Id_Code &&
!baseType->hasClangNode() &&
isa<StructDecl>(baseType)) {
auto *wrapperStruct = cast<StructDecl>(baseType);
if (auto *codeEnum = owner.lookupErrorCodeEnum(wrapperStruct))
return codeEnum;
// Otherwise, fall back and try via lookup table.
}
auto lookupTable = owner.findLookupTable(clangModule);
if (!lookupTable)
return nullptr;
auto baseTypeContext = owner.getEffectiveClangContext(baseType);
if (!baseTypeContext)
return nullptr;
// FIXME: This is very similar to what's in Implementation::lookupValue and
// Implementation::loadAllMembers.
SmallVector<TypeDecl *, 2> results;
for (auto entry : lookupTable->lookup(SerializedSwiftName(name.str()),
baseTypeContext)) {
// If the entry is not visible, skip it.
if (!owner.isVisibleClangEntry(entry)) continue;
auto *clangDecl = entry.dyn_cast<clang::NamedDecl *>();
if (!clangDecl)
continue;
const auto *clangTypeDecl = clangDecl->getMostRecentDecl();
bool anyMatching = false;
TypeDecl *originalDecl = nullptr;
owner.forEachDistinctName(clangTypeDecl,
[&](ImportedName newName,
ImportNameVersion nameVersion) -> bool {
if (anyMatching)
return true;
if (!newName.getDeclName().isSimpleName(name))
return true;
auto decl = dyn_cast_or_null<TypeDecl>(
owner.importDeclReal(clangTypeDecl, nameVersion));
if (!decl)
return false;
if (!originalDecl)
originalDecl = decl;
else if (originalDecl == decl)
return true;
auto *importedContext = decl->getDeclContext()->getSelfNominalTypeDecl();
if (importedContext != baseType)
return true;
assert(decl->getName() == name &&
"importFullName behaved differently from importDecl");
results.push_back(decl);
anyMatching = true;
return true;
});
}
if (results.size() != 1) {
// It's possible that two types were import-as-member'd onto the same base
// type with the same name. In this case, fall back to regular lookup.
return nullptr;
}
return results.front();
}
void ClangImporter::loadExtensions(NominalTypeDecl *nominal,
unsigned previousGeneration) {
// Determine the effective Clang context for this Swift nominal type.
auto effectiveClangContext = Impl.getEffectiveClangContext(nominal);
if (!effectiveClangContext) return;
// For an Objective-C class, import all of the visible categories.
if (auto objcClass = dyn_cast_or_null<clang::ObjCInterfaceDecl>(
effectiveClangContext.getAsDeclContext())) {
SmallVector<clang::NamedDecl *, 4> DelayedCategories;
// Simply importing the categories adds them to the list of extensions.
for (const auto *Cat : objcClass->known_categories()) {
if (getClangSema().isVisible(Cat)) {
Impl.importDeclReal(Cat, Impl.CurrentVersion);
}
}
}
// Dig through each of the Swift lookup tables, creating extensions
// where needed.
(void)Impl.forEachLookupTable([&](SwiftLookupTable &table) -> bool {
// FIXME: If we already looked at this for this generation,
// skip.
for (auto entry : table.allGlobalsAsMembersInContext(effectiveClangContext)) {
// If the entry is not visible, skip it.
if (!Impl.isVisibleClangEntry(entry)) continue;
if (auto decl = entry.dyn_cast<clang::NamedDecl *>()) {
// Import the context of this declaration, which has the
// side effect of creating instantiations.
(void)Impl.importDeclContextOf(decl, effectiveClangContext);
} else {
llvm_unreachable("Macros cannot be imported as members.");
}
}
return false;
});
}
void ClangImporter::loadObjCMethods(
NominalTypeDecl *typeDecl,
ObjCSelector selector,
bool isInstanceMethod,
unsigned previousGeneration,
llvm::TinyPtrVector<AbstractFunctionDecl *> &methods) {
// TODO: We don't currently need to load methods from imported ObjC protocols.
auto classDecl = dyn_cast<ClassDecl>(typeDecl);
if (!classDecl)
return;
const auto *objcClass =
dyn_cast_or_null<clang::ObjCInterfaceDecl>(classDecl->getClangDecl());
if (!objcClass)
return;
// Collect the set of visible Objective-C methods with this selector.
clang::Selector clangSelector = Impl.exportSelector(selector);
AbstractFunctionDecl *method = nullptr;
auto *objcMethod = objcClass->lookupMethod(
clangSelector, isInstanceMethod,
/*shallowCategoryLookup=*/false,
/*followSuper=*/false);
if (objcMethod) {
// If we found a property accessor, import the property.
if (objcMethod->isPropertyAccessor())
(void)Impl.importDecl(objcMethod->findPropertyDecl(true),
Impl.CurrentVersion);
method = dyn_cast_or_null<AbstractFunctionDecl>(
Impl.importDecl(objcMethod, Impl.CurrentVersion));
}
// If we didn't find anything, we're done.
if (method == nullptr)
return;
// If we did find something, it might be a duplicate of something we found
// earlier, because we aren't tracking generation counts for Clang modules.
// Filter out the duplicates.
// FIXME: We shouldn't need to do this.
if (!llvm::is_contained(methods, method))
methods.push_back(method);
}
void
ClangModuleUnit::lookupClassMember(ImportPath::Access accessPath,
DeclName name,
SmallVectorImpl<ValueDecl*> &results) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
VectorDeclConsumer consumer(results);
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupObjCMembers(*lookupTable, name, consumer);
}
}
void ClangModuleUnit::lookupClassMembers(ImportPath::Access accessPath,
VisibleDeclConsumer &consumer) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
// Find the corresponding lookup table.
if (auto lookupTable = owner.findLookupTable(clangModule)) {
// Search it.
owner.lookupAllObjCMembers(*lookupTable, consumer);
}
}
void ClangModuleUnit::lookupObjCMethods(
ObjCSelector selector,
SmallVectorImpl<AbstractFunctionDecl *> &results) const {
// FIXME: Ignore submodules, which are empty for now.
if (clangModule && clangModule->isSubModule())
return;
// Map the selector into a Clang selector.
auto clangSelector = owner.exportSelector(selector);
if (clangSelector.isNull()) return;
// Collect all of the Objective-C methods with this selector.
SmallVector<clang::ObjCMethodDecl *, 8> objcMethods;
auto &clangSema = owner.getClangSema();
auto &clangObjc = clangSema.ObjC();
clangObjc.CollectMultipleMethodsInGlobalPool(clangSelector,
objcMethods,
/*InstanceFirst=*/true,
/*CheckTheOther=*/false);
clangObjc.CollectMultipleMethodsInGlobalPool(clangSelector,
objcMethods,
/*InstanceFirst=*/false,
/*CheckTheOther=*/false);
// Import the methods.
auto &clangCtx = clangSema.getASTContext();
for (auto objcMethod : objcMethods) {
// Verify that this method came from this module.
auto owningClangModule = getClangTopLevelOwningModule(objcMethod, clangCtx);
if (owningClangModule != clangModule) continue;
if (shouldSuppressDeclImport(objcMethod))
continue;
// If we found a property accessor, import the property.
if (objcMethod->isPropertyAccessor())
(void)owner.importDecl(objcMethod->findPropertyDecl(true),
owner.CurrentVersion);
Decl *imported = owner.importDecl(objcMethod, owner.CurrentVersion);
if (!imported) continue;
if (auto func = dyn_cast<AbstractFunctionDecl>(imported))
results.push_back(func);
// If there is an alternate declaration, also look at it.
for (auto alternate : owner.getAlternateDecls(imported)) {
if (auto func = dyn_cast<AbstractFunctionDecl>(alternate))
results.push_back(func);
}
}
}
void ClangModuleUnit::lookupAvailabilityDomains(
Identifier identifier, SmallVectorImpl<AvailabilityDomain> &results) const {
auto domainName = identifier.str();
auto &ctx = getASTContext();
auto &clangASTContext = getClangASTContext();
auto domainInfo = clangASTContext.getFeatureAvailInfo(domainName);
if (domainInfo.Kind == clang::FeatureAvailKind::None)
return;
auto *varDecl = dyn_cast_or_null<clang::VarDecl>(domainInfo.Decl);
if (!varDecl)
return;
// The decl that was found may belong to a different Clang module.
if (varDecl->getOwningModule() != getClangModule())
return;
auto *imported = ctx.getClangModuleLoader()->importDeclDirectly(varDecl);
if (!imported)
return;
auto customDomain = AvailabilityDomain::forCustom(imported, ctx);
ASSERT(customDomain);
results.push_back(*customDomain);
}
void ClangModuleUnit::collectLinkLibraries(
ModuleDecl::LinkLibraryCallback callback) const {
if (!clangModule)
return;
// Skip this lib name in favor of export_as name.
if (clangModule->UseExportAsModuleLinkName)
return;
for (auto clangLinkLib : clangModule->LinkLibraries)
callback(LinkLibrary{clangLinkLib.Library,
clangLinkLib.IsFramework ? LibraryKind::Framework
: LibraryKind::Library,
/*static=*/false});
}
StringRef ClangModuleUnit::getFilename() const {
if (!clangModule) {
StringRef SinglePCH = owner.getSinglePCHImport();
if (SinglePCH.empty())
return "<imports>";
else
return SinglePCH;
}
if (auto F = clangModule->getASTFile())
return F->getName();
return StringRef();
}
StringRef ClangModuleUnit::getLoadedFilename() const {
if (auto F = clangModule->getASTFile())
return F->getName();
return StringRef();
}
clang::TargetInfo &ClangImporter::getModuleAvailabilityTarget() const {
return Impl.Instance->getTarget();
}
clang::TargetInfo &ClangImporter::getTargetInfo() const {
return *Impl.getSwiftTargetInfo();
}
clang::ASTContext &ClangImporter::getClangASTContext() const {
return Impl.getClangASTContext();
}
clang::Preprocessor &ClangImporter::getClangPreprocessor() const {
return Impl.getClangPreprocessor();
}
const clang::CompilerInstance &ClangImporter::getClangInstance() const {
return *Impl.Instance;
}
const clang::Module *ClangImporter::getClangOwningModule(ClangNode Node) const {
return Impl.getClangOwningModule(Node);
}
const clang::Module *
ClangImporter::Implementation::getClangOwningModule(ClangNode Node) const {
return ::getClangOwningModule(Node, getClangASTContext());
}
bool ClangImporter::hasTypedef(const clang::Decl *typeDecl) const {
return Impl.DeclsWithSuperfluousTypedefs.count(typeDecl);
}
clang::Sema &ClangImporter::getClangSema() const {
return Impl.getClangSema();
}
clang::CodeGenOptions &ClangImporter::getCodeGenOpts() const {
return *Impl.getSwiftCodeGenOptions();
}
std::string ClangImporter::getClangModuleHash() const {
return Impl.Invocation->getModuleHash(Impl.Instance->getDiagnostics());
}
std::vector<std::string>
ClangImporter::getSwiftExplicitModuleDirectCC1Args() const {
llvm::SmallVector<const char*> clangArgs;
clangArgs.reserve(Impl.ClangArgs.size());
llvm::for_each(Impl.ClangArgs, [&](const std::string &Arg) {
clangArgs.push_back(Arg.c_str());
});
clang::CompilerInvocation instance;
clang::DiagnosticsEngine clangDiags(new clang::DiagnosticIDs(),
new clang::DiagnosticOptions(),
new clang::IgnoringDiagConsumer());
bool success = clang::CompilerInvocation::CreateFromArgs(instance, clangArgs,
clangDiags);
(void)success;
assert(success && "clang options from clangImporter failed to parse");
if (!Impl.SwiftContext.CASOpts.EnableCaching)
return instance.getCC1CommandLine();
// Clear some options that are not needed.
instance.clearImplicitModuleBuildOptions();
// CASOpts are forwarded from swift arguments.
instance.getCASOpts() = clang::CASOptions();
// HeaderSearchOptions.
// Clang search options are only used by scanner and clang importer from main
// module should not using search paths to find modules.
auto &HSOpts = instance.getHeaderSearchOpts();
HSOpts.VFSOverlayFiles.clear();
HSOpts.UserEntries.clear();
HSOpts.SystemHeaderPrefixes.clear();
// FrontendOptions.
auto &FEOpts = instance.getFrontendOpts();
FEOpts.IncludeTimestamps = false;
FEOpts.ModuleMapFiles.clear();
// IndexStorePath is forwarded from swift.
FEOpts.IndexStorePath.clear();
// PreprocessorOptions.
// Cannot clear macros as the main module clang importer doesn't have clang
// include tree created and it has to be created from command-line. However,
// include files are no collected into CASFS so they will not be found so
// clear them to avoid problem.
auto &PPOpts = instance.getPreprocessorOpts();
PPOpts.MacroIncludes.clear();
PPOpts.Includes.clear();
// Clear benign CodeGenOptions.
clang::tooling::dependencies::resetBenignCodeGenOptions(
clang::frontend::ActionKind::GenerateModule, instance.getLangOpts(),
instance.getCodeGenOpts());
// FileSystemOptions.
auto &FSOpts = instance.getFileSystemOpts();
FSOpts.WorkingDir.clear();
if (!Impl.SwiftContext.SearchPathOpts.ScannerPrefixMapper.empty()) {
// Remap all the paths if requested.
llvm::PrefixMapper Mapper;
clang::tooling::dependencies::DepscanPrefixMapping::configurePrefixMapper(
Impl.SwiftContext.SearchPathOpts.ScannerPrefixMapper, Mapper);
clang::tooling::dependencies::DepscanPrefixMapping::remapInvocationPaths(
instance, Mapper);
instance.getFrontendOpts().PathPrefixMappings.clear();
}
return instance.getCC1CommandLine();
}
std::optional<Decl *>
ClangImporter::importDeclCached(const clang::NamedDecl *ClangDecl) {
return Impl.importDeclCached(ClangDecl, Impl.CurrentVersion);
}
void ClangImporter::printStatistics() const {
Impl.Instance->getASTReader()->PrintStats();
}
void ClangImporter::verifyAllModules() {
#ifndef NDEBUG
if (Impl.VerifiedDeclsCounter == Impl.ImportedDecls.size())
return;
// Collect the Decls before verifying them; the act of verifying may cause
// more decls to be imported and modify the map while we are iterating it.
size_t verifiedCounter = Impl.ImportedDecls.size();
SmallVector<Decl *, 8> Decls;
for (auto &I : Impl.ImportedDecls)
if (I.first.second == Impl.CurrentVersion)
if (Decl *D = I.second)
Decls.push_back(D);
for (auto D : Decls)
verify(D);
Impl.VerifiedDeclsCounter = verifiedCounter;
#endif
}
const clang::Type *
ClangImporter::parseClangFunctionType(StringRef typeStr,
SourceLoc loc) const {
auto &sema = Impl.getClangSema();
StringRef filename = Impl.SwiftContext.SourceMgr.getDisplayNameForLoc(loc);
// TODO: Obtain a clang::SourceLocation from the swift::SourceLoc we have
auto parsedType = sema.ParseTypeFromStringCallback(typeStr, filename, {});
if (!parsedType.isUsable())
return nullptr;
clang::QualType resultType = clang::Sema::GetTypeFromParser(parsedType.get());
auto *typePtr = resultType.getTypePtrOrNull();
if (typePtr && (typePtr->isFunctionPointerType()
|| typePtr->isBlockPointerType()))
return typePtr;
return nullptr;
}
void ClangImporter::printClangType(const clang::Type *type,
llvm::raw_ostream &os) const {
auto policy = clang::PrintingPolicy(getClangASTContext().getLangOpts());
clang::QualType(type, 0).print(os, policy);
}
//===----------------------------------------------------------------------===//
// ClangModule Implementation
//===----------------------------------------------------------------------===//
static_assert(IsTriviallyDestructible<ClangModuleUnit>::value,
"ClangModuleUnits are BumpPtrAllocated; the d'tor is not called");
ClangModuleUnit::ClangModuleUnit(ModuleDecl &M,
ClangImporter::Implementation &owner,
const clang::Module *clangModule)
: LoadedFile(FileUnitKind::ClangModule, M), owner(owner),
clangModule(clangModule) {
// Capture the file metadata before it goes away.
if (clangModule)
ASTSourceDescriptor = {*const_cast<clang::Module *>(clangModule)};
}
StringRef ClangModuleUnit::getModuleDefiningPath() const {
if (!clangModule || clangModule->DefinitionLoc.isInvalid())
return "";
auto &clangSourceMgr = owner.getClangASTContext().getSourceManager();
return clangSourceMgr.getFilename(clangModule->DefinitionLoc);
}
std::optional<clang::ASTSourceDescriptor>
ClangModuleUnit::getASTSourceDescriptor() const {
if (clangModule) {
assert(ASTSourceDescriptor.getModuleOrNull() == clangModule);
return ASTSourceDescriptor;
}
return std::nullopt;
}
bool ClangModuleUnit::hasClangModule(ModuleDecl *M) {
for (auto F : M->getFiles()) {
if (isa<ClangModuleUnit>(F))
return true;
}
return false;
}
bool ClangModuleUnit::isTopLevel() const {
return !clangModule || !clangModule->isSubModule();
}
bool ClangModuleUnit::isSystemModule() const {
return clangModule && clangModule->IsSystem;
}
clang::ASTContext &ClangModuleUnit::getClangASTContext() const {
return owner.getClangASTContext();
}
StringRef ClangModuleUnit::getExportedModuleName() const {
if (clangModule && !clangModule->ExportAsModule.empty())
return clangModule->ExportAsModule;
// Return module real name (see FileUnit::getExportedModuleName)
return getParentModule()->getRealName().str();
}
ModuleDecl *ClangModuleUnit::getOverlayModule() const {
if (!clangModule)
return nullptr;
if (owner.DisableOverlayModules)
return nullptr;
if (!isTopLevel()) {
// FIXME: Is this correct for submodules?
auto topLevel = clangModule->getTopLevelModule();
auto wrapper = owner.getWrapperForModule(topLevel);
return wrapper->getOverlayModule();
}
if (!overlayModule.getInt()) {
// FIXME: Include proper source location.
ModuleDecl *M = getParentModule();
ASTContext &Ctx = M->getASTContext();
auto overlay = Ctx.getOverlayModule(this);
if (overlay) {
Ctx.addLoadedModule(overlay);
} else {
// FIXME: This is the awful legacy of the old implementation of overlay
// loading laid bare. Because the previous implementation used
// ASTContext::getModuleByIdentifier, it consulted the clang importer
// recursively which forced the current module, its dependencies, and
// the overlays of those dependencies to load and
// become visible in the current context. All of the callers of
// ClangModuleUnit::getOverlayModule are relying on this behavior, and
// untangling them is going to take a heroic amount of effort.
// Clang module loading should *never* *ever* be allowed to load unrelated
// Swift modules.
ImportPath::Module::Builder builder(M->getName());
(void) owner.loadModule(SourceLoc(), std::move(builder).get());
}
// If this Clang module is a part of the C++ stdlib, and we haven't loaded
// the overlay for it so far, it is a split libc++ module (e.g. std_vector).
// Load the CxxStdlib overlay explicitly.
if (!overlay && importer::isCxxStdModule(clangModule)) {
ImportPath::Module::Builder builder(Ctx.Id_CxxStdlib);
overlay = owner.loadModule(SourceLoc(), std::move(builder).get());
}
auto mutableThis = const_cast<ClangModuleUnit *>(this);
mutableThis->overlayModule.setPointerAndInt(overlay, true);
}
return overlayModule.getPointer();
}
void ClangModuleUnit::getImportedModules(
SmallVectorImpl<ImportedModule> &imports,
ModuleDecl::ImportFilter filter) const {
// Bail out if we /only/ want ImplementationOnly imports; Clang modules never
// have any of these.
if (filter.containsOnly(ModuleDecl::ImportFilterKind::ImplementationOnly))
return;
// [NOTE: Pure-Clang-modules-privately-import-stdlib]:
// Needed for implicitly synthesized conformances.
if (filter.contains(ModuleDecl::ImportFilterKind::Default))
if (auto stdlib = owner.getStdlibModule())
imports.push_back({ImportPath::Access(), stdlib});
SmallVector<clang::Module *, 8> imported;
if (!clangModule) {
// This is the special "imported headers" module.
if (filter.contains(ModuleDecl::ImportFilterKind::Exported)) {
imported.append(owner.ImportedHeaderExports.begin(),
owner.ImportedHeaderExports.end());
}
} else {
clangModule->getExportedModules(imported);
if (filter.contains(ModuleDecl::ImportFilterKind::Default)) {
// Copy in any modules that are imported but not exported.
llvm::SmallPtrSet<clang::Module *, 8> knownModules(imported.begin(),
imported.end());
if (!filter.contains(ModuleDecl::ImportFilterKind::Exported)) {
// Remove the exported ones now that we're done with them.
imported.clear();
}
llvm::copy_if(clangModule->Imports, std::back_inserter(imported),
[&](clang::Module *mod) {
return !knownModules.insert(mod).second;
});
// FIXME: The parent module isn't exactly a private import, but it is
// needed for link dependencies.
if (clangModule->Parent)
imported.push_back(clangModule->Parent);
}
}
auto topLevelOverlay = getOverlayModule();
for (auto importMod : imported) {
auto wrapper = owner.getWrapperForModule(importMod);
auto actualMod = wrapper->getOverlayModule();
if (!actualMod) {
// HACK: Deal with imports of submodules by importing the top-level module
// as well.
auto importTopLevel = importMod->getTopLevelModule();
if (importTopLevel != importMod) {
if (!clangModule || importTopLevel != clangModule->getTopLevelModule()){
auto topLevelWrapper = owner.getWrapperForModule(importTopLevel);
imports.push_back({ ImportPath::Access(),
topLevelWrapper->getParentModule() });
}
}
actualMod = wrapper->getParentModule();
} else if (actualMod == topLevelOverlay) {
actualMod = wrapper->getParentModule();
}
assert(actualMod && "Missing imported overlay");
imports.push_back({ImportPath::Access(), actualMod});
}
}
void ClangModuleUnit::getImportedModulesForLookup(
SmallVectorImpl<ImportedModule> &imports) const {
// Reuse our cached list of imports if we have one.
if (importedModulesForLookup.has_value()) {
imports.append(importedModulesForLookup->begin(),
importedModulesForLookup->end());
return;
}
size_t firstImport = imports.size();
SmallVector<clang::Module *, 8> imported;
const clang::Module *topLevel;
ModuleDecl *topLevelOverlay = getOverlayModule();
if (!clangModule) {
// This is the special "imported headers" module.
imported.append(owner.ImportedHeaderExports.begin(),
owner.ImportedHeaderExports.end());
topLevel = nullptr;
} else {
clangModule->getExportedModules(imported);
topLevel = clangModule->getTopLevelModule();
// If this is a C++ module, implicitly import the Cxx module, which contains
// definitions of Swift protocols that C++ types might conform to, such as
// CxxSequence.
if (owner.SwiftContext.LangOpts.EnableCXXInterop &&
requiresCPlusPlus(clangModule) && clangModule->Name != CXX_SHIM_NAME) {
auto *cxxModule =
owner.SwiftContext.getModuleByIdentifier(owner.SwiftContext.Id_Cxx);
if (cxxModule)
imports.push_back({ImportPath::Access(), cxxModule});
}
}
if (imported.empty()) {
importedModulesForLookup = ArrayRef<ImportedModule>();
return;
}
SmallPtrSet<clang::Module *, 32> seen{imported.begin(), imported.end()};
SmallVector<clang::Module *, 8> tmpBuf;
llvm::SmallSetVector<clang::Module *, 8> topLevelImported;
// Get the transitive set of top-level imports. That is, if a particular
// import is a top-level import, add it. Otherwise, keep searching.
while (!imported.empty()) {
clang::Module *next = imported.pop_back_val();
// HACK: Deal with imports of submodules by importing the top-level module
// as well, unless it's the top-level module we're currently in.
clang::Module *nextTopLevel = next->getTopLevelModule();
if (nextTopLevel != topLevel) {
topLevelImported.insert(nextTopLevel);
// Don't continue looking through submodules of modules that have
// overlays. The overlay might shadow things.
auto wrapper = owner.getWrapperForModule(nextTopLevel);
if (wrapper->getOverlayModule())
continue;
}
// Only look through the current module if it's not top-level.
if (nextTopLevel == next)
continue;
next->getExportedModules(tmpBuf);
for (clang::Module *nextImported : tmpBuf) {
if (seen.insert(nextImported).second)
imported.push_back(nextImported);
}
tmpBuf.clear();
}
for (auto importMod : topLevelImported) {
auto wrapper = owner.getWrapperForModule(importMod);
ModuleDecl *actualMod = nullptr;
if (owner.SwiftContext.LangOpts.EnableCXXInterop && topLevel &&
isCxxStdModule(topLevel) && wrapper->clangModule &&
isCxxStdModule(wrapper->clangModule)) {
// The CxxStdlib overlay re-exports the clang module std, which in recent
// libc++ versions re-exports top-level modules for different std headers
// (std_string, std_vector, etc). The overlay module for each of the std
// modules is the CxxStdlib module itself. Make sure we return the actual
// clang modules (std_xyz) as transitive dependencies instead of just
// CxxStdlib itself.
actualMod = wrapper->getParentModule();
} else {
actualMod = wrapper->getOverlayModule();
if (!actualMod || actualMod == topLevelOverlay)
actualMod = wrapper->getParentModule();
}
assert(actualMod && "Missing imported overlay");
imports.push_back({ImportPath::Access(), actualMod});
}
// Cache our results for use next time.
auto importsToCache = llvm::ArrayRef(imports).slice(firstImport);
importedModulesForLookup = getASTContext().AllocateCopy(importsToCache);
}
void ClangImporter::getMangledName(raw_ostream &os,
const clang::NamedDecl *clangDecl) const {
if (!Impl.Mangler)
Impl.Mangler.reset(getClangASTContext().createMangleContext());
return Impl.getMangledName(Impl.Mangler.get(), clangDecl, os);
}
void ClangImporter::Implementation::getMangledName(
clang::MangleContext *mangler, const clang::NamedDecl *clangDecl,
raw_ostream &os) {
if (auto ctor = dyn_cast<clang::CXXConstructorDecl>(clangDecl)) {
auto ctorGlobalDecl =
clang::GlobalDecl(ctor, clang::CXXCtorType::Ctor_Complete);
mangler->mangleCXXName(ctorGlobalDecl, os);
} else {
mangler->mangleName(clangDecl, os);
}
}
// ---------------------------------------------------------------------------
// Swift lookup tables
// ---------------------------------------------------------------------------
SwiftLookupTable *ClangImporter::Implementation::findLookupTable(
const clang::Module *clangModule) {
// If the Clang module is null, use the bridging header lookup table.
if (!clangModule)
return BridgingHeaderLookupTable.get();
// Submodules share lookup tables with their parents.
if (clangModule->isSubModule())
return findLookupTable(clangModule->getTopLevelModule());
// Look for a Clang module with this name.
auto known = LookupTables.find(clangModule->Name);
if (known == LookupTables.end()) return nullptr;
return known->second.get();
}
SwiftLookupTable *
ClangImporter::Implementation::findLookupTable(const clang::Decl *decl) {
// Contents of a C++ namespace are added to the __ObjC module.
bool isWithinNamespace = false;
auto declContext = decl->getDeclContext();
while (!declContext->isTranslationUnit()) {
if (declContext->isNamespace()) {
isWithinNamespace = true;
break;
}
declContext = declContext->getParent();
}
clang::Module *owningModule = nullptr;
if (!isWithinNamespace) {
// Members of class template specializations don't have an owning module.
if (auto spec = dyn_cast<clang::ClassTemplateSpecializationDecl>(decl))
owningModule = spec->getSpecializedTemplate()->getOwningModule();
else
owningModule = decl->getOwningModule();
}
return findLookupTable(owningModule);
}
bool ClangImporter::Implementation::forEachLookupTable(
llvm::function_ref<bool(SwiftLookupTable &table)> fn) {
// Visit the bridging header's lookup table.
if (fn(*BridgingHeaderLookupTable)) return true;
// Collect and sort the set of module names.
SmallVector<StringRef, 4> moduleNames;
for (const auto &entry : LookupTables) {
moduleNames.push_back(entry.first);
}
llvm::array_pod_sort(moduleNames.begin(), moduleNames.end());
// Visit the lookup tables.
for (auto moduleName : moduleNames) {
if (fn(*LookupTables[moduleName])) return true;
}
return false;
}
bool ClangImporter::Implementation::lookupValue(SwiftLookupTable &table,
DeclName name,
VisibleDeclConsumer &consumer) {
auto &clangCtx = getClangASTContext();
auto clangTU = clangCtx.getTranslationUnitDecl();
auto *importer =
static_cast<ClangImporter *>(SwiftContext.getClangModuleLoader());
bool declFound = false;
if (name.isOperator()) {
for (auto entry : table.lookupMemberOperators(name.getBaseName())) {
if (isVisibleClangEntry(entry)) {
if (auto decl = dyn_cast_or_null<ValueDecl>(
importDeclReal(entry->getMostRecentDecl(), CurrentVersion))) {
consumer.foundDecl(decl, DeclVisibilityKind::VisibleAtTopLevel);
declFound = true;
}
}
}
// If CXXInterop is enabled we need to check the modified operator name as
// well
if (SwiftContext.LangOpts.EnableCXXInterop) {
auto funcBaseName = DeclBaseName(
getOperatorName(SwiftContext, name.getBaseName().getIdentifier()));
for (auto entry : table.lookupMemberOperators(funcBaseName)) {
if (isVisibleClangEntry(entry)) {
if (auto func = dyn_cast_or_null<FuncDecl>(
importDeclReal(entry->getMostRecentDecl(), CurrentVersion))) {
if (auto synthesizedOperator =
importer->getCXXSynthesizedOperatorFunc(func)) {
consumer.foundDecl(synthesizedOperator,
DeclVisibilityKind::VisibleAtTopLevel);
declFound = true;
}
}
}
}
}
}
for (auto entry : table.lookup(name.getBaseName(), clangTU)) {
// If the entry is not visible, skip it.
if (!isVisibleClangEntry(entry)) continue;
ValueDecl *decl = nullptr;
// If it's a Clang declaration, try to import it.
if (auto clangDecl = entry.dyn_cast<clang::NamedDecl *>()) {
bool isNamespace = isa<clang::NamespaceDecl>(clangDecl);
Decl *realDecl =
importDeclReal(clangDecl->getMostRecentDecl(), CurrentVersion,
/*useCanonicalDecl*/ !isNamespace);
if (!realDecl)
continue;
decl = cast<ValueDecl>(realDecl);
if (!decl) continue;
} else if (!name.isSpecial()) {
// Try to import a macro.
if (auto modMacro = entry.dyn_cast<clang::ModuleMacro *>())
decl = importMacro(name.getBaseIdentifier(), modMacro);
else if (auto clangMacro = entry.dyn_cast<clang::MacroInfo *>())
decl = importMacro(name.getBaseIdentifier(), clangMacro);
else
llvm_unreachable("new kind of lookup table entry");
if (!decl) continue;
} else {
continue;
}
// If we found a declaration from the standard library, make sure
// it does not show up in the lookup results for the imported
// module.
if (decl->getDeclContext()->isModuleScopeContext() &&
decl->getModuleContext() == getStdlibModule())
continue;
// If the name matched, report this result.
bool anyMatching = false;
// Use the base name for operators; they likely won't have parameters.
auto foundDeclName = decl->getName();
if (foundDeclName.isOperator())
foundDeclName = foundDeclName.getBaseName();
if (foundDeclName.matchesRef(name) &&
decl->getDeclContext()->isModuleScopeContext()) {
consumer.foundDecl(decl, DeclVisibilityKind::VisibleAtTopLevel);
anyMatching = true;
}
// If there is an alternate declaration and the name matches,
// report this result.
for (auto alternate : getAlternateDecls(decl)) {
if (alternate->getName().matchesRef(name) &&
alternate->getDeclContext()->isModuleScopeContext()) {
consumer.foundDecl(alternate, DeclVisibilityKind::VisibleAtTopLevel);
anyMatching = true;
}
}
// Visit auxiliary declarations to check for name matches.
decl->visitAuxiliaryDecls([&](Decl *aux) {
if (auto auxValue = dyn_cast<ValueDecl>(aux)) {
if (auxValue->getName().matchesRef(name) &&
auxValue->getDeclContext()->isModuleScopeContext()) {
consumer.foundDecl(auxValue, DeclVisibilityKind::VisibleAtTopLevel);
anyMatching = true;
}
}
});
// If we have a declaration and nothing matched so far, try the names used
// in other versions of Swift.
if (auto clangDecl = entry.dyn_cast<clang::NamedDecl *>()) {
const clang::NamedDecl *recentClangDecl =
clangDecl->getMostRecentDecl();
CurrentVersion.forEachOtherImportNameVersion(
[&](ImportNameVersion nameVersion) {
if (anyMatching)
return;
// Check to see if the name and context match what we expect.
ImportedName newName = importFullName(recentClangDecl, nameVersion);
if (!newName.getDeclName().matchesRef(name))
return;
// If we asked for an async import and didn't find one, skip this.
// This filters out duplicates.
if (nameVersion.supportsConcurrency() &&
!newName.getAsyncInfo())
return;
const clang::DeclContext *clangDC =
newName.getEffectiveContext().getAsDeclContext();
if (!clangDC || !clangDC->isFileContext())
return;
// Then try to import the decl under the alternate name.
auto alternateNamedDecl =
cast_or_null<ValueDecl>(importDeclReal(recentClangDecl,
nameVersion));
if (!alternateNamedDecl || alternateNamedDecl == decl)
return;
assert(alternateNamedDecl->getName().matchesRef(name) &&
"importFullName behaved differently from importDecl");
if (alternateNamedDecl->getDeclContext()->isModuleScopeContext()) {
consumer.foundDecl(alternateNamedDecl,
DeclVisibilityKind::VisibleAtTopLevel);
anyMatching = true;
}
});
}
declFound = declFound || anyMatching;
}
return declFound;
}
void ClangImporter::Implementation::lookupVisibleDecls(
SwiftLookupTable &table,
VisibleDeclConsumer &consumer) {
// Retrieve and sort all of the base names in this particular table.
auto baseNames = table.allBaseNames();
llvm::array_pod_sort(baseNames.begin(), baseNames.end());
// Look for namespace-scope entities with each base name.
for (auto baseName : baseNames) {
DeclBaseName name = baseName.toDeclBaseName(SwiftContext);
if (!lookupValue(table, name, consumer) &&
SwiftContext.LangOpts.EnableExperimentalEagerClangModuleDiagnostics) {
diagnoseTopLevelValue(name);
}
}
}
void ClangImporter::Implementation::lookupObjCMembers(
SwiftLookupTable &table,
DeclName name,
VisibleDeclConsumer &consumer) {
for (auto clangDecl : table.lookupObjCMembers(name.getBaseName())) {
// If the entry is not visible, skip it.
if (!isVisibleClangEntry(clangDecl)) continue;
forEachDistinctName(clangDecl,
[&](ImportedName importedName,
ImportNameVersion nameVersion) -> bool {
// Import the declaration.
auto decl =
cast_or_null<ValueDecl>(importDeclReal(clangDecl, nameVersion));
if (!decl)
return false;
// If the name we found matches, report the declaration.
// FIXME: If we didn't need to check alternate decls here, we could avoid
// importing the member at all by checking importedName ahead of time.
if (decl->getName().matchesRef(name)) {
consumer.foundDecl(decl, DeclVisibilityKind::DynamicLookup,
DynamicLookupInfo::AnyObject);
}
// Check for an alternate declaration; if its name matches,
// report it.
for (auto alternate : getAlternateDecls(decl)) {
if (alternate->getName().matchesRef(name)) {
consumer.foundDecl(alternate, DeclVisibilityKind::DynamicLookup,
DynamicLookupInfo::AnyObject);
}
}
return true;
});
}
}
void ClangImporter::Implementation::lookupAllObjCMembers(
SwiftLookupTable &table,
VisibleDeclConsumer &consumer) {
// Retrieve and sort all of the base names in this particular table.
auto baseNames = table.allBaseNames();
llvm::array_pod_sort(baseNames.begin(), baseNames.end());
// Look for Objective-C members with each base name.
for (auto baseName : baseNames) {
lookupObjCMembers(table, baseName.toDeclBaseName(SwiftContext), consumer);
}
}
void ClangImporter::Implementation::diagnoseTopLevelValue(
const DeclName &name) {
forEachLookupTable([&](SwiftLookupTable &table) -> bool {
for (const auto &entry :
table.lookup(name.getBaseName(),
EffectiveClangContext(
getClangASTContext().getTranslationUnitDecl()))) {
diagnoseTargetDirectly(importDiagnosticTargetFromLookupTableEntry(entry));
}
return false;
});
}
void ClangImporter::Implementation::diagnoseMemberValue(
const DeclName &name, const clang::DeclContext *container) {
forEachLookupTable([&](SwiftLookupTable &table) -> bool {
for (const auto &entry :
table.lookup(name.getBaseName(), EffectiveClangContext(container))) {
if (clang::NamedDecl *nd = entry.get<clang::NamedDecl *>()) {
// We are only interested in members of a particular context,
// skip other contexts.
if (nd->getDeclContext() != container)
continue;
diagnoseTargetDirectly(
importDiagnosticTargetFromLookupTableEntry(entry));
}
// If the entry is not a NamedDecl, it is a form of macro, which cannot be
// a member value.
}
return false;
});
}
void ClangImporter::Implementation::diagnoseTargetDirectly(
ImportDiagnosticTarget target) {
if (const clang::Decl *decl = target.dyn_cast<const clang::Decl *>()) {
Walker.TraverseDecl(const_cast<clang::Decl *>(decl));
} else if (const clang::MacroInfo *macro =
target.dyn_cast<const clang::MacroInfo *>()) {
Walker.VisitMacro(macro);
}
}
ImportDiagnosticTarget
ClangImporter::Implementation::importDiagnosticTargetFromLookupTableEntry(
SwiftLookupTable::SingleEntry entry) {
if (clang::NamedDecl *decl = entry.dyn_cast<clang::NamedDecl *>()) {
return decl;
} else if (const clang::MacroInfo *macro =
entry.dyn_cast<clang::MacroInfo *>()) {
return macro;
} else if (const clang::ModuleMacro *macro =
entry.dyn_cast<clang::ModuleMacro *>()) {
return macro->getMacroInfo();
}
llvm_unreachable("SwiftLookupTable::Single entry must be a NamedDecl, "
"MacroInfo or ModuleMacro pointer");
}
static void diagnoseForeignReferenceTypeFixit(ClangImporter::Implementation &Impl,
HeaderLoc loc, Diagnostic diag) {
auto importedLoc =
Impl.SwiftContext.getClangModuleLoader()->importSourceLocation(loc.clangLoc);
Impl.diagnose(loc, diag).fixItInsert(
importedLoc, "SWIFT_SHARED_REFERENCE(<#retain#>, <#release#>) ");
}
bool ClangImporter::Implementation::emitDiagnosticsForTarget(
ImportDiagnosticTarget target, clang::SourceLocation fallbackLoc) {
for (auto it = ImportDiagnostics[target].rbegin();
it != ImportDiagnostics[target].rend(); ++it) {
HeaderLoc loc = HeaderLoc(it->loc.isValid() ? it->loc : fallbackLoc);
if (it->diag.getID() == diag::record_not_automatically_importable.ID) {
diagnoseForeignReferenceTypeFixit(*this, loc, it->diag);
} else {
diagnose(loc, it->diag);
}
}
return ImportDiagnostics[target].size();
}
static SmallVector<SwiftLookupTable::SingleEntry, 4>
lookupInClassTemplateSpecialization(
ASTContext &ctx, const clang::ClassTemplateSpecializationDecl *clangDecl,
DeclName name) {
// TODO: we could make this faster if we can cache class templates in the
// lookup table as well.
// Import all the names to figure out which ones we're looking for.
SmallVector<SwiftLookupTable::SingleEntry, 4> found;
for (auto member : clangDecl->decls()) {
auto namedDecl = dyn_cast<clang::NamedDecl>(member);
if (!namedDecl)
continue;
auto memberName = ctx.getClangModuleLoader()->importName(namedDecl);
if (!memberName)
continue;
// Use the base names here because *sometimes* our input name won't have
// any arguments.
if (name.getBaseName().compare(memberName.getBaseName()) == 0)
found.push_back(namedDecl);
}
return found;
}
static bool isDirectLookupMemberContext(const clang::Decl *foundClangDecl,
const clang::Decl *memberContext,
const clang::Decl *parent) {
if (memberContext->getCanonicalDecl() == parent->getCanonicalDecl())
return true;
if (auto namespaceDecl = dyn_cast<clang::NamespaceDecl>(memberContext)) {
if (namespaceDecl->isInline()) {
if (auto memberCtxParent =
dyn_cast<clang::Decl>(namespaceDecl->getParent()))
return isDirectLookupMemberContext(foundClangDecl, memberCtxParent,
parent);
}
}
// Enum constant decl can be found in the parent context of the enum decl.
if (auto *ED = dyn_cast<clang::EnumDecl>(memberContext)) {
if (isa<clang::EnumConstantDecl>(foundClangDecl)) {
if (auto *firstDecl = dyn_cast<clang::Decl>(ED->getDeclContext()))
return firstDecl->getCanonicalDecl() == parent->getCanonicalDecl();
}
}
return false;
}
SmallVector<SwiftLookupTable::SingleEntry, 4>
ClangDirectLookupRequest::evaluate(Evaluator &evaluator,
ClangDirectLookupDescriptor desc) const {
auto &ctx = desc.decl->getASTContext();
auto *clangDecl = desc.clangDecl;
// Class templates aren't in the lookup table.
if (auto spec = dyn_cast<clang::ClassTemplateSpecializationDecl>(clangDecl))
return lookupInClassTemplateSpecialization(ctx, spec, desc.name);
SwiftLookupTable *lookupTable = nullptr;
if (isa<clang::NamespaceDecl>(clangDecl)) {
// DeclContext of a namespace imported into Swift is the __ObjC module.
lookupTable = ctx.getClangModuleLoader()->findLookupTable(nullptr);
} else {
auto *clangModule =
getClangOwningModule(clangDecl, clangDecl->getASTContext());
lookupTable = ctx.getClangModuleLoader()->findLookupTable(clangModule);
}
auto foundDecls = lookupTable->lookup(
SerializedSwiftName(desc.name.getBaseName()), EffectiveClangContext());
// Make sure that `clangDecl` is the parent of all the members we found.
SmallVector<SwiftLookupTable::SingleEntry, 4> filteredDecls;
llvm::copy_if(foundDecls, std::back_inserter(filteredDecls),
[clangDecl](SwiftLookupTable::SingleEntry decl) {
auto foundClangDecl = decl.dyn_cast<clang::NamedDecl *>();
if (!foundClangDecl)
return false;
auto first = foundClangDecl->getDeclContext();
auto second = cast<clang::DeclContext>(clangDecl);
if (auto firstDecl = dyn_cast<clang::Decl>(first)) {
if (auto secondDecl = dyn_cast<clang::Decl>(second))
return isDirectLookupMemberContext(foundClangDecl,
firstDecl, secondDecl);
else
return false;
}
return first == second;
});
return filteredDecls;
}
namespace {
/// Collects name lookup results into the given tiny vector, for use in the
/// various Clang importer lookup routines.
class CollectLookupResults {
DeclName name;
TinyPtrVector<ValueDecl *> &result;
public:
CollectLookupResults(DeclName name, TinyPtrVector<ValueDecl *> &result)
: name(name), result(result) { }
void add(ValueDecl *imported) {
result.push_back(imported);
// Expand any macros introduced by the Clang importer.
imported->visitAuxiliaryDecls([&](Decl *decl) {
auto valueDecl = dyn_cast<ValueDecl>(decl);
if (!valueDecl)
return;
// Bail out if the auxiliary decl was not produced by a macro.
auto module = decl->getDeclContext()->getParentModule();
auto *sf = module->getSourceFileContainingLocation(decl->getLoc());
if (!sf || sf->Kind != SourceFileKind::MacroExpansion)
return;
// Only produce results that match the requested name.
if (!valueDecl->getName().matchesRef(name))
return;
result.push_back(valueDecl);
});
}
};
}
TinyPtrVector<ValueDecl *> CXXNamespaceMemberLookup::evaluate(
Evaluator &evaluator, CXXNamespaceMemberLookupDescriptor desc) const {
EnumDecl *namespaceDecl = desc.namespaceDecl;
DeclName name = desc.name;
auto *clangNamespaceDecl =
cast<clang::NamespaceDecl>(namespaceDecl->getClangDecl());
auto &ctx = namespaceDecl->getASTContext();
TinyPtrVector<ValueDecl *> result;
CollectLookupResults collector(name, result);
llvm::SmallPtrSet<clang::NamedDecl *, 8> importedDecls;
for (auto redecl : clangNamespaceDecl->redecls()) {
auto allResults = evaluateOrDefault(
ctx.evaluator, ClangDirectLookupRequest({namespaceDecl, redecl, name}),
{});
for (auto found : allResults) {
auto clangMember = found.get<clang::NamedDecl *>();
auto it = importedDecls.insert(clangMember);
// Skip over members already found during lookup in
// prior redeclarations.
if (!it.second)
continue;
if (auto import =
ctx.getClangModuleLoader()->importDeclDirectly(clangMember))
collector.add(cast<ValueDecl>(import));
}
}
return result;
}
static const llvm::StringMap<std::vector<int>> STLConditionalEscapableParams{
{"basic_string", {0}},
{"vector", {0}},
{"array", {0}},
{"inplace_vector", {0}},
{"deque", {0}},
{"forward_list", {0}},
{"list", {0}},
{"set", {0}},
{"flat_set", {0}},
{"unordered_set", {0}},
{"multiset", {0}},
{"flat_multiset", {0}},
{"unordered_multiset", {0}},
{"stack", {0}},
{"queue", {0}},
{"priority_queue", {0}},
{"tuple", {0}},
{"variant", {0}},
{"optional", {0}},
{"pair", {0, 1}},
{"expected", {0, 1}},
{"map", {0, 1}},
{"flat_map", {0, 1}},
{"unordered_map", {0, 1}},
{"multimap", {0, 1}},
{"flat_multimap", {0, 1}},
{"unordered_multimap", {0, 1}},
};
static std::set<StringRef>
getConditionalEscapableAttrParams(const clang::RecordDecl *decl) {
std::set<StringRef> result;
if (!decl->hasAttrs())
return result;
for (auto attr : decl->getAttrs()) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr))
if (swiftAttr->getAttribute().starts_with("escapable_if:")) {
StringRef params = swiftAttr->getAttribute().drop_front(
StringRef("escapable_if:").size());
auto commaPos = params.find(',');
StringRef nextParam = params.take_front(commaPos);
while (!nextParam.empty() && commaPos != StringRef::npos) {
result.insert(nextParam.trim());
params = params.drop_front(nextParam.size() + 1);
commaPos = params.find(',');
nextParam = params.take_front(commaPos);
}
}
}
return result;
}
CxxEscapability
ClangTypeEscapability::evaluate(Evaluator &evaluator,
EscapabilityLookupDescriptor desc) const {
bool hadUnknown = false;
auto evaluateEscapability = [&](const clang::Type *type) {
auto escapability = evaluateOrDefault(
evaluator,
ClangTypeEscapability({type, desc.impl, desc.annotationOnly}),
CxxEscapability::Unknown);
if (escapability == CxxEscapability::Unknown)
hadUnknown = true;
return escapability;
};
auto desugared = desc.type->getUnqualifiedDesugaredType();
if (const auto *recordType = desugared->getAs<clang::RecordType>()) {
auto recordDecl = recordType->getDecl();
if (hasNonEscapableAttr(recordDecl))
return CxxEscapability::NonEscapable;
if (hasEscapableAttr(recordDecl))
return CxxEscapability::Escapable;
auto injectedStlAnnotation =
recordDecl->isInStdNamespace()
? STLConditionalEscapableParams.find(recordDecl->getName())
: STLConditionalEscapableParams.end();
bool hasInjectedSTLAnnotation =
injectedStlAnnotation != STLConditionalEscapableParams.end();
auto conditionalParams = getConditionalEscapableAttrParams(recordDecl);
if (!conditionalParams.empty() || hasInjectedSTLAnnotation) {
auto specDecl = cast<clang::ClassTemplateSpecializationDecl>(recordDecl);
SmallVector<std::pair<unsigned, StringRef>, 4> argumentsToCheck;
HeaderLoc loc{recordDecl->getLocation()};
while (specDecl) {
auto templateDecl = specDecl->getSpecializedTemplate();
if (hasInjectedSTLAnnotation) {
auto params = templateDecl->getTemplateParameters();
for (auto idx : injectedStlAnnotation->second)
argumentsToCheck.push_back(
std::make_pair(idx, params->getParam(idx)->getName()));
} else {
for (auto [idx, param] :
llvm::enumerate(*templateDecl->getTemplateParameters())) {
if (conditionalParams.erase(param->getName()))
argumentsToCheck.push_back(std::make_pair(idx, param->getName()));
}
}
auto &argList = specDecl->getTemplateArgs();
for (auto argToCheck : argumentsToCheck) {
auto arg = argList[argToCheck.first];
llvm::SmallVector<clang::TemplateArgument, 1> nonPackArgs;
if (arg.getKind() == clang::TemplateArgument::Pack) {
auto pack = arg.getPackAsArray();
nonPackArgs.assign(pack.begin(), pack.end());
} else
nonPackArgs.push_back(arg);
for (auto nonPackArg : nonPackArgs) {
if (nonPackArg.getKind() != clang::TemplateArgument::Type &&
desc.impl) {
desc.impl->diagnose(loc, diag::type_template_parameter_expected,
argToCheck.second);
return CxxEscapability::Unknown;
}
auto argEscapability = evaluateEscapability(
nonPackArg.getAsType()->getUnqualifiedDesugaredType());
if (argEscapability == CxxEscapability::NonEscapable)
return CxxEscapability::NonEscapable;
}
}
if (hasInjectedSTLAnnotation)
break;
clang::DeclContext *dc = specDecl;
specDecl = nullptr;
while ((dc = dc->getParent())) {
specDecl = dyn_cast<clang::ClassTemplateSpecializationDecl>(dc);
if (specDecl)
break;
}
}
if (desc.impl)
for (auto name : conditionalParams)
desc.impl->diagnose(loc, diag::unknown_template_parameter, name);
return hadUnknown ? CxxEscapability::Unknown : CxxEscapability::Escapable;
}
if (desc.annotationOnly)
return CxxEscapability::Unknown;
auto cxxRecordDecl = dyn_cast<clang::CXXRecordDecl>(recordDecl);
if (!cxxRecordDecl || cxxRecordDecl->isAggregate()) {
if (cxxRecordDecl) {
for (auto base : cxxRecordDecl->bases()) {
auto baseEscapability = evaluateEscapability(
base.getType()->getUnqualifiedDesugaredType());
if (baseEscapability == CxxEscapability::NonEscapable)
return CxxEscapability::NonEscapable;
}
}
for (auto field : recordDecl->fields()) {
auto fieldEscapability = evaluateEscapability(
field->getType()->getUnqualifiedDesugaredType());
if (fieldEscapability == CxxEscapability::NonEscapable)
return CxxEscapability::NonEscapable;
}
return hadUnknown ? CxxEscapability::Unknown : CxxEscapability::Escapable;
}
}
if (desugared->isArrayType()) {
auto elemTy = cast<clang::ArrayType>(desugared)
->getElementType()
->getUnqualifiedDesugaredType();
return evaluateOrDefault(
evaluator,
ClangTypeEscapability({elemTy, desc.impl, desc.annotationOnly}),
CxxEscapability::Unknown);
}
// Base cases
if (desugared->isAnyPointerType() || desugared->isBlockPointerType() ||
desugared->isMemberPointerType() || desugared->isReferenceType())
return desc.annotationOnly ? CxxEscapability::Unknown
: CxxEscapability::NonEscapable;
if (desugared->isScalarType())
return CxxEscapability::Escapable;
return CxxEscapability::Unknown;
}
void swift::simple_display(llvm::raw_ostream &out,
EscapabilityLookupDescriptor desc) {
out << "Computing escapability for type '";
out << clang::QualType(desc.type, 0).getAsString();
out << "'";
}
SourceLoc swift::extractNearestSourceLoc(EscapabilityLookupDescriptor) {
return SourceLoc();
}
// Just create a specialized function decl for "__swift_interopStaticCast"
// using the types base and derived.
static
DeclRefExpr *getInteropStaticCastDeclRefExpr(ASTContext &ctx,
const clang::Module *owningModule,
Type base, Type derived) {
if (base->isForeignReferenceType() && derived->isForeignReferenceType()) {
base = base->wrapInPointer(PTK_UnsafePointer);
derived = derived->wrapInPointer(PTK_UnsafePointer);
}
// Lookup our static cast helper function in the C++ shim module.
auto wrapperModule = ctx.getLoadedModule(ctx.getIdentifier(CXX_SHIM_NAME));
assert(wrapperModule &&
"CxxShim module is required when using members of a base class. "
"Make sure you `import CxxShim`.");
SmallVector<ValueDecl *, 1> results;
ctx.lookupInModule(wrapperModule, "__swift_interopStaticCast", results);
assert(
results.size() == 1 &&
"Did you forget to define a __swift_interopStaticCast helper function?");
FuncDecl *staticCastFn = cast<FuncDecl>(results.back());
// Now we have to force instantiate this. We can't let the type checker do
// this yet because it can't infer the "To" type.
auto subst =
SubstitutionMap::get(staticCastFn->getGenericSignature(), {derived, base},
LookUpConformanceInModule());
auto functionTemplate = const_cast<clang::FunctionTemplateDecl *>(
cast<clang::FunctionTemplateDecl>(staticCastFn->getClangDecl()));
auto spec = ctx.getClangModuleLoader()->instantiateCXXFunctionTemplate(
ctx, functionTemplate, subst);
auto specializedStaticCastFn =
cast<FuncDecl>(ctx.getClangModuleLoader()->importDeclDirectly(spec));
auto staticCastRefExpr = new (ctx)
DeclRefExpr(ConcreteDeclRef(specializedStaticCastFn), DeclNameLoc(),
/*implicit*/ true);
staticCastRefExpr->setType(specializedStaticCastFn->getInterfaceType());
return staticCastRefExpr;
}
// Create the following expressions:
// %0 = Builtin.addressof(&self)
// %1 = Builtin.reinterpretCast<UnsafeMutablePointer<Derived>>(%0)
// %2 = __swift_interopStaticCast<UnsafeMutablePointer<Base>?>(%1)
// %3 = %2!
// return %3.pointee
static
MemberRefExpr *getSelfInteropStaticCast(FuncDecl *funcDecl,
NominalTypeDecl *baseStruct,
NominalTypeDecl *derivedStruct) {
auto &ctx = funcDecl->getASTContext();
auto mutableSelf = [&ctx](FuncDecl *funcDecl) {
auto selfDecl = funcDecl->getImplicitSelfDecl();
auto selfRef =
new (ctx) DeclRefExpr(selfDecl, DeclNameLoc(), /*implicit*/ true);
selfRef->setType(LValueType::get(selfDecl->getInterfaceType()));
return selfRef;
}(funcDecl);
auto createCallToBuiltin = [&](Identifier name, ArrayRef<Type> substTypes,
Argument arg) {
auto builtinFn = cast<FuncDecl>(getBuiltinValueDecl(ctx, name));
auto substMap =
SubstitutionMap::get(builtinFn->getGenericSignature(), substTypes,
LookUpConformanceInModule());
ConcreteDeclRef builtinFnRef(builtinFn, substMap);
auto builtinFnRefExpr =
new (ctx) DeclRefExpr(builtinFnRef, DeclNameLoc(), /*implicit*/ true);
auto fnType = builtinFn->getInterfaceType();
if (auto genericFnType = dyn_cast<GenericFunctionType>(fnType.getPointer()))
fnType = genericFnType->substGenericArgs(substMap);
builtinFnRefExpr->setType(fnType);
auto *argList = ArgumentList::createImplicit(ctx, {arg});
auto callExpr = CallExpr::create(ctx, builtinFnRefExpr, argList, /*implicit*/ true);
callExpr->setThrows(nullptr);
return callExpr;
};
auto rawSelfPointer = createCallToBuiltin(
ctx.getIdentifier("addressof"), {derivedStruct->getSelfInterfaceType()},
Argument::implicitInOut(ctx, mutableSelf));
rawSelfPointer->setType(ctx.TheRawPointerType);
auto derivedPtrType = derivedStruct->getSelfInterfaceType()->wrapInPointer(
PTK_UnsafeMutablePointer);
auto selfPointer =
createCallToBuiltin(ctx.getIdentifier("reinterpretCast"),
{ctx.TheRawPointerType, derivedPtrType},
Argument::unlabeled(rawSelfPointer));
selfPointer->setType(derivedPtrType);
auto staticCastRefExpr = getInteropStaticCastDeclRefExpr(
ctx, baseStruct->getClangDecl()->getOwningModule(),
baseStruct->getSelfInterfaceType()->wrapInPointer(
PTK_UnsafeMutablePointer),
derivedStruct->getSelfInterfaceType()->wrapInPointer(
PTK_UnsafeMutablePointer));
auto *argList = ArgumentList::forImplicitUnlabeled(ctx, {selfPointer});
auto casted = CallExpr::createImplicit(ctx, staticCastRefExpr, argList);
// This will be "Optional<UnsafeMutablePointer<Base>>"
casted->setType(cast<FunctionType>(staticCastRefExpr->getType().getPointer())
->getResult());
casted->setThrows(nullptr);
SubstitutionMap pointeeSubst = SubstitutionMap::get(
ctx.getUnsafeMutablePointerDecl()->getGenericSignature(),
{baseStruct->getSelfInterfaceType()},
LookUpConformanceInModule());
VarDecl *pointeePropertyDecl =
ctx.getPointerPointeePropertyDecl(PTK_UnsafeMutablePointer);
auto pointeePropertyRefExpr = new (ctx) MemberRefExpr(
casted, SourceLoc(),
ConcreteDeclRef(pointeePropertyDecl, pointeeSubst), DeclNameLoc(),
/*implicit=*/true);
pointeePropertyRefExpr->setType(
LValueType::get(baseStruct->getSelfInterfaceType()));
return pointeePropertyRefExpr;
}
// Find the base C++ method called by the base function we want to synthesize
// the derived thunk for.
// The base C++ method is either the original C++ method that corresponds
// to the imported base member, or it's the synthesized C++ method thunk
// used in another synthesized derived thunk that acts as a base member here.
const clang::CXXMethodDecl *getCalledBaseCxxMethod(FuncDecl *baseMember) {
if (baseMember->getClangDecl())
return dyn_cast<clang::CXXMethodDecl>(baseMember->getClangDecl());
// Another synthesized derived thunk is used as a base member here,
// so extract its synthesized C++ method.
auto body = baseMember->getBody();
if (body->getElements().empty())
return nullptr;
ReturnStmt *returnStmt = dyn_cast_or_null<ReturnStmt>(
body->getElements().front().dyn_cast<Stmt *>());
if (!returnStmt)
return nullptr;
Expr *returnExpr = returnStmt->getResult();
// Look through a potential 'reinterpretCast' that can be used
// to cast UnsafeMutablePointer to UnsafePointer in the synthesized
// Swift body for `.pointee`.
if (auto *ce = dyn_cast<CallExpr>(returnExpr)) {
if (auto *v = ce->getCalledValue()) {
if (v->getModuleContext() ==
baseMember->getASTContext().TheBuiltinModule &&
v->getBaseName().userFacingName() == "reinterpretCast") {
returnExpr = ce->getArgs()->get(0).getExpr();
}
}
}
// A member ref expr for `.pointee` access can be wrapping a call
// when looking through the synthesized Swift body for `.pointee`
// accessor.
if (MemberRefExpr *mre = dyn_cast<MemberRefExpr>(returnExpr))
returnExpr = mre->getBase();
auto *callExpr = dyn_cast<CallExpr>(returnExpr);
if (!callExpr)
return nullptr;
auto *cv = callExpr->getCalledValue();
if (!cv)
return nullptr;
if (!cv->getClangDecl())
return nullptr;
return dyn_cast<clang::CXXMethodDecl>(cv->getClangDecl());
}
// Construct a Swift method that represents the synthesized C++ method
// that invokes the base C++ method.
FuncDecl *synthesizeBaseFunctionDeclCall(ClangImporter &impl, ASTContext &ctx,
NominalTypeDecl *derivedStruct,
NominalTypeDecl *baseStruct,
FuncDecl *baseMember) {
auto *cxxMethod = getCalledBaseCxxMethod(baseMember);
if (!cxxMethod)
return nullptr;
auto *newClangMethod =
SwiftDeclSynthesizer(&impl).synthesizeCXXForwardingMethod(
cast<clang::CXXRecordDecl>(derivedStruct->getClangDecl()),
cast<clang::CXXRecordDecl>(baseStruct->getClangDecl()), cxxMethod,
ForwardingMethodKind::Base);
if (!newClangMethod)
return nullptr;
return cast_or_null<FuncDecl>(
ctx.getClangModuleLoader()->importDeclDirectly(newClangMethod));
}
// Generates the body of a derived method, that invokes the base
// method.
// The method's body takes the following form:
// return self.__synthesizedBaseCall_fn(args...)
static std::pair<BraceStmt *, bool>
synthesizeBaseClassMethodBody(AbstractFunctionDecl *afd, void *context) {
ASTContext &ctx = afd->getASTContext();
auto funcDecl = cast<FuncDecl>(afd);
auto derivedStruct =
cast<NominalTypeDecl>(funcDecl->getDeclContext()->getAsDecl());
auto baseMember = static_cast<FuncDecl *>(context);
auto baseStruct =
cast<NominalTypeDecl>(baseMember->getDeclContext()->getAsDecl());
auto forwardedFunc = synthesizeBaseFunctionDeclCall(
*static_cast<ClangImporter *>(ctx.getClangModuleLoader()), ctx,
derivedStruct, baseStruct, baseMember);
if (!forwardedFunc) {
ctx.Diags.diagnose(SourceLoc(), diag::failed_base_method_call_synthesis,
funcDecl, baseStruct);
auto body = BraceStmt::create(ctx, SourceLoc(), {}, SourceLoc(),
/*implicit=*/true);
return {body, /*isTypeChecked=*/true};
}
SmallVector<Expr *, 8> forwardingParams;
for (auto param : *funcDecl->getParameters()) {
auto paramRefExpr = new (ctx) DeclRefExpr(param, DeclNameLoc(),
/*Implicit=*/true);
paramRefExpr->setType(param->getTypeInContext());
forwardingParams.push_back(paramRefExpr);
}
Argument selfArg = [&]() {
auto *selfDecl = funcDecl->getImplicitSelfDecl();
auto selfExpr = new (ctx) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/ true);
if (funcDecl->isMutating()) {
selfExpr->setType(LValueType::get(selfDecl->getInterfaceType()));
return Argument::implicitInOut(ctx, selfExpr);
}
selfExpr->setType(selfDecl->getTypeInContext());
return Argument::unlabeled(selfExpr);
}();
auto *baseMemberExpr =
new (ctx) DeclRefExpr(ConcreteDeclRef(forwardedFunc), DeclNameLoc(),
/*Implicit=*/true);
baseMemberExpr->setType(forwardedFunc->getInterfaceType());
auto baseMemberDotCallExpr =
DotSyntaxCallExpr::create(ctx, baseMemberExpr, SourceLoc(), selfArg);
baseMemberDotCallExpr->setType(baseMember->getMethodInterfaceType());
baseMemberDotCallExpr->setThrows(nullptr);
auto *argList = ArgumentList::forImplicitUnlabeled(ctx, forwardingParams);
auto *baseMemberCallExpr = CallExpr::createImplicit(
ctx, baseMemberDotCallExpr, argList);
baseMemberCallExpr->setType(baseMember->getResultInterfaceType());
baseMemberCallExpr->setThrows(nullptr);
auto *returnStmt = ReturnStmt::createImplicit(ctx, baseMemberCallExpr);
auto body = BraceStmt::create(ctx, SourceLoc(), {returnStmt}, SourceLoc(),
/*implicit=*/true);
return {body, /*isTypeChecked=*/true};
}
// How should the synthesized C++ method that returns the field of interest
// from the base class should return the value - by value, or by reference.
enum ReferenceReturnTypeBehaviorForBaseAccessorSynthesis {
ReturnByValue,
ReturnByReference,
ReturnByMutableReference
};
// Synthesize a C++ method that returns the field of interest from the base
// class. This lets Clang take care of the cast from the derived class
// to the base class while the field is accessed.
static clang::CXXMethodDecl *synthesizeCxxBaseGetterAccessorMethod(
ClangImporter &impl, const clang::CXXRecordDecl *derivedClass,
const clang::CXXRecordDecl *baseClass, const clang::FieldDecl *field,
ValueDecl *retainOperationFn,
ReferenceReturnTypeBehaviorForBaseAccessorSynthesis behavior) {
auto &clangCtx = impl.getClangASTContext();
auto &clangSema = impl.getClangSema();
// Create a new method in the derived class that calls the base method.
auto name = field->getDeclName();
if (name.isIdentifier()) {
std::string newName;
llvm::raw_string_ostream os(newName);
os << (behavior == ReferenceReturnTypeBehaviorForBaseAccessorSynthesis::
ReturnByMutableReference
? "__synthesizedBaseSetterAccessor_"
: "__synthesizedBaseGetterAccessor_")
<< name.getAsIdentifierInfo()->getName();
name = clang::DeclarationName(
&impl.getClangPreprocessor().getIdentifierTable().get(os.str()));
}
auto returnType = field->getType();
if (returnType->isReferenceType())
returnType = returnType->getPointeeType();
auto valueReturnType = returnType;
if (behavior !=
ReferenceReturnTypeBehaviorForBaseAccessorSynthesis::ReturnByValue) {
returnType = clangCtx.getRValueReferenceType(
behavior == ReferenceReturnTypeBehaviorForBaseAccessorSynthesis::
ReturnByReference
? returnType.withConst()
: returnType);
}
clang::FunctionProtoType::ExtProtoInfo info;
if (behavior != ReferenceReturnTypeBehaviorForBaseAccessorSynthesis::
ReturnByMutableReference)
info.TypeQuals.addConst();
info.ExceptionSpec.Type = clang::EST_NoThrow;
auto ftype = clangCtx.getFunctionType(returnType, {}, info);
auto newMethod = clang::CXXMethodDecl::Create(
clangCtx, const_cast<clang::CXXRecordDecl *>(derivedClass),
field->getSourceRange().getBegin(),
clang::DeclarationNameInfo(name, clang::SourceLocation()), ftype,
clangCtx.getTrivialTypeSourceInfo(ftype), clang::SC_None,
/*UsesFPIntrin=*/false, /*isInline=*/true,
clang::ConstexprSpecKind::Unspecified, field->getSourceRange().getEnd());
newMethod->setImplicit();
newMethod->setImplicitlyInline();
newMethod->setAccess(clang::AccessSpecifier::AS_public);
if (retainOperationFn) {
// Return an FRT field at +1.
newMethod->addAttr(clang::CFReturnsRetainedAttr::CreateImplicit(clangCtx));
}
// Create a new Clang diagnostic pool to capture any diagnostics
// emitted during the construction of the method.
clang::sema::DelayedDiagnosticPool diagPool{
clangSema.DelayedDiagnostics.getCurrentPool()};
auto diagState = clangSema.DelayedDiagnostics.push(diagPool);
// Returns the expression that accesses the base field from derived type.
auto createFieldAccess = [&]() -> clang::Expr * {
auto *thisExpr = clang::CXXThisExpr::Create(
clangCtx, clang::SourceLocation(), newMethod->getThisType(),
/*IsImplicit=*/false);
clang::QualType baseClassPtr = clangCtx.getRecordType(baseClass);
baseClassPtr.addConst();
baseClassPtr = clangCtx.getPointerType(baseClassPtr);
clang::CastKind Kind;
clang::CXXCastPath Path;
clangSema.CheckPointerConversion(thisExpr, baseClassPtr, Kind, Path,
/*IgnoreBaseAccess=*/false,
/*Diagnose=*/true);
auto conv = clangSema.ImpCastExprToType(thisExpr, baseClassPtr, Kind,
clang::VK_PRValue, &Path);
if (!conv.isUsable())
return nullptr;
auto memberExpr = clangSema.BuildMemberExpr(
conv.get(), /*isArrow=*/true, clang::SourceLocation(),
clang::NestedNameSpecifierLoc(), clang::SourceLocation(),
const_cast<clang::FieldDecl *>(field),
clang::DeclAccessPair::make(const_cast<clang::FieldDecl *>(field),
clang::AS_public),
/*HadMultipleCandidates=*/false,
clang::DeclarationNameInfo(field->getDeclName(),
clang::SourceLocation()),
valueReturnType, clang::VK_LValue, clang::OK_Ordinary);
auto returnCast = clangSema.ImpCastExprToType(memberExpr, valueReturnType,
clang::CK_LValueToRValue,
clang::VK_PRValue);
if (!returnCast.isUsable())
return nullptr;
return returnCast.get();
};
llvm::SmallVector<clang::Stmt *, 2> body;
if (retainOperationFn) {
// Check if the returned value needs to be retained. This might occur if the
// field getter is returning a shared reference type using, as it needs to
// perform the retain to match the expected @owned convention.
auto *retainClangFn =
dyn_cast<clang::FunctionDecl>(retainOperationFn->getClangDecl());
if (!retainClangFn) {
return nullptr;
}
auto *fnRef = new (clangCtx) clang::DeclRefExpr(
clangCtx, const_cast<clang::FunctionDecl *>(retainClangFn), false,
retainClangFn->getType(), clang::ExprValueKind::VK_LValue,
clang::SourceLocation());
auto fieldExpr = createFieldAccess();
if (!fieldExpr)
return nullptr;
auto retainCall = clangSema.BuildResolvedCallExpr(
fnRef, const_cast<clang::FunctionDecl *>(retainClangFn),
clang::SourceLocation(), {fieldExpr}, clang::SourceLocation());
if (!retainCall.isUsable())
return nullptr;
body.push_back(retainCall.get());
}
// Construct the method's body.
auto fieldExpr = createFieldAccess();
if (!fieldExpr)
return nullptr;
auto returnStmt = clang::ReturnStmt::Create(clangCtx, clang::SourceLocation(),
fieldExpr, nullptr);
body.push_back(returnStmt);
// Check if there were any Clang errors during the construction
// of the method body.
clangSema.DelayedDiagnostics.popWithoutEmitting(diagState);
if (!diagPool.empty())
return nullptr;
newMethod->setBody(body.size() > 1
? clang::CompoundStmt::Create(
clangCtx, body, clang::FPOptionsOverride(),
clang::SourceLocation(), clang::SourceLocation())
: body[0]);
return newMethod;
}
// Generates the body of a derived method, that invokes the base
// field getter or the base subscript.
// The method's body takes the following form:
// return self.__synthesizedBaseCall_fn(args...)
static std::pair<BraceStmt *, bool>
synthesizeBaseClassFieldGetterOrAddressGetterBody(AbstractFunctionDecl *afd,
void *context,
AccessorKind kind) {
assert(kind == AccessorKind::Get || kind == AccessorKind::Address ||
kind == AccessorKind::MutableAddress);
ASTContext &ctx = afd->getASTContext();
AccessorDecl *getterDecl = cast<AccessorDecl>(afd);
AbstractStorageDecl *baseClassVar = static_cast<AbstractStorageDecl *>(context);
NominalTypeDecl *baseStruct =
cast<NominalTypeDecl>(baseClassVar->getDeclContext()->getAsDecl());
NominalTypeDecl *derivedStruct =
cast<NominalTypeDecl>(getterDecl->getDeclContext()->getAsDecl());
const clang::Decl *baseClangDecl;
if (baseClassVar->getClangDecl())
baseClangDecl = baseClassVar->getClangDecl();
else
baseClangDecl = getCalledBaseCxxMethod(baseClassVar->getAccessor(kind));
clang::CXXMethodDecl *baseGetterCxxMethod = nullptr;
if (auto *md = dyn_cast_or_null<clang::CXXMethodDecl>(baseClangDecl)) {
// Subscript operator, or `.pointee` wrapper is represented through a
// generated C++ method call that calls the base operator.
baseGetterCxxMethod =
SwiftDeclSynthesizer(
static_cast<ClangImporter *>(ctx.getClangModuleLoader()))
.synthesizeCXXForwardingMethod(
cast<clang::CXXRecordDecl>(derivedStruct->getClangDecl()),
cast<clang::CXXRecordDecl>(baseStruct->getClangDecl()), md,
ForwardingMethodKind::Base,
getterDecl->getResultInterfaceType()->isForeignReferenceType()
? ReferenceReturnTypeBehaviorForBaseMethodSynthesis::
RemoveReferenceIfPointer
: (kind != AccessorKind::Get
? ReferenceReturnTypeBehaviorForBaseMethodSynthesis::
KeepReference
: ReferenceReturnTypeBehaviorForBaseMethodSynthesis::
RemoveReference),
/*forceConstQualifier=*/kind != AccessorKind::MutableAddress);
} else if (auto *fd = dyn_cast_or_null<clang::FieldDecl>(baseClangDecl)) {
ValueDecl *retainOperationFn = nullptr;
// Check if this field getter is returning a retainable FRT.
if (getterDecl->getResultInterfaceType()->isForeignReferenceType()) {
auto retainOperation = evaluateOrDefault(
ctx.evaluator,
CustomRefCountingOperation({getterDecl->getResultInterfaceType()
->lookThroughAllOptionalTypes()
->getClassOrBoundGenericClass(),
CustomRefCountingOperationKind::retain}),
{});
if (retainOperation.kind ==
CustomRefCountingOperationResult::foundOperation) {
retainOperationFn = retainOperation.operation;
}
}
// Field getter is represented through a generated
// C++ method call that returns the value of the base field.
baseGetterCxxMethod = synthesizeCxxBaseGetterAccessorMethod(
*static_cast<ClangImporter *>(ctx.getClangModuleLoader()),
cast<clang::CXXRecordDecl>(derivedStruct->getClangDecl()),
cast<clang::CXXRecordDecl>(baseStruct->getClangDecl()), fd,
retainOperationFn,
kind == AccessorKind::Get
? ReferenceReturnTypeBehaviorForBaseAccessorSynthesis::ReturnByValue
: (kind == AccessorKind::Address
? ReferenceReturnTypeBehaviorForBaseAccessorSynthesis::
ReturnByReference
: ReferenceReturnTypeBehaviorForBaseAccessorSynthesis::
ReturnByMutableReference));
}
if (!baseGetterCxxMethod) {
ctx.Diags.diagnose(SourceLoc(), diag::failed_base_method_call_synthesis,
getterDecl, baseStruct);
auto body = BraceStmt::create(ctx, SourceLoc(), {}, SourceLoc(),
/*implicit=*/true);
return {body, true};
}
auto *baseGetterMethod = cast<FuncDecl>(
ctx.getClangModuleLoader()->importDeclDirectly(baseGetterCxxMethod));
Argument selfArg = [&]() {
auto selfDecl = getterDecl->getImplicitSelfDecl();
auto selfExpr = new (ctx) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/ true);
if (kind == AccessorKind::MutableAddress) {
selfExpr->setType(LValueType::get(selfDecl->getInterfaceType()));
return Argument::implicitInOut(ctx, selfExpr);
}
selfExpr->setType(selfDecl->getTypeInContext());
return Argument::unlabeled(selfExpr);
}();
auto *baseMemberExpr =
new (ctx) DeclRefExpr(ConcreteDeclRef(baseGetterMethod), DeclNameLoc(),
/*Implicit=*/true);
baseMemberExpr->setType(baseGetterMethod->getInterfaceType());
auto baseMemberDotCallExpr =
DotSyntaxCallExpr::create(ctx, baseMemberExpr, SourceLoc(), selfArg);
baseMemberDotCallExpr->setType(baseGetterMethod->getMethodInterfaceType());
baseMemberDotCallExpr->setThrows(nullptr);
ArgumentList *argumentList;
if (isa<SubscriptDecl>(baseClassVar)) {
auto paramDecl = getterDecl->getParameters()->get(0);
auto paramRefExpr = new (ctx) DeclRefExpr(paramDecl, DeclNameLoc(),
/*Implicit=*/true);
paramRefExpr->setType(paramDecl->getTypeInContext());
argumentList = ArgumentList::forImplicitUnlabeled(ctx, {paramRefExpr});
} else {
argumentList = ArgumentList::forImplicitUnlabeled(ctx, {});
}
auto *baseMemberCallExpr =
CallExpr::createImplicit(ctx, baseMemberDotCallExpr, argumentList);
Type resultType = baseGetterMethod->getResultInterfaceType();
baseMemberCallExpr->setType(resultType);
baseMemberCallExpr->setThrows(nullptr);
Expr *returnExpr = baseMemberCallExpr;
// Cast an 'address' result from a mutable pointer if needed.
if (kind == AccessorKind::Address &&
baseGetterMethod->getResultInterfaceType()->isUnsafeMutablePointer()) {
auto finalResultType = getterDecl->getResultInterfaceType();
returnExpr = SwiftDeclSynthesizer::synthesizeReturnReinterpretCast(
ctx, baseGetterMethod->getResultInterfaceType(), finalResultType,
returnExpr);
}
auto *returnStmt = ReturnStmt::createImplicit(ctx, returnExpr);
auto body = BraceStmt::create(ctx, SourceLoc(), {returnStmt}, SourceLoc(),
/*implicit=*/true);
return {body, /*isTypeChecked=*/true};
}
static std::pair<BraceStmt *, bool>
synthesizeBaseClassFieldGetterBody(AbstractFunctionDecl *afd, void *context) {
return synthesizeBaseClassFieldGetterOrAddressGetterBody(afd, context,
AccessorKind::Get);
}
static std::pair<BraceStmt *, bool>
synthesizeBaseClassFieldAddressGetterBody(AbstractFunctionDecl *afd,
void *context) {
return synthesizeBaseClassFieldGetterOrAddressGetterBody(
afd, context, AccessorKind::Address);
}
// For setters we have to pass self as a pointer and then emit an assign:
// %0 = Builtin.addressof(&self)
// %1 = Builtin.reinterpretCast<UnsafeMutablePointer<Derived>>(%0)
// %2 = __swift_interopStaticCast<UnsafeMutablePointer<Base>?>(%1)
// %3 = %2!
// %4 = %3.pointee
// assign newValue to %4
static std::pair<BraceStmt *, bool>
synthesizeBaseClassFieldSetterBody(AbstractFunctionDecl *afd, void *context) {
auto setterDecl = cast<AccessorDecl>(afd);
AbstractStorageDecl *baseClassVar = static_cast<AbstractStorageDecl *>(context);
ASTContext &ctx = setterDecl->getASTContext();
NominalTypeDecl *baseStruct =
cast<NominalTypeDecl>(baseClassVar->getDeclContext()->getAsDecl());
NominalTypeDecl *derivedStruct =
cast<NominalTypeDecl>(setterDecl->getDeclContext()->getAsDecl());
auto *pointeePropertyRefExpr =
getSelfInteropStaticCast(setterDecl, baseStruct, derivedStruct);
Expr *storedRef = nullptr;
if (auto subscript = dyn_cast<SubscriptDecl>(baseClassVar)) {
auto paramDecl = setterDecl->getParameters()->get(1);
auto paramRefExpr = new (ctx) DeclRefExpr(paramDecl,
DeclNameLoc(),
/*Implicit=*/ true);
paramRefExpr->setType(paramDecl->getTypeInContext());
auto *argList = ArgumentList::forImplicitUnlabeled(ctx, {paramRefExpr});
storedRef = SubscriptExpr::create(ctx, pointeePropertyRefExpr, argList, subscript);
storedRef->setType(LValueType::get(subscript->getElementInterfaceType()));
} else {
// If the base class var has a clang decl, that means it's an access into a
// stored field. Otherwise, we're looking into another base class, so it's a
// another synthesized accessor.
AccessSemantics accessKind = baseClassVar->getClangDecl()
? AccessSemantics::DirectToStorage
: AccessSemantics::DirectToImplementation;
storedRef =
new (ctx) MemberRefExpr(pointeePropertyRefExpr, SourceLoc(), baseClassVar,
DeclNameLoc(), /*Implicit=*/true, accessKind);
storedRef->setType(LValueType::get(cast<VarDecl>(baseClassVar)->getTypeInContext()));
}
auto newValueParamRefExpr =
new (ctx) DeclRefExpr(setterDecl->getParameters()->get(0), DeclNameLoc(),
/*Implicit=*/true);
newValueParamRefExpr->setType(setterDecl->getParameters()->get(0)->getTypeInContext());
auto assignExpr =
new (ctx) AssignExpr(storedRef, SourceLoc(), newValueParamRefExpr,
/*implicit*/ true);
assignExpr->setType(TupleType::getEmpty(ctx));
auto body = BraceStmt::create(ctx, SourceLoc(), {assignExpr}, SourceLoc(),
/*implicit*/ true);
return {body, /*isTypeChecked=*/true};
}
static std::pair<BraceStmt *, bool>
synthesizeBaseClassFieldAddressSetterBody(AbstractFunctionDecl *afd,
void *context) {
return synthesizeBaseClassFieldGetterOrAddressGetterBody(
afd, context, AccessorKind::MutableAddress);
}
static SmallVector<AccessorDecl *, 2>
makeBaseClassMemberAccessors(DeclContext *declContext,
AbstractStorageDecl *computedVar,
AbstractStorageDecl *baseClassVar) {
auto &ctx = declContext->getASTContext();
auto computedType = computedVar->getInterfaceType();
auto contextTy = declContext->mapTypeIntoContext(computedType);
// Use 'address' or 'mutableAddress' accessors for non-copyable
// types, unless the base accessor returns it by value.
bool useAddress = contextTy->isNoncopyable() &&
(baseClassVar->getReadImpl() == ReadImplKind::Stored ||
baseClassVar->getAccessor(AccessorKind::Address));
ParameterList *bodyParams = nullptr;
if (auto subscript = dyn_cast<SubscriptDecl>(baseClassVar)) {
computedType = computedType->getAs<FunctionType>()->getResult();
auto idxParam = subscript->getIndices()->get(0);
bodyParams = ParameterList::create(ctx, { idxParam });
} else {
bodyParams = ParameterList::createEmpty(ctx);
}
auto getterDecl = AccessorDecl::create(
ctx,
/*FuncLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(),
useAddress ? AccessorKind::Address : AccessorKind::Get, computedVar,
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/false,
/*ThrowsLoc=*/SourceLoc(), /*ThrownType=*/TypeLoc(), bodyParams,
useAddress ? computedType->wrapInPointer(PTK_UnsafePointer)
: computedType,
declContext);
getterDecl->setIsTransparent(true);
getterDecl->copyFormalAccessFrom(computedVar);
getterDecl->setBodySynthesizer(useAddress
? synthesizeBaseClassFieldAddressGetterBody
: synthesizeBaseClassFieldGetterBody,
baseClassVar);
if (baseClassVar->getWriteImpl() == WriteImplKind::Immutable)
return {getterDecl};
auto newValueParam =
new (ctx) ParamDecl(SourceLoc(), SourceLoc(), Identifier(), SourceLoc(),
ctx.getIdentifier("newValue"), declContext);
newValueParam->setSpecifier(ParamSpecifier::Default);
newValueParam->setInterfaceType(computedType);
SmallVector<ParamDecl *, 2> setterParamDecls;
if (!useAddress)
setterParamDecls.push_back(newValueParam);
if (auto subscript = dyn_cast<SubscriptDecl>(baseClassVar))
setterParamDecls.push_back(subscript->getIndices()->get(0));
ParameterList *setterBodyParams =
ParameterList::create(ctx, setterParamDecls);
auto setterDecl = AccessorDecl::create(
ctx,
/*FuncLoc=*/SourceLoc(),
/*AccessorKeywordLoc=*/SourceLoc(),
useAddress ? AccessorKind::MutableAddress : AccessorKind::Set,
computedVar,
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/false,
/*ThrowsLoc=*/SourceLoc(), /*ThrownType=*/TypeLoc(), setterBodyParams,
useAddress ? computedType->wrapInPointer(PTK_UnsafeMutablePointer)
: TupleType::getEmpty(ctx),
declContext);
setterDecl->setIsTransparent(true);
setterDecl->copyFormalAccessFrom(computedVar);
setterDecl->setBodySynthesizer(useAddress
? synthesizeBaseClassFieldAddressSetterBody
: synthesizeBaseClassFieldSetterBody,
baseClassVar);
setterDecl->setSelfAccessKind(SelfAccessKind::Mutating);
return {getterDecl, setterDecl};
}
// Clone attributes that have been imported from Clang.
void cloneImportedAttributes(ValueDecl *fromDecl, ValueDecl* toDecl) {
ASTContext& context = fromDecl->getASTContext();
DeclAttributes& attrs = toDecl->getAttrs();
for (auto attr : fromDecl->getAttrs()) {
switch (attr->getKind()) {
case DeclAttrKind::Available: {
attrs.add(cast<AvailableAttr>(attr)->clone(context, true));
break;
}
case DeclAttrKind::Custom: {
CustomAttr *cAttr = cast<CustomAttr>(attr);
attrs.add(CustomAttr::create(context, SourceLoc(), cAttr->getTypeExpr(),
cAttr->getInitContext(), cAttr->getArgs(),
true));
break;
}
case DeclAttrKind::DiscardableResult: {
attrs.add(new (context) DiscardableResultAttr(true));
break;
}
case DeclAttrKind::Effects: {
attrs.add(cast<EffectsAttr>(attr)->clone(context));
break;
}
case DeclAttrKind::Final: {
attrs.add(new (context) FinalAttr(true));
break;
}
case DeclAttrKind::Transparent: {
attrs.add(new (context) TransparentAttr(true));
break;
}
case DeclAttrKind::WarnUnqualifiedAccess: {
attrs.add(new (context) WarnUnqualifiedAccessAttr(true));
break;
}
default:
break;
}
}
}
static ValueDecl *cloneBaseMemberDecl(ValueDecl *decl, DeclContext *newContext,
ClangInheritanceInfo inheritance) {
AccessLevel access = inheritance.accessForBaseDecl(decl);
ASTContext &context = decl->getASTContext();
if (auto fn = dyn_cast<FuncDecl>(decl)) {
// TODO: function templates are specialized during type checking so to
// support these we need to tell Swift to type check the synthesized bodies.
// TODO: we also currently don't support static functions. That shouldn't be
// too hard.
if (fn->isStatic() ||
isa_and_nonnull<clang::FunctionTemplateDecl>(fn->getClangDecl()))
return nullptr;
if (auto cxxMethod =
dyn_cast_or_null<clang::CXXMethodDecl>(fn->getClangDecl())) {
// FIXME: if this function has rvalue this, we won't be able to synthesize
// the accessor correctly (https://github.com/apple/swift/issues/69745).
if (cxxMethod->getRefQualifier() == clang::RefQualifierKind::RQ_RValue)
return nullptr;
}
auto out = FuncDecl::createImplicit(
context, fn->getStaticSpelling(), fn->getName(),
fn->getNameLoc(), fn->hasAsync(), fn->hasThrows(),
fn->getThrownInterfaceType(),
fn->getGenericParams(), fn->getParameters(),
fn->getResultInterfaceType(), newContext);
cloneImportedAttributes(decl, out);
out->setAccess(access);
inheritance.setUnavailableIfNecessary(decl, out);
out->setBodySynthesizer(synthesizeBaseClassMethodBody, fn);
out->setSelfAccessKind(fn->getSelfAccessKind());
return out;
}
if (auto subscript = dyn_cast<SubscriptDecl>(decl)) {
auto contextTy =
newContext->mapTypeIntoContext(subscript->getElementInterfaceType());
// Subscripts that return non-copyable types are not yet supported.
// See: https://github.com/apple/swift/issues/70047.
if (contextTy->isNoncopyable())
return nullptr;
auto out = SubscriptDecl::create(
subscript->getASTContext(), subscript->getName(), subscript->getStaticLoc(),
subscript->getStaticSpelling(), subscript->getSubscriptLoc(),
subscript->getIndices(), subscript->getNameLoc(), subscript->getElementInterfaceType(),
newContext, subscript->getGenericParams());
out->setAccess(access);
inheritance.setUnavailableIfNecessary(decl, out);
out->setAccessors(SourceLoc(),
makeBaseClassMemberAccessors(newContext, out, subscript),
SourceLoc());
out->setImplInfo(subscript->getImplInfo());
return out;
}
if (auto var = dyn_cast<VarDecl>(decl)) {
auto oldContext = var->getDeclContext();
auto oldTypeDecl = oldContext->getSelfNominalTypeDecl();
// FIXME: this is a workaround for rdar://128013193
if (oldTypeDecl->getAttrs().hasAttribute<MoveOnlyAttr>() &&
context.LangOpts.CxxInteropUseOpaquePointerForMoveOnly)
return nullptr;
auto rawMemory = allocateMemoryForDecl<VarDecl>(var->getASTContext(),
sizeof(VarDecl), false);
auto out =
new (rawMemory) VarDecl(var->isStatic(), var->getIntroducer(),
var->getLoc(), var->getName(), newContext);
out->setInterfaceType(var->getInterfaceType());
out->setIsObjC(var->isObjC());
out->setIsDynamic(var->isDynamic());
out->setAccess(access);
inheritance.setUnavailableIfNecessary(decl, out);
out->getASTContext().evaluator.cacheOutput(HasStorageRequest{out}, false);
auto accessors = makeBaseClassMemberAccessors(newContext, out, var);
out->setAccessors(SourceLoc(), accessors, SourceLoc());
auto isMutable = var->getWriteImpl() == WriteImplKind::Immutable
? StorageIsNotMutable : StorageIsMutable;
out->setImplInfo(
accessors[0]->getAccessorKind() == AccessorKind::Address
? (accessors.size() > 1
? StorageImplInfo(ReadImplKind::Address,
WriteImplKind::MutableAddress,
ReadWriteImplKind::MutableAddress)
: StorageImplInfo(ReadImplKind::Address))
: StorageImplInfo::getComputed(isMutable));
out->setIsSetterMutating(true);
return out;
}
if (auto typeAlias = dyn_cast<TypeAliasDecl>(decl)) {
auto rawMemory = allocateMemoryForDecl<TypeAliasDecl>(
typeAlias->getASTContext(), sizeof(TypeAliasDecl), false);
auto out = new (rawMemory)
TypeAliasDecl(typeAlias->getStartLoc(), typeAlias->getEqualLoc(),
typeAlias->getName(), typeAlias->getNameLoc(),
typeAlias->getGenericParams(), newContext);
out->setUnderlyingType(typeAlias->getUnderlyingType());
out->setAccess(access);
inheritance.setUnavailableIfNecessary(decl, out);
return out;
}
if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
auto rawMemory = allocateMemoryForDecl<TypeAliasDecl>(
typeDecl->getASTContext(), sizeof(TypeAliasDecl), false);
auto out = new (rawMemory) TypeAliasDecl(
typeDecl->getLoc(), typeDecl->getLoc(), typeDecl->getName(),
typeDecl->getLoc(), nullptr, newContext);
out->setUnderlyingType(typeDecl->getInterfaceType());
out->setAccess(access);
inheritance.setUnavailableIfNecessary(decl, out);
return out;
}
return nullptr;
}
TinyPtrVector<ValueDecl *> ClangRecordMemberLookup::evaluate(
Evaluator &evaluator, ClangRecordMemberLookupDescriptor desc) const {
NominalTypeDecl *recordDecl = desc.recordDecl;
NominalTypeDecl *inheritingDecl = desc.inheritingDecl;
DeclName name = desc.name;
ClangInheritanceInfo inheritance = desc.inheritance;
auto &ctx = recordDecl->getASTContext();
// Whether to skip non-public members. Feature::ImportNonPublicCxxMembers says
// to import all non-public members by default; if that is disabled, we only
// import non-public members annotated with SWIFT_PRIVATE_FILEID (since those
// are the only classes that need non-public members.)
auto *cxxRecordDecl =
dyn_cast<clang::CXXRecordDecl>(inheritingDecl->getClangDecl());
auto skipIfNonPublic =
!ctx.LangOpts.hasFeature(Feature::ImportNonPublicCxxMembers) &&
cxxRecordDecl && importer::getPrivateFileIDAttrs(cxxRecordDecl).empty();
auto directResults = evaluateOrDefault(
ctx.evaluator,
ClangDirectLookupRequest({recordDecl, recordDecl->getClangDecl(), name}),
{});
// The set of declarations we found.
TinyPtrVector<ValueDecl *> result;
CollectLookupResults collector(name, result);
// Find the results that are actually a member of "recordDecl".
ClangModuleLoader *clangModuleLoader = ctx.getClangModuleLoader();
for (auto foundEntry : directResults) {
auto found = foundEntry.get<clang::NamedDecl *>();
if (dyn_cast<clang::Decl>(found->getDeclContext()) !=
recordDecl->getClangDecl())
continue;
// We should not import 'found' if the following are all true:
//
// - Feature::ImportNonPublicCxxMembers is not enabled
// - 'found' is not a member of a SWIFT_PRIVATE_FILEID-annotated class
// - 'found' is a non-public member.
// - 'found' is not a non-inherited FieldDecl; we must import private
// fields because they may affect implicit conformances that iterate
// through all of a struct's fields, e.g., Sendable (#76892).
//
// Note that we can skip inherited FieldDecls because implicit conformances
// handle those separately.
//
// The first two conditions are captured by skipIfNonPublic. The next two
// are conveyed by the following:
auto nonPublic = found->getAccess() == clang::AS_private ||
found->getAccess() == clang::AS_protected;
auto noninheritedField = !inheritance && isa<clang::FieldDecl>(found);
if (skipIfNonPublic && nonPublic && !noninheritedField)
continue;
// Don't import constructors on foreign reference types.
if (isa<clang::CXXConstructorDecl>(found) && isa<ClassDecl>(recordDecl))
continue;
auto imported = clangModuleLoader->importDeclDirectly(found);
if (!imported)
continue;
// If this member is found due to inheritance, clone it from the base class
// by synthesizing getters and setters.
if (inheritance) {
imported = clangModuleLoader->importBaseMemberDecl(
cast<ValueDecl>(imported), inheritingDecl, inheritance);
if (!imported)
continue;
}
collector.add(cast<ValueDecl>(imported));
}
if (inheritance) {
// For inherited members, add members that are synthesized eagerly, such as
// subscripts. This is not necessary for non-inherited members because those
// should already be in the lookup table.
for (auto member :
cast<NominalTypeDecl>(recordDecl)->getCurrentMembersWithoutLoading()) {
auto namedMember = dyn_cast<ValueDecl>(member);
if (!namedMember || !namedMember->hasName() ||
namedMember->getName().getBaseName() != name)
continue;
auto *imported = clangModuleLoader->importBaseMemberDecl(
namedMember, inheritingDecl, inheritance);
if (!imported)
continue;
collector.add(imported);
}
}
// If this is a C++ record, look through any base classes.
if (auto cxxRecord =
dyn_cast<clang::CXXRecordDecl>(recordDecl->getClangDecl())) {
// Capture the arity of already found members in the
// current record, to avoid adding ambiguous members
// from base classes.
const auto getArity =
ClangImporter::Implementation::getImportedBaseMemberDeclArity;
llvm::SmallSet<size_t, 4> foundNameArities;
for (const auto *valueDecl : result)
foundNameArities.insert(getArity(valueDecl));
for (auto base : cxxRecord->bases()) {
if (skipIfNonPublic && base.getAccessSpecifier() != clang::AS_public)
continue;
clang::QualType baseType = base.getType();
if (auto spectType = dyn_cast<clang::TemplateSpecializationType>(baseType))
baseType = spectType->desugar();
if (!isa<clang::RecordType>(baseType.getCanonicalType()))
continue;
auto *baseRecord = baseType->getAs<clang::RecordType>()->getDecl();
if (isSymbolicCircularBase(cxxRecord, baseRecord))
// Skip circular bases to avoid unbounded recursion
continue;
if (auto import = clangModuleLoader->importDeclDirectly(baseRecord)) {
// If we are looking up the base class, go no further. We will have
// already found it during the other lookup.
if (cast<ValueDecl>(import)->getName() == name)
continue;
auto baseInheritance = ClangInheritanceInfo(inheritance, base);
// Add Clang members that are imported lazily.
auto baseResults = evaluateOrDefault(
ctx.evaluator,
ClangRecordMemberLookup({cast<NominalTypeDecl>(import), name,
inheritingDecl, baseInheritance}),
{});
for (auto foundInBase : baseResults) {
// Do not add duplicate entry with the same arity,
// as that would cause an ambiguous lookup.
if (foundNameArities.count(getArity(foundInBase)))
continue;
collector.add(foundInBase);
}
}
}
}
return result;
}
IterableDeclContext *IterableDeclContext::getImplementationContext() {
if (auto implDecl = getDecl()->getObjCImplementationDecl())
if (auto implExt = dyn_cast<ExtensionDecl>(implDecl))
return implExt;
return this;
}
namespace {
struct OrderDecls {
bool operator () (Decl *lhs, Decl *rhs) const {
if (lhs->getDeclContext()->getModuleScopeContext()
== rhs->getDeclContext()->getModuleScopeContext()) {
auto &SM = lhs->getASTContext().SourceMgr;
return SM.isBeforeInBuffer(lhs->getLoc(), rhs->getLoc());
}
auto lhsFile =
dyn_cast<SourceFile>(lhs->getDeclContext()->getModuleScopeContext());
auto rhsFile =
dyn_cast<SourceFile>(rhs->getDeclContext()->getModuleScopeContext());
if (!lhsFile)
return false;
if (!rhsFile)
return true;
return lhsFile->getFilename() < rhsFile->getFilename();
}
};
}
static ObjCInterfaceAndImplementation
constructResult(const llvm::TinyPtrVector<Decl *> &interfaces,
llvm::TinyPtrVector<Decl *> &impls,
Decl *diagnoseOn, Identifier categoryName) {
if (interfaces.empty() || impls.empty())
return ObjCInterfaceAndImplementation();
if (impls.size() > 1) {
llvm::sort(impls, OrderDecls());
auto &diags = interfaces.front()->getASTContext().Diags;
for (auto extraImpl : llvm::ArrayRef<Decl *>(impls).drop_front()) {
auto attr = extraImpl->getAttrs().getAttribute<ObjCImplementationAttr>();
attr->setInvalid();
// @objc @implementations for categories are diagnosed as category
// conflicts, so we're only concerned with main class bodies and
// non-category implementations here.
if (categoryName.empty() || !isa<ExtensionDecl>(impls.front())) {
diags.diagnose(attr->getLocation(), diag::objc_implementation_two_impls,
diagnoseOn)
.fixItRemove(attr->getRangeWithAt());
diags.diagnose(impls.front(), diag::previous_objc_implementation);
}
}
}
return ObjCInterfaceAndImplementation(interfaces, impls.front());
}
static bool isImplValid(ExtensionDecl *ext) {
auto attr = ext->getAttrs().getAttribute<ObjCImplementationAttr>();
if (!attr)
return false;
// Clients using the stable syntax shouldn't have a category name on the attr.
// This is diagnosed in AttributeChecker::visitObjCImplementationAttr().
if (!attr->isEarlyAdopter() && !attr->CategoryName.empty())
return false;
return !attr->isCategoryNameInvalid();
}
static ObjCInterfaceAndImplementation
findContextInterfaceAndImplementation(DeclContext *dc) {
if (!dc)
return {};
ClassDecl *classDecl = dc->getSelfClassDecl();
if (!classDecl || !classDecl->hasClangNode())
// Only extensions of ObjC classes can have @_objcImplementations.
return {};
// We know the class we're trying to work with. Next, the category name.
Identifier categoryName;
if (auto ext = dyn_cast<ExtensionDecl>(dc)) {
assert(ext);
if (!ext->hasClangNode() && !isImplValid(ext))
return {};
categoryName = ext->getObjCCategoryName();
} else {
// Must be an imported class. Look for its main implementation.
assert(isa_and_nonnull<ClassDecl>(dc));
categoryName = Identifier();
}
// Now let's look up the interfaces for this...
auto interfaceDecls = classDecl->getImportedObjCCategory(categoryName);
// And the implementations.
llvm::TinyPtrVector<Decl *> implDecls;
for (ExtensionDecl *ext : classDecl->getExtensions()) {
if (ext->isObjCImplementation()
&& ext->getObjCCategoryName() == categoryName
&& isImplValid(ext))
implDecls.push_back(ext);
}
return constructResult(interfaceDecls, implDecls, classDecl, categoryName);
}
static void lookupRelatedFuncs(AbstractFunctionDecl *func,
SmallVectorImpl<ValueDecl *> &results) {
DeclName swiftName;
if (auto accessor = dyn_cast<AccessorDecl>(func))
swiftName = accessor->getStorage()->getName();
else
swiftName = func->getName();
NLOptions options = NL_IgnoreAccessControl | NL_IgnoreMissingImports;
if (auto ty = func->getDeclContext()->getSelfNominalTypeDecl()) {
ty->lookupQualified({ ty }, DeclNameRef(swiftName), func->getLoc(),
NL_QualifiedDefault | options, results);
}
else {
auto mod = func->getDeclContext()->getParentModule();
mod->lookupQualified(mod, DeclNameRef(swiftName), func->getLoc(),
NL_RemoveOverridden | options, results);
}
}
static ObjCInterfaceAndImplementation
findFunctionInterfaceAndImplementation(AbstractFunctionDecl *func) {
if (!func)
return {};
// If this isn't either a clang import or an implementation, there's no point
// doing any work here.
if (!func->hasClangNode() && !func->isObjCImplementation())
return {};
OptionalEnum<AccessorKind> accessorKind;
if (auto accessor = dyn_cast<AccessorDecl>(func))
accessorKind = accessor->getAccessorKind();
StringRef clangName = func->getCDeclName();
if (clangName.empty())
return {};
SmallVector<ValueDecl *, 4> results;
lookupRelatedFuncs(func, results);
// Classify the `results` as either the interface or an implementation.
// (Multiple implementations are invalid but utterable.)
Decl *interface = nullptr;
TinyPtrVector<Decl *> impls;
for (ValueDecl *result : results) {
AbstractFunctionDecl *resultFunc = nullptr;
if (accessorKind) {
if (auto resultStorage = dyn_cast<AbstractStorageDecl>(result))
resultFunc = resultStorage->getAccessor(*accessorKind);
}
else
resultFunc = dyn_cast<AbstractFunctionDecl>(result);
if (!resultFunc)
continue;
if (resultFunc->getCDeclName() != clangName)
continue;
if (resultFunc->hasClangNode()) {
if (interface) {
// This clang name is overloaded. That should only happen with C++
// functions/methods, which aren't currently supported.
return {};
}
interface = result;
} else if (resultFunc->isObjCImplementation()) {
impls.push_back(result);
}
}
// If we found enough decls to construct a result, `func` should be among them
// somewhere.
assert(interface == nullptr || impls.empty() ||
interface == func || llvm::is_contained(impls, func));
return constructResult({ interface }, impls, interface,
/*categoryName=*/Identifier());
}
ObjCInterfaceAndImplementation ObjCInterfaceAndImplementationRequest::
evaluate(Evaluator &evaluator, Decl *decl) const {
ASSERT(ABIRoleInfo(decl).providesAPI()
&& "@interface request for ABI-only decl?");
// Types and extensions have direct links to their counterparts through the
// `@_objcImplementation` attribute. Let's resolve that.
// (Also directing nulls here, where they'll early-return.)
if (auto ty = dyn_cast_or_null<NominalTypeDecl>(decl))
return findContextInterfaceAndImplementation(ty);
else if (auto ext = dyn_cast<ExtensionDecl>(decl))
return findContextInterfaceAndImplementation(ext);
// Abstract functions have to be matched through their @_cdecl attributes.
else if (auto func = dyn_cast<AbstractFunctionDecl>(decl))
return findFunctionInterfaceAndImplementation(func);
return {};
}
void swift::simple_display(llvm::raw_ostream &out,
const ObjCInterfaceAndImplementation &pair) {
if (pair.empty()) {
out << "no clang interface or @_objcImplementation";
return;
}
out << "@implementation ";
simple_display(out, pair.implementationDecl);
out << " matches clang interfaces ";
simple_display(out, pair.interfaceDecls);
}
SourceLoc
swift::extractNearestSourceLoc(const ObjCInterfaceAndImplementation &pair) {
if (pair.implementationDecl)
return SourceLoc();
return extractNearestSourceLoc(pair.implementationDecl);
}
llvm::TinyPtrVector<Decl *> Decl::getAllImplementedObjCDecls() const {
if (hasClangNode())
// This *is* the interface, if there is one.
return {};
// ABI-only attributes don't have an `@implementation`, so query the API
// counterpart and map the results back to ABI decls.
auto abiRole = ABIRoleInfo(this);
if (!abiRole.providesAPI() && abiRole.getCounterpart()) {
auto interfaceDecls =
abiRole.getCounterpart()->getAllImplementedObjCDecls();
// Map the APIs back to their ABI counterparts (often a no-op)
for (auto &interfaceDecl : interfaceDecls) {
interfaceDecl = ABIRoleInfo(interfaceDecl).getCounterpart();
}
return interfaceDecls;
}
ObjCInterfaceAndImplementationRequest req{const_cast<Decl *>(this)};
auto result = evaluateOrDefault(getASTContext().evaluator, req, {});
return result.interfaceDecls;
}
DeclContext *DeclContext::getImplementedObjCContext() const {
if (auto ED = dyn_cast<ExtensionDecl>(this))
if (auto impl = dyn_cast_or_null<DeclContext>(ED->getImplementedObjCDecl()))
return impl;
return const_cast<DeclContext *>(this);
}
Decl *Decl::getObjCImplementationDecl() const {
if (!hasClangNode())
// This *is* the implementation, if it has one.
return nullptr;
// ABI-only attributes don't have an `@implementation`, so query the API
// counterpart and map the results back to ABI decls.
auto abiRole = ABIRoleInfo(this);
if (!abiRole.providesAPI() && abiRole.getCounterpart()) {
auto implDecl = abiRole.getCounterpart()->getObjCImplementationDecl();
return ABIRoleInfo(implDecl).getCounterpart();
}
ObjCInterfaceAndImplementationRequest req{const_cast<Decl *>(this)};
auto result = evaluateOrDefault(getASTContext().evaluator, req, {});
return result.implementationDecl;
}
llvm::TinyPtrVector<Decl *>
ClangCategoryLookupRequest::evaluate(Evaluator &evaluator,
ClangCategoryLookupDescriptor desc) const {
const ClassDecl *CD = desc.classDecl;
Identifier categoryName = desc.categoryName;
auto clangClass =
dyn_cast_or_null<clang::ObjCInterfaceDecl>(CD->getClangDecl());
if (!clangClass)
return {};
auto importCategory = [&](const clang::ObjCCategoryDecl *clangCat) -> Decl * {
return CD->getASTContext().getClangModuleLoader()
->importDeclDirectly(clangCat);
};
if (categoryName.empty()) {
// No category name, so we want the decl for the `@interface` in
// `clangClass`, as well as any class extensions.
llvm::TinyPtrVector<Decl *> results;
results.push_back(const_cast<ClassDecl *>(CD));
auto importer =
static_cast<ClangImporter *>(CD->getASTContext().getClangModuleLoader());
ClangImporter::Implementation &impl = importer->Impl;
for (auto clangExt : clangClass->known_extensions()) {
if (impl.getClangSema().isVisible(clangExt))
results.push_back(importCategory(clangExt));
}
return results;
}
auto ident = &clangClass->getASTContext().Idents.get(categoryName.str());
auto clangCategory = clangClass->FindCategoryDeclaration(ident);
if (!clangCategory)
return {};
return { importCategory(clangCategory) };
}
llvm::TinyPtrVector<Decl *>
ClassDecl::getImportedObjCCategory(Identifier name) const {
ClangCategoryLookupDescriptor desc{this, name};
return evaluateOrDefault(getASTContext().evaluator,
ClangCategoryLookupRequest(desc),
{});
}
void swift::simple_display(llvm::raw_ostream &out,
const ClangCategoryLookupDescriptor &desc) {
out << "Looking up @interface for ";
if (!desc.categoryName.empty()) {
out << "category ";
simple_display(out, desc.categoryName);
}
else {
out << "main body";
}
out << " of ";
simple_display(out, desc.classDecl);
}
SourceLoc
swift::extractNearestSourceLoc(const ClangCategoryLookupDescriptor &desc) {
return extractNearestSourceLoc(desc.classDecl);
}
TinyPtrVector<ValueDecl *>
ClangImporter::Implementation::loadNamedMembers(
const IterableDeclContext *IDC, DeclBaseName N, uint64_t extra) {
auto *D = IDC->getDecl();
auto *DC = D->getInnermostDeclContext();
auto *CD = D->getClangDecl();
auto *CDC = cast_or_null<clang::DeclContext>(CD);
auto *nominal = DC->getSelfNominalTypeDecl();
auto effectiveClangContext = getEffectiveClangContext(nominal);
// There are 3 cases:
//
// - The decl is from a bridging header, CMO is Some(nullptr)
// which denotes the __ObjC Swift module and its associated
// BridgingHeaderLookupTable.
//
// - The decl is from a clang module, CMO is Some(M) for non-null
// M and we can use the table for that module.
//
// - The decl is a forward declaration, CMO is None, which should
// never be the case if we got here (someone is asking for members).
//
// findLookupTable, below, handles the first two cases; we assert on the
// third.
std::optional<clang::Module *> CMO;
if (CD)
CMO = getClangSubmoduleForDecl(CD);
else {
// IDC is an extension containing globals imported as members, so it doesn't
// have a clang node but the submodule pointer has been stashed in `extra`.
CMO = reinterpret_cast<clang::Module *>(static_cast<uintptr_t>(extra));
}
assert(CMO && "loadNamedMembers on a forward-declared Decl");
auto table = findLookupTable(*CMO);
assert(table && "clang module without lookup table");
assert(!isa_and_nonnull<clang::NamespaceDecl>(CD)
&& "Namespace members should be loaded via a request.");
assert(!CD || isa<clang::ObjCContainerDecl>(CD));
// Force the members of the entire inheritance hierarchy to be loaded and
// deserialized before loading the named member of a class. This warms up
// ClangImporter::Implementation::MembersForNominal, used for computing
// property overrides.
//
// FIXME: If getOverriddenDecl() kicked off a request for imported decls,
// we could postpone this until overrides are actually requested.
if (auto *classDecl = dyn_cast<ClassDecl>(D))
if (auto *superclassDecl = classDecl->getSuperclassDecl())
(void) const_cast<ClassDecl *>(superclassDecl)->lookupDirect(N);
// TODO: update this to use the requestified lookup.
TinyPtrVector<ValueDecl *> Members;
// Lookup actual, factual clang-side members of the context. No need to do
// this if we're handling an import-as-member extension.
if (CD) {
for (auto entry : table->lookup(SerializedSwiftName(N),
effectiveClangContext)) {
if (!entry.is<clang::NamedDecl *>()) continue;
auto member = entry.get<clang::NamedDecl *>();
if (!isVisibleClangEntry(member)) continue;
// Skip Decls from different clang::DeclContexts
if (member->getDeclContext() != CDC) continue;
SmallVector<Decl*, 4> tmp;
insertMembersAndAlternates(member, tmp, DC);
for (auto *TD : tmp) {
if (auto *V = dyn_cast<ValueDecl>(TD)) {
// Skip ValueDecls if they import under different names.
if (V->getBaseName() == N) {
Members.push_back(V);
}
}
// If the property's accessors have alternate decls, we might have
// to import those too.
if (auto *ASD = dyn_cast<AbstractStorageDecl>(TD)) {
for (auto *AD : ASD->getAllAccessors()) {
for (auto *D : getAlternateDecls(AD)) {
if (D->getBaseName() == N)
Members.push_back(D);
}
}
}
}
}
}
for (auto entry : table->lookupGlobalsAsMembers(SerializedSwiftName(N),
effectiveClangContext)) {
if (!entry.is<clang::NamedDecl *>()) continue;
auto member = entry.get<clang::NamedDecl *>();
if (!isVisibleClangEntry(member)) continue;
// Skip Decls from different clang::DeclContexts. We don't do this for
// import-as-member extensions because we don't know what decl context to
// expect; for instance, an enum constant is inside the enum decl, not in
// the translation unit.
if (CDC && member->getDeclContext() != CDC) continue;
SmallVector<Decl*, 4> tmp;
insertMembersAndAlternates(member, tmp, DC);
for (auto *TD : tmp) {
if (auto *V = dyn_cast<ValueDecl>(TD)) {
// Skip ValueDecls if they import under different names.
if (V->getBaseName() == N) {
Members.push_back(V);
}
}
}
}
if (CD && N.isConstructor()) {
if (auto *classDecl = dyn_cast<ClassDecl>(D)) {
SmallVector<Decl *, 4> ctors;
importInheritedConstructors(cast<clang::ObjCInterfaceDecl>(CD),
classDecl, ctors);
for (auto ctor : ctors)
Members.push_back(cast<ValueDecl>(ctor));
}
}
if (CD && !isa<ProtocolDecl>(D)) {
if (auto *OCD = dyn_cast<clang::ObjCContainerDecl>(CD)) {
SmallVector<Decl *, 1> newMembers;
importMirroredProtocolMembers(OCD, DC, N, newMembers);
for (auto member : newMembers)
Members.push_back(cast<ValueDecl>(member));
}
}
return Members;
}
EffectiveClangContext ClangImporter::Implementation::getEffectiveClangContext(
const NominalTypeDecl *nominal) {
// If we have a Clang declaration, look at it to determine the
// effective Clang context.
if (auto constClangDecl = nominal->getClangDecl()) {
auto clangDecl = const_cast<clang::Decl *>(constClangDecl);
if (auto dc = dyn_cast<clang::DeclContext>(clangDecl))
return EffectiveClangContext(dc);
if (auto typedefName = dyn_cast<clang::TypedefNameDecl>(clangDecl))
return EffectiveClangContext(typedefName);
return EffectiveClangContext();
}
// If it's an @objc entity, go look for it.
// Note that we're stepping lightly here to avoid computing isObjC()
// too early.
if (isa<ClassDecl>(nominal) &&
(nominal->getAttrs().hasAttribute<ObjCAttr>() ||
(!nominal->getParentSourceFile() && nominal->isObjC()))) {
// Map the name. If we can't represent the Swift name in Clang.
Identifier name = nominal->getName();
if (auto objcAttr = nominal->getAttrs().getAttribute<ObjCAttr>()) {
if (auto objcName = objcAttr->getName()) {
if (objcName->getNumArgs() == 0) {
// This is an error if not 0, but it should be caught later.
name = objcName->getSimpleName();
}
}
}
auto clangName = exportName(name);
if (!clangName)
return EffectiveClangContext();
// Perform name lookup into the global scope.
auto &sema = Instance->getSema();
clang::LookupResult lookupResult(sema, clangName,
clang::SourceLocation(),
clang::Sema::LookupOrdinaryName);
if (sema.LookupName(lookupResult, /*Scope=*/nullptr)) {
// FIXME: Filter based on access path? C++ access control?
for (auto clangDecl : lookupResult) {
if (auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(clangDecl))
return EffectiveClangContext(objcClass);
/// FIXME: Other type declarations should also be okay?
}
}
// For source compatibility reasons, fall back to the Swift name.
//
// This is how people worked around not being able to import-as-member onto
// Swift types by their ObjC name before the above code to handle ObjCAttr
// was added.
if (name != nominal->getName())
clangName = exportName(nominal->getName());
lookupResult.clear();
lookupResult.setLookupName(clangName);
// FIXME: This loop is duplicated from above, but doesn't obviously factor
// out in a nice way.
if (sema.LookupName(lookupResult, /*Scope=*/nullptr)) {
// FIXME: Filter based on access path? C++ access control?
for (auto clangDecl : lookupResult) {
if (auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(clangDecl))
return EffectiveClangContext(objcClass);
/// FIXME: Other type declarations should also be okay?
}
}
}
return EffectiveClangContext();
}
void ClangImporter::dumpSwiftLookupTables() const {
Impl.dumpSwiftLookupTables();
}
void ClangImporter::Implementation::dumpSwiftLookupTables() {
// Sort the module names so we can print in a deterministic order.
SmallVector<StringRef, 4> moduleNames;
for (const auto &lookupTable : LookupTables) {
moduleNames.push_back(lookupTable.first);
}
array_pod_sort(moduleNames.begin(), moduleNames.end());
// Print out the lookup tables for the various modules.
for (auto moduleName : moduleNames) {
llvm::errs() << "<<" << moduleName << " lookup table>>\n";
auto &lookupTable = LookupTables[moduleName];
lookupTable->deserializeAll();
lookupTable->dump(llvm::errs());
}
llvm::errs() << "<<Bridging header lookup table>>\n";
BridgingHeaderLookupTable->dump(llvm::errs());
}
DeclName ClangImporter::
importName(const clang::NamedDecl *D,
clang::DeclarationName preferredName) {
return Impl.importFullName(D, Impl.CurrentVersion, preferredName).
getDeclName();
}
std::optional<Type>
ClangImporter::importFunctionReturnType(const clang::FunctionDecl *clangDecl,
DeclContext *dc) {
bool isInSystemModule =
cast<ClangModuleUnit>(dc->getModuleScopeContext())->isSystemModule();
bool allowNSUIntegerAsInt =
Impl.shouldAllowNSUIntegerAsInt(isInSystemModule, clangDecl);
if (auto imported =
Impl.importFunctionReturnType(dc, clangDecl, allowNSUIntegerAsInt)
.getType())
return imported;
return {};
}
Type ClangImporter::importVarDeclType(
const clang::VarDecl *decl, VarDecl *swiftDecl, DeclContext *dc) {
if (decl->getTemplateInstantiationPattern())
Impl.getClangSema().InstantiateVariableDefinition(
decl->getLocation(),
const_cast<clang::VarDecl *>(decl));
// If the declaration is const, consider it audited.
// We can assume that loading a const global variable doesn't
// involve an ownership transfer.
bool isAudited = decl->getType().isConstQualified();
auto declType = decl->getType();
// Special case: NS Notifications
if (isNSNotificationGlobal(decl))
if (auto newtypeDecl = findSwiftNewtype(decl, Impl.getClangSema(),
Impl.CurrentVersion))
declType = Impl.getClangASTContext().getTypedefType(newtypeDecl);
bool isInSystemModule =
cast<ClangModuleUnit>(dc->getModuleScopeContext())->isSystemModule();
// Note that we deliberately don't bridge most globals because we want to
// preserve pointer identity.
auto importedType =
Impl.importType(declType,
(isAudited ? ImportTypeKind::AuditedVariable
: ImportTypeKind::Variable),
ImportDiagnosticAdder(Impl, decl, decl->getLocation()),
isInSystemModule, Bridgeability::None,
getImportTypeAttrs(decl));
if (!importedType)
return ErrorType::get(Impl.SwiftContext);
if (importedType.isImplicitlyUnwrapped())
swiftDecl->setImplicitlyUnwrappedOptional(true);
return importedType.getType();
}
bool ClangImporter::isInOverlayModuleForImportedModule(
const DeclContext *overlayDC,
const DeclContext *importedDC) {
overlayDC = overlayDC->getModuleScopeContext();
importedDC = importedDC->getModuleScopeContext();
auto importedClangModuleUnit = dyn_cast<ClangModuleUnit>(importedDC);
if (!importedClangModuleUnit || !importedClangModuleUnit->getClangModule())
return false;
auto overlayModule = overlayDC->getParentModule();
if (overlayModule == importedClangModuleUnit->getOverlayModule())
return true;
// Is this a private module that's re-exported to the public (overlay) name?
auto clangModule =
importedClangModuleUnit->getClangModule()->getTopLevelModule();
return !clangModule->ExportAsModule.empty() &&
clangModule->ExportAsModule == overlayModule->getName().str();
}
/// Extract the specified-or-defaulted -module-cache-path that winds up in
/// the clang importer, for reuse as the .swiftmodule cache path when
/// building a ModuleInterfaceLoader.
std::string
swift::getModuleCachePathFromClang(const clang::CompilerInstance &Clang) {
if (!Clang.hasPreprocessor())
return "";
std::string SpecificModuleCachePath =
Clang.getPreprocessor().getHeaderSearchInfo().getModuleCachePath().str();
// The returned-from-clang module cache path includes a suffix directory
// that is specific to the clang version and invocation; we want the
// directory above that.
return llvm::sys::path::parent_path(SpecificModuleCachePath).str();
}
clang::FunctionDecl *ClangImporter::instantiateCXXFunctionTemplate(
ASTContext &ctx, clang::FunctionTemplateDecl *func, SubstitutionMap subst) {
SmallVector<clang::TemplateArgument, 4> templateSubst;
std::unique_ptr<TemplateInstantiationError> error =
ctx.getClangTemplateArguments(func->getTemplateParameters(),
subst.getReplacementTypes(), templateSubst);
auto getFuncName = [&]() -> std::string {
std::string funcName;
llvm::raw_string_ostream funcNameStream(funcName);
func->printQualifiedName(funcNameStream);
return funcName;
};
if (error) {
std::string failedTypesStr;
llvm::raw_string_ostream failedTypesStrStream(failedTypesStr);
llvm::interleaveComma(error->failedTypes, failedTypesStrStream);
// TODO: Use the location of the apply here.
// TODO: This error message should not reference implementation details.
// See: https://github.com/apple/swift/pull/33053#discussion_r477003350
ctx.Diags.diagnose(SourceLoc(), diag::unable_to_convert_generic_swift_types,
getFuncName(), failedTypesStr);
return nullptr;
}
// Instantiate a specialization of this template using the substitution map.
auto *templateArgList = clang::TemplateArgumentList::CreateCopy(
func->getASTContext(), templateSubst);
auto &sema = getClangInstance().getSema();
auto *spec = sema.InstantiateFunctionDeclaration(func, templateArgList,
clang::SourceLocation());
if (!spec) {
std::string templateParams;
llvm::raw_string_ostream templateParamsStream(templateParams);
llvm::interleaveComma(templateArgList->asArray(), templateParamsStream,
[&](const clang::TemplateArgument &arg) {
arg.print(func->getASTContext().getPrintingPolicy(),
templateParamsStream,
/*IncludeType*/ true);
});
ctx.Diags.diagnose(SourceLoc(),
diag::unable_to_substitute_cxx_function_template,
getFuncName(), templateParams);
return nullptr;
}
sema.InstantiateFunctionDefinition(clang::SourceLocation(), spec);
return spec;
}
StructDecl *
ClangImporter::instantiateCXXClassTemplate(
clang::ClassTemplateDecl *decl,
ArrayRef<clang::TemplateArgument> arguments) {
void *InsertPos = nullptr;
auto *ctsd = decl->findSpecialization(arguments, InsertPos);
if (!ctsd) {
ctsd = clang::ClassTemplateSpecializationDecl::Create(
decl->getASTContext(), decl->getTemplatedDecl()->getTagKind(),
decl->getDeclContext(), decl->getTemplatedDecl()->getBeginLoc(),
decl->getLocation(), decl, arguments, nullptr);
decl->AddSpecialization(ctsd, InsertPos);
}
auto CanonType = decl->getASTContext().getTypeDeclType(ctsd);
assert(isa<clang::RecordType>(CanonType) &&
"type of non-dependent specialization is not a RecordType");
return dyn_cast_or_null<StructDecl>(
Impl.importDecl(ctsd, Impl.CurrentVersion));
}
// On Windows and 32-bit platforms we need to force "Int" to actually be
// re-imported as "Int." This is needed because otherwise, we cannot round-trip
// "Int" and "UInt". For example, on Windows, "Int" will be imported into C++ as
// "long long" and then back into Swift as "Int64" not "Int."
static ValueDecl *rewriteIntegerTypes(SubstitutionMap subst, ValueDecl *oldDecl,
AbstractFunctionDecl *newDecl) {
auto originalFnSubst = cast<AbstractFunctionDecl>(oldDecl)
->getInterfaceType()
->getAs<GenericFunctionType>()
->substGenericArgs(subst);
// The constructor type is a function type as follows:
// (CType.Type) -> (Generic) -> CType
// And a method's function type is as follows:
// (inout CType) -> (Generic) -> Void
// In either case, we only want the result of that function type because that
// is the function type with the generic params that need to be substituted:
// (Generic) -> CType
if (isa<ConstructorDecl>(oldDecl) || oldDecl->isInstanceMember() ||
oldDecl->isStatic())
originalFnSubst = cast<FunctionType>(originalFnSubst->getResult().getPointer());
SmallVector<ParamDecl *, 4> fixedParameters;
unsigned parameterIndex = 0;
for (auto *newFnParam : *newDecl->getParameters()) {
// If the user substituted this param with an (U)Int, use (U)Int.
auto substParamType =
originalFnSubst->getParams()[parameterIndex].getParameterType();
if (substParamType->isEqual(newDecl->getASTContext().getIntType()) ||
substParamType->isEqual(newDecl->getASTContext().getUIntType())) {
auto intParam =
ParamDecl::cloneWithoutType(newDecl->getASTContext(), newFnParam);
intParam->setInterfaceType(substParamType);
fixedParameters.push_back(intParam);
} else {
fixedParameters.push_back(newFnParam);
}
parameterIndex++;
}
auto fixedParams =
ParameterList::create(newDecl->getASTContext(), fixedParameters);
newDecl->setParameters(fixedParams);
// Now fix the result type:
if (originalFnSubst->getResult()->isEqual(
newDecl->getASTContext().getIntType()) ||
originalFnSubst->getResult()->isEqual(
newDecl->getASTContext().getUIntType())) {
// Constructors don't have a result.
if (auto func = dyn_cast<FuncDecl>(newDecl)) {
// We have to rebuild the whole function.
auto newFnDecl = FuncDecl::createImported(
func->getASTContext(), func->getNameLoc(),
func->getName(), func->getNameLoc(),
func->hasAsync(), func->hasThrows(),
func->getThrownInterfaceType(),
fixedParams, originalFnSubst->getResult(),
/*genericParams=*/nullptr, func->getDeclContext(), newDecl->getClangDecl());
if (func->isStatic()) newFnDecl->setStatic();
if (func->isImportAsStaticMember()) newFnDecl->setImportAsStaticMember();
if (func->getImportAsMemberStatus().isInstance()) {
newFnDecl->setSelfAccessKind(func->getSelfAccessKind());
newFnDecl->setSelfIndex(func->getSelfIndex());
}
return newFnDecl;
}
}
return newDecl;
}
static Argument createSelfArg(FuncDecl *fnDecl) {
ASTContext &ctx = fnDecl->getASTContext();
auto selfDecl = fnDecl->getImplicitSelfDecl();
auto selfRefExpr = new (ctx) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/ true);
if (!fnDecl->isMutating()) {
selfRefExpr->setType(selfDecl->getInterfaceType());
return Argument::unlabeled(selfRefExpr);
}
selfRefExpr->setType(LValueType::get(selfDecl->getInterfaceType()));
return Argument::implicitInOut(ctx, selfRefExpr);
}
// Synthesize a thunk body for the function created in
// "addThunkForDependentTypes". This will just cast all params and forward them
// along to the specialized function. It will also cast the result before
// returning it.
static std::pair<BraceStmt *, bool>
synthesizeDependentTypeThunkParamForwarding(AbstractFunctionDecl *afd, void *context) {
ASTContext &ctx = afd->getASTContext();
auto thunkDecl = cast<FuncDecl>(afd);
auto specializedFuncDecl = static_cast<FuncDecl *>(context);
SmallVector<Argument, 8> forwardingParams;
unsigned paramIndex = 0;
for (auto param : *thunkDecl->getParameters()) {
if (isa<MetatypeType>(param->getInterfaceType().getPointer())) {
paramIndex++;
continue;
}
auto paramTy = param->getTypeInContext();
auto isInOut = param->isInOut();
auto specParamTy =
specializedFuncDecl->getParameters()->get(paramIndex)
->getTypeInContext();
Expr *paramRefExpr = new (ctx) DeclRefExpr(param, DeclNameLoc(),
/*Implicit=*/true);
paramRefExpr->setType(isInOut ? LValueType::get(paramTy) : paramTy);
Argument arg = [&]() {
if (isInOut) {
assert(specParamTy->isEqual(paramTy));
return Argument::implicitInOut(ctx, paramRefExpr);
}
Expr *argExpr = nullptr;
if (specParamTy->isEqual(paramTy)) {
argExpr = paramRefExpr;
} else {
argExpr = ForcedCheckedCastExpr::createImplicit(ctx, paramRefExpr,
specParamTy);
}
return Argument::unlabeled(argExpr);
}();
forwardingParams.push_back(arg);
paramIndex++;
}
Expr *specializedFuncDeclRef = new (ctx) DeclRefExpr(ConcreteDeclRef(specializedFuncDecl),
DeclNameLoc(), true);
specializedFuncDeclRef->setType(specializedFuncDecl->getInterfaceType());
if (specializedFuncDecl->isInstanceMember()) {
auto selfArg = createSelfArg(thunkDecl);
auto *memberCall = DotSyntaxCallExpr::create(ctx, specializedFuncDeclRef,
SourceLoc(), selfArg);
memberCall->setThrows(nullptr);
auto resultType = specializedFuncDecl->getInterfaceType()->getAs<FunctionType>()->getResult();
specializedFuncDeclRef = memberCall;
specializedFuncDeclRef->setType(resultType);
} else if (specializedFuncDecl->isStatic()) {
auto resultType = specializedFuncDecl->getInterfaceType()->getAs<FunctionType>()->getResult();
auto selfType = cast<NominalTypeDecl>(thunkDecl->getDeclContext()->getAsDecl())->getDeclaredInterfaceType();
auto selfTypeExpr = TypeExpr::createImplicit(selfType, ctx);
auto *memberCall =
DotSyntaxCallExpr::create(ctx, specializedFuncDeclRef, SourceLoc(),
Argument::unlabeled(selfTypeExpr));
memberCall->setThrows(nullptr);
specializedFuncDeclRef = memberCall;
specializedFuncDeclRef->setType(resultType);
}
auto argList = ArgumentList::createImplicit(ctx, forwardingParams);
auto *specializedFuncCallExpr = CallExpr::createImplicit(ctx, specializedFuncDeclRef, argList);
specializedFuncCallExpr->setType(specializedFuncDecl->getResultInterfaceType());
specializedFuncCallExpr->setThrows(nullptr);
Expr *resultExpr = nullptr;
if (specializedFuncCallExpr->getType()->isEqual(
thunkDecl->getResultInterfaceType())) {
resultExpr = specializedFuncCallExpr;
} else {
resultExpr = ForcedCheckedCastExpr::createImplicit(
ctx, specializedFuncCallExpr, thunkDecl->getResultInterfaceType());
}
auto *returnStmt = ReturnStmt::createImplicit(ctx, resultExpr);
auto body = BraceStmt::create(ctx, SourceLoc(), {returnStmt}, SourceLoc(),
/*implicit=*/true);
return {body, /*isTypeChecked=*/true};
}
// Create a thunk to map functions with dependent types to their specialized
// version. For example, create a thunk with type (Any) -> Any to wrap a
// specialized function template with type (Dependent<T>) -> Dependent<T>.
static ValueDecl *addThunkForDependentTypes(FuncDecl *oldDecl,
FuncDecl *newDecl) {
bool updatedAnyParams = false;
SmallVector<ParamDecl *, 4> fixedParameters;
unsigned parameterIndex = 0;
for (auto *newFnParam : *newDecl->getParameters()) {
// If the un-specialized function had a parameter with type "Any" preserve
// that parameter. Otherwise, use the new function parameter.
auto oldParamType = oldDecl->getParameters()->get(parameterIndex)->getInterfaceType();
if (oldParamType->isEqual(newDecl->getASTContext().getAnyExistentialType())) {
updatedAnyParams = true;
auto newParam =
ParamDecl::cloneWithoutType(newDecl->getASTContext(), newFnParam);
newParam->setInterfaceType(oldParamType);
fixedParameters.push_back(newParam);
} else {
fixedParameters.push_back(newFnParam);
}
parameterIndex++;
}
// If we don't need this thunk, bail out.
if (!updatedAnyParams &&
!oldDecl->getResultInterfaceType()->isEqual(
oldDecl->getASTContext().getAnyExistentialType()))
return newDecl;
auto fixedParams =
ParameterList::create(newDecl->getASTContext(), fixedParameters);
Type fixedResultType;
if (oldDecl->getResultInterfaceType()->isEqual(
oldDecl->getASTContext().getAnyExistentialType()))
fixedResultType = oldDecl->getASTContext().getAnyExistentialType();
else
fixedResultType = newDecl->getResultInterfaceType();
// We have to rebuild the whole function.
auto newFnDecl = FuncDecl::createImplicit(
newDecl->getASTContext(), newDecl->getStaticSpelling(),
newDecl->getName(), newDecl->getNameLoc(), newDecl->hasAsync(),
newDecl->hasThrows(), newDecl->getThrownInterfaceType(),
/*genericParams=*/nullptr, fixedParams,
fixedResultType, newDecl->getDeclContext());
newFnDecl->copyFormalAccessFrom(newDecl);
newFnDecl->setBodySynthesizer(synthesizeDependentTypeThunkParamForwarding, newDecl);
newFnDecl->setSelfAccessKind(newDecl->getSelfAccessKind());
if (newDecl->isStatic()) newFnDecl->setStatic();
newFnDecl->getAttrs().add(
new (newDecl->getASTContext()) TransparentAttr(/*IsImplicit=*/true));
return newFnDecl;
}
// Synthesizes the body of a thunk that takes extra metatype arguments and
// skips over them to forward them along to the FuncDecl contained by context.
// This is used when importing a C++ templated function where the template params
// are not used in the function signature. We supply the type params as explicit
// metatype arguments to aid in typechecking, but they shouldn't be forwarded to
// the corresponding C++ function.
static std::pair<BraceStmt *, bool>
synthesizeForwardingThunkBody(AbstractFunctionDecl *afd, void *context) {
ASTContext &ctx = afd->getASTContext();
auto thunkDecl = cast<FuncDecl>(afd);
auto specializedFuncDecl = static_cast<FuncDecl *>(context);
SmallVector<Argument, 8> forwardingParams;
for (auto param : *thunkDecl->getParameters()) {
if (isa<MetatypeType>(param->getInterfaceType().getPointer())) {
continue;
}
auto paramTy = param->getTypeInContext();
auto isInOut = param->isInOut();
Expr *paramRefExpr = new (ctx) DeclRefExpr(param, DeclNameLoc(),
/*Implicit=*/true);
paramRefExpr->setType(isInOut ? LValueType::get(paramTy) : paramTy);
auto arg = isInOut ? Argument::implicitInOut(ctx, paramRefExpr)
: Argument::unlabeled(paramRefExpr);
forwardingParams.push_back(arg);
}
Expr *specializedFuncDeclRef = new (ctx) DeclRefExpr(ConcreteDeclRef(specializedFuncDecl),
DeclNameLoc(), true);
specializedFuncDeclRef->setType(specializedFuncDecl->getInterfaceType());
if (specializedFuncDecl->isInstanceMember()) {
auto selfArg = createSelfArg(thunkDecl);
auto *memberCall = DotSyntaxCallExpr::create(ctx, specializedFuncDeclRef,
SourceLoc(), selfArg);
memberCall->setThrows(nullptr);
auto resultType = specializedFuncDecl->getInterfaceType()->getAs<FunctionType>()->getResult();
specializedFuncDeclRef = memberCall;
specializedFuncDeclRef->setType(resultType);
} else if (specializedFuncDecl->isStatic()) {
auto resultType = specializedFuncDecl->getInterfaceType()->getAs<FunctionType>()->getResult();
auto selfType = cast<NominalTypeDecl>(thunkDecl->getDeclContext()->getAsDecl())->getDeclaredInterfaceType();
auto selfTypeExpr = TypeExpr::createImplicit(selfType, ctx);
auto *memberCall =
DotSyntaxCallExpr::create(ctx, specializedFuncDeclRef, SourceLoc(),
Argument::unlabeled(selfTypeExpr));
memberCall->setThrows(nullptr);
specializedFuncDeclRef = memberCall;
specializedFuncDeclRef->setType(resultType);
}
auto argList = ArgumentList::createImplicit(ctx, forwardingParams);
auto *specializedFuncCallExpr = CallExpr::createImplicit(ctx, specializedFuncDeclRef, argList);
specializedFuncCallExpr->setType(thunkDecl->getResultInterfaceType());
specializedFuncCallExpr->setThrows(nullptr);
auto *returnStmt = ReturnStmt::createImplicit(ctx, specializedFuncCallExpr);
auto body = BraceStmt::create(ctx, SourceLoc(), {returnStmt}, SourceLoc(),
/*implicit=*/true);
return {body, /*isTypeChecked=*/true};
}
static ValueDecl *generateThunkForExtraMetatypes(SubstitutionMap subst,
FuncDecl *oldDecl,
FuncDecl *newDecl) {
// We added additional metatype parameters to aid template
// specialization, which are no longer now that we've specialized
// this function. Create a thunk that only forwards the original
// parameters along to the clang function.
SmallVector<ParamDecl *, 4> newParams;
for (auto param : *newDecl->getParameters()) {
auto *newParamDecl = ParamDecl::clone(newDecl->getASTContext(), param);
newParams.push_back(newParamDecl);
}
auto originalFnSubst = cast<AbstractFunctionDecl>(oldDecl)
->getInterfaceType()
->getAs<GenericFunctionType>()
->substGenericArgs(subst);
// The constructor type is a function type as follows:
// (CType.Type) -> (Generic) -> CType
// And a method's function type is as follows:
// (inout CType) -> (Generic) -> Void
// In either case, we only want the result of that function type because that
// is the function type with the generic params that need to be substituted:
// (Generic) -> CType
if (isa<ConstructorDecl>(oldDecl) || oldDecl->isInstanceMember() ||
oldDecl->isStatic())
originalFnSubst = cast<FunctionType>(originalFnSubst->getResult().getPointer());
for (auto paramTy : originalFnSubst->getParams()) {
if (!paramTy.getPlainType()->is<MetatypeType>())
continue;
auto dc = newDecl->getDeclContext();
auto paramVarDecl =
new (newDecl->getASTContext()) ParamDecl(
SourceLoc(), SourceLoc(), Identifier(), SourceLoc(),
newDecl->getASTContext().getIdentifier("_"), dc);
paramVarDecl->setInterfaceType(paramTy.getPlainType());
paramVarDecl->setSpecifier(ParamSpecifier::Default);
newParams.push_back(paramVarDecl);
}
auto *newParamList =
ParameterList::create(newDecl->getASTContext(), SourceLoc(), newParams, SourceLoc());
auto thunk = FuncDecl::createImplicit(
newDecl->getASTContext(), newDecl->getStaticSpelling(), oldDecl->getName(),
newDecl->getNameLoc(), newDecl->hasAsync(), newDecl->hasThrows(),
newDecl->getThrownInterfaceType(),
/*genericParams=*/nullptr, newParamList,
newDecl->getResultInterfaceType(), newDecl->getDeclContext());
thunk->copyFormalAccessFrom(newDecl);
thunk->setBodySynthesizer(synthesizeForwardingThunkBody, newDecl);
thunk->setSelfAccessKind(newDecl->getSelfAccessKind());
if (newDecl->isStatic()) thunk->setStatic();
thunk->getAttrs().add(
new (newDecl->getASTContext()) TransparentAttr(/*IsImplicit=*/true));
return thunk;
}
ConcreteDeclRef
ClangImporter::getCXXFunctionTemplateSpecialization(SubstitutionMap subst,
ValueDecl *decl) {
PrettyStackTraceDeclAndSubst trace("specializing", subst, decl);
assert(isa<clang::FunctionTemplateDecl>(decl->getClangDecl()) &&
"This API should only be used with function templates.");
auto *newFn =
decl->getASTContext()
.getClangModuleLoader()
->instantiateCXXFunctionTemplate(
decl->getASTContext(),
const_cast<clang::FunctionTemplateDecl *>(
cast<clang::FunctionTemplateDecl>(decl->getClangDecl())),
subst);
// We failed to specialize this function template. The compiler is going to
// exit soon. Return something valid in the meantime.
if (!newFn)
return ConcreteDeclRef(decl);
auto [fnIt, inserted] =
Impl.specializedFunctionTemplates.try_emplace(newFn, nullptr);
if (!inserted)
return ConcreteDeclRef(fnIt->second);
auto newDecl = cast_or_null<ValueDecl>(
decl->getASTContext().getClangModuleLoader()->importDeclDirectly(
newFn));
if (auto fn = dyn_cast<AbstractFunctionDecl>(newDecl)) {
if (!subst.empty()) {
newDecl = rewriteIntegerTypes(subst, decl, fn);
}
}
if (auto fn = dyn_cast<FuncDecl>(decl)) {
newDecl = addThunkForDependentTypes(fn, cast<FuncDecl>(newDecl));
}
if (auto fn = dyn_cast<FuncDecl>(decl)) {
if (newFn->getNumParams() != fn->getParameters()->size()) {
newDecl = generateThunkForExtraMetatypes(subst, fn,
cast<FuncDecl>(newDecl));
}
}
fnIt->getSecond() = newDecl;
return ConcreteDeclRef(newDecl);
}
FuncDecl *ClangImporter::getCXXSynthesizedOperatorFunc(FuncDecl *decl) {
// `decl` is not an operator, it is a regular function which has a
// name that starts with `__operator`. We were asked for a
// corresponding synthesized Swift operator, so let's retrieve it.
// The synthesized Swift operator was added as an alternative decl
// for `func`.
auto alternateDecls = Impl.getAlternateDecls(decl);
// Did we actually synthesize an operator for `func`?
if (alternateDecls.empty())
return nullptr;
// If we did, then we should have only synthesized one.
assert(alternateDecls.size() == 1 &&
"expected only the synthesized operator as an alternative");
auto synthesizedOperator = alternateDecls.front();
assert(synthesizedOperator->isOperator() &&
"expected the alternative to be a synthesized operator");
return cast<FuncDecl>(synthesizedOperator);
}
bool ClangImporter::isSynthesizedAndVisibleFromAllModules(
const clang::Decl *decl) {
return Impl.synthesizedAndAlwaysVisibleDecls.contains(decl);
}
bool ClangImporter::isCXXMethodMutating(const clang::CXXMethodDecl *method) {
if (isa<clang::CXXConstructorDecl>(method) || !method->isConst())
return true;
if (isAnnotatedWith(method, "mutating"))
return true;
if (method->getParent()->hasMutableFields()) {
if (isAnnotatedWith(method, "nonmutating"))
return false;
// FIXME(rdar://91961524): figure out a way to handle mutable fields
// without breaking classes from the C++ standard library (e.g.
// `std::string` which has a mutable member in old libstdc++ version used on
// CentOS 7)
return false;
}
return false;
}
bool ClangImporter::isUnsafeCXXMethod(const FuncDecl *func) {
if (!func->hasClangNode())
return false;
auto clangDecl = func->getClangNode().getAsDecl();
if (!clangDecl)
return false;
auto cxxMethod = dyn_cast<clang::CXXMethodDecl>(clangDecl);
if (!cxxMethod)
return false;
if (!func->hasName())
return false;
auto id = func->getBaseName().userFacingName();
return id.starts_with("__") && id.ends_with("Unsafe");
}
bool ClangImporter::isAnnotatedWith(const clang::CXXMethodDecl *method,
StringRef attr) {
return method->hasAttrs() &&
llvm::any_of(method->getAttrs(), [attr](clang::Attr *a) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(a)) {
return swiftAttr->getAttribute() == attr;
}
return false;
});
}
FuncDecl *
ClangImporter::getDefaultArgGenerator(const clang::ParmVarDecl *param) {
auto it = Impl.defaultArgGenerators.find(param);
if (it != Impl.defaultArgGenerators.end())
return it->second;
return nullptr;
}
SwiftLookupTable *
ClangImporter::findLookupTable(const clang::Module *clangModule) {
return Impl.findLookupTable(clangModule);
}
/// Determine the effective Clang context for the given Swift nominal type.
EffectiveClangContext
ClangImporter::getEffectiveClangContext(const NominalTypeDecl *nominal) {
return Impl.getEffectiveClangContext(nominal);
}
Decl *ClangImporter::importDeclDirectly(const clang::NamedDecl *decl) {
return Impl.importDecl(decl, Impl.CurrentVersion);
}
ValueDecl *ClangImporter::Implementation::importBaseMemberDecl(
ValueDecl *decl, DeclContext *newContext,
ClangInheritanceInfo inheritance) {
// Make sure we don't clone the decl again for this class, as that would
// result in multiple definitions of the same symbol.
std::pair<ValueDecl *, DeclContext *> key = {decl, newContext};
auto known = clonedBaseMembers.find(key);
if (known == clonedBaseMembers.end()) {
ValueDecl *cloned = cloneBaseMemberDecl(decl, newContext, inheritance);
known = clonedBaseMembers.insert({key, cloned}).first;
}
return known->second;
}
size_t ClangImporter::Implementation::getImportedBaseMemberDeclArity(
const ValueDecl *valueDecl) {
if (auto *func = dyn_cast<FuncDecl>(valueDecl)) {
if (auto *params = func->getParameters()) {
return params->size();
}
}
return 0;
}
ValueDecl *
ClangImporter::importBaseMemberDecl(ValueDecl *decl, DeclContext *newContext,
ClangInheritanceInfo inheritance) {
return Impl.importBaseMemberDecl(decl, newContext, inheritance);
}
void ClangImporter::diagnoseTopLevelValue(const DeclName &name) {
Impl.diagnoseTopLevelValue(name);
}
void ClangImporter::diagnoseMemberValue(const DeclName &name,
const Type &baseType) {
// Return early for any type that namelookup::extractDirectlyReferencedNominalTypes
// does not know how to handle.
if (!(baseType->getAnyNominal() ||
baseType->is<ExistentialType>() ||
baseType->is<UnboundGenericType>() ||
baseType->is<ArchetypeType>() ||
baseType->is<ProtocolCompositionType>() ||
baseType->is<TupleType>()))
return;
SmallVector<NominalTypeDecl *, 4> nominalTypesToLookInto;
namelookup::extractDirectlyReferencedNominalTypes(baseType,
nominalTypesToLookInto);
for (auto containerDecl : nominalTypesToLookInto) {
const clang::Decl *clangContainerDecl = containerDecl->getClangDecl();
if (isa_and_nonnull<clang::DeclContext>(clangContainerDecl)) {
Impl.diagnoseMemberValue(name,
cast<clang::DeclContext>(clangContainerDecl));
}
if (Impl.ImportForwardDeclarations) {
const clang::Decl *clangContainerDecl = containerDecl->getClangDecl();
if (const clang::ObjCInterfaceDecl *objCInterfaceDecl =
llvm::dyn_cast_or_null<clang::ObjCInterfaceDecl>(
clangContainerDecl); objCInterfaceDecl && !objCInterfaceDecl->hasDefinition()) {
// Emit a diagnostic about how the base type represents a forward
// declared ObjC interface and is in all likelihood missing members.
// We only attach this diagnostic in diagnoseMemberValue rather than
// in SwiftDeclConverter because it is only relevant when the user
// tries to access an unavailable member.
Impl.addImportDiagnostic(
objCInterfaceDecl,
Diagnostic(
diag::
placeholder_for_forward_declared_interface_member_access_failure,
objCInterfaceDecl->getName()),
objCInterfaceDecl->getSourceRange().getBegin());
// Emit any diagnostics attached to the source Clang node (ie. forward
// declaration here note)
Impl.diagnoseTargetDirectly(clangContainerDecl);
} else if (const clang::ObjCProtocolDecl *objCProtocolDecl =
llvm::dyn_cast_or_null<clang::ObjCProtocolDecl>(
clangContainerDecl); objCProtocolDecl && !objCProtocolDecl->hasDefinition()) {
// Same as above but for protocols
Impl.addImportDiagnostic(
objCProtocolDecl,
Diagnostic(
diag::
placeholder_for_forward_declared_protocol_member_access_failure,
objCProtocolDecl->getName()),
objCProtocolDecl->getSourceRange().getBegin());
Impl.diagnoseTargetDirectly(clangContainerDecl);
}
}
}
}
SourceLoc ClangImporter::importSourceLocation(clang::SourceLocation loc) {
auto &bufferImporter = Impl.getBufferImporterForDiagnostics();
return bufferImporter.resolveSourceLocation(
getClangASTContext().getSourceManager(), loc);
}
llvm::Expected<llvm::cas::ObjectRef>
ClangImporter::createEmbeddedBridgingHeaderCacheKey(
llvm::cas::ObjectStore &CAS, llvm::cas::ObjectRef ChainedPCHIncludeTree) {
// Create a cache key for looking up embedded bridging header include tree
// from chained bridging header cache key.
return CAS.store({ChainedPCHIncludeTree},
"ChainedHeaderIncludeTree -> EmbeddedHeaderIncludeTree");
}
static bool hasImportAsRefAttr(const clang::RecordDecl *decl) {
return decl->hasAttrs() && llvm::any_of(decl->getAttrs(), [](auto *attr) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr))
return swiftAttr->getAttribute() == "import_reference" ||
// TODO: Remove this once libSwift hosttools no longer
// requires it.
swiftAttr->getAttribute() == "import_as_ref";
return false;
});
}
// Is this a pointer to a foreign reference type.
bool importer::isForeignReferenceTypeWithoutImmortalAttrs(const clang::QualType type) {
if (!type->isPointerType())
return false;
auto pointeeType =
dyn_cast<clang::RecordType>(type->getPointeeType().getCanonicalType());
if (pointeeType == nullptr)
return false;
return hasImportAsRefAttr(pointeeType->getDecl()) &&
!hasImmortalAttrs(pointeeType->getDecl());
}
static bool hasDiamondInheritanceRefType(const clang::CXXRecordDecl *decl) {
if (!decl->hasDefinition() || decl->isDependentType())
return false;
llvm::DenseSet<const clang::CXXRecordDecl *> seenBases;
bool hasRefDiamond = false;
decl->forallBases([&](const clang::CXXRecordDecl *Base) {
if (hasImportAsRefAttr(Base) && !seenBases.insert(Base).second &&
!decl->isVirtuallyDerivedFrom(Base))
hasRefDiamond = true;
return true;
});
return hasRefDiamond;
}
// Returns the given declaration along with all its parent declarations that are
// reference types.
static llvm::SmallVector<const clang::RecordDecl *, 4>
getRefParentDecls(const clang::RecordDecl *decl, ASTContext &ctx,
ClangImporter::Implementation *importerImpl) {
assert(decl && "decl is null inside getRefParentDecls");
llvm::SmallVector<const clang::RecordDecl *, 4> matchingDecls;
if (hasImportAsRefAttr(decl))
matchingDecls.push_back(decl);
if (const auto *cxxRecordDecl = llvm::dyn_cast<clang::CXXRecordDecl>(decl)) {
if (!cxxRecordDecl->hasDefinition())
return matchingDecls;
if (hasDiamondInheritanceRefType(cxxRecordDecl)) {
if (importerImpl) {
if (!importerImpl->DiagnosedCxxRefDecls.count(decl)) {
HeaderLoc loc(decl->getLocation());
importerImpl->diagnose(loc, diag::cant_infer_frt_in_cxx_inheritance,
decl);
importerImpl->DiagnosedCxxRefDecls.insert(decl);
}
} else {
ctx.Diags.diagnose({}, diag::cant_infer_frt_in_cxx_inheritance, decl);
assert(false && "nullpointer passeed for importerImpl when calling "
"getRefParentOrDiag");
}
return matchingDecls;
}
cxxRecordDecl->forallBases([&](const clang::CXXRecordDecl *baseDecl) {
if (hasImportAsRefAttr(baseDecl))
matchingDecls.push_back(baseDecl);
return true;
});
}
return matchingDecls;
}
static llvm::SmallVector<ValueDecl *, 1>
getValueDeclsForName(const clang::Decl *decl, ASTContext &ctx, StringRef name) {
llvm::SmallVector<ValueDecl *, 1> results;
auto *clangMod = decl->getOwningModule();
if (clangMod && clangMod->isSubModule())
clangMod = clangMod->getTopLevelModule();
if (clangMod) {
auto parentModule =
ctx.getClangModuleLoader()->getWrapperForModule(clangMod);
ctx.lookupInModule(parentModule, name, results);
} else {
// There is no Clang module for this declaration, so perform lookup from
// the main module. This will find declarations from the bridging header.
namelookup::lookupInModule(
ctx.MainModule, ctx.getIdentifier(name), results,
NLKind::UnqualifiedLookup, namelookup::ResolutionKind::Overloadable,
ctx.MainModule, SourceLoc(), NL_UnqualifiedDefault);
// Filter out any declarations that didn't come from Clang.
auto newEnd =
std::remove_if(results.begin(), results.end(),
[&](ValueDecl *decl) { return !decl->getClangDecl(); });
results.erase(newEnd, results.end());
}
return results;
}
static const clang::RecordDecl *
getRefParentOrDiag(const clang::RecordDecl *decl, ASTContext &ctx,
ClangImporter::Implementation *importerImpl) {
auto refParentDecls = getRefParentDecls(decl, ctx, importerImpl);
if (refParentDecls.empty())
return nullptr;
std::set<StringRef> uniqueRetainDecls{}, uniqueReleaseDecls{};
constexpr StringRef retainPrefix = "retain:";
constexpr StringRef releasePrefix = "release:";
for (const auto *refParentDecl : refParentDecls) {
assert(refParentDecl && "refParentDecl is null inside getRefParentOrDiag");
for (const auto *attr : refParentDecl->getAttrs()) {
if (const auto swiftAttr = llvm::dyn_cast<clang::SwiftAttrAttr>(attr)) {
const auto &attribute = swiftAttr->getAttribute();
if (attribute.starts_with(retainPrefix))
uniqueRetainDecls.insert(attribute.drop_front(retainPrefix.size()));
else if (attribute.starts_with(releasePrefix))
uniqueReleaseDecls.insert(attribute.drop_front(releasePrefix.size()));
}
}
}
// Ensure that exactly one unique retain function and one unique release
// function are found.
if (uniqueRetainDecls.size() != 1 || uniqueReleaseDecls.size() != 1) {
if (importerImpl) {
if (!importerImpl->DiagnosedCxxRefDecls.count(decl)) {
HeaderLoc loc(decl->getLocation());
importerImpl->diagnose(loc, diag::cant_infer_frt_in_cxx_inheritance,
decl);
importerImpl->DiagnosedCxxRefDecls.insert(decl);
}
} else {
ctx.Diags.diagnose({}, diag::cant_infer_frt_in_cxx_inheritance, decl);
assert(false && "nullpointer passed for importerImpl when calling "
"getRefParentOrDiag");
}
return nullptr;
}
return refParentDecls.front();
}
// Is this a pointer to a foreign reference type.
// TODO: We need to review functions like this to ensure that
// CxxRecordSemantics::evaluate is consistently invoked wherever we need to
// determine whether a C++ type qualifies as a foreign reference type
// rdar://145184659
static bool isForeignReferenceType(const clang::QualType type) {
if (!type->isPointerType())
return false;
auto pointeeType =
dyn_cast<clang::RecordType>(type->getPointeeType().getCanonicalType());
if (pointeeType == nullptr)
return false;
return hasImportAsRefAttr(pointeeType->getDecl());
}
static bool hasSwiftAttribute(const clang::Decl *decl, StringRef attr) {
if (decl->hasAttrs() && llvm::any_of(decl->getAttrs(), [&](auto *A) {
if (auto swiftAttr = dyn_cast<clang::SwiftAttrAttr>(A))
return swiftAttr->getAttribute() == attr;
return false;
}))
return true;
if (auto *P = dyn_cast<clang::ParmVarDecl>(decl)) {
bool found = false;
findSwiftAttributes(P->getOriginalType(),
[&](const clang::SwiftAttrAttr *swiftAttr) {
found |= swiftAttr->getAttribute() == attr;
});
return found;
}
return false;
}
bool importer::hasOwnedValueAttr(const clang::RecordDecl *decl) {
return hasSwiftAttribute(decl, "import_owned");
}
bool importer::hasUnsafeAPIAttr(const clang::Decl *decl) {
return hasSwiftAttribute(decl, "import_unsafe");
}
bool importer::hasIteratorAPIAttr(const clang::Decl *decl) {
return hasSwiftAttribute(decl, "import_iterator");
}
static bool hasNonCopyableAttr(const clang::RecordDecl *decl) {
return hasSwiftAttribute(decl, "~Copyable");
}
bool importer::hasNonEscapableAttr(const clang::RecordDecl *decl) {
return hasSwiftAttribute(decl, "~Escapable");
}
bool importer::hasEscapableAttr(const clang::RecordDecl *decl) {
return hasSwiftAttribute(decl, "Escapable");
}
/// Recursively checks that there are no pointers in any fields or base classes.
/// Does not check C++ records with specific API annotations.
static bool hasPointerInSubobjects(const clang::CXXRecordDecl *decl) {
clang::PrettyStackTraceDecl trace(decl, clang::SourceLocation(),
decl->getASTContext().getSourceManager(),
"looking for pointers in subobjects of");
// Probably a class template that has not yet been specialized:
if (!decl->getDefinition())
return false;
auto checkType = [](clang::QualType t) {
if (t->isPointerType())
return true;
if (auto recordType = dyn_cast<clang::RecordType>(t.getCanonicalType())) {
if (auto cxxRecord =
dyn_cast<clang::CXXRecordDecl>(recordType->getDecl())) {
if (hasImportAsRefAttr(cxxRecord) || hasOwnedValueAttr(cxxRecord) ||
hasUnsafeAPIAttr(cxxRecord))
return false;
if (hasIteratorAPIAttr(cxxRecord) || isIterator(cxxRecord))
return true;
if (hasPointerInSubobjects(cxxRecord))
return true;
}
}
return false;
};
for (auto field : decl->fields()) {
if (checkType(field->getType()))
return true;
}
for (auto base : decl->bases()) {
if (checkType(base.getType()))
return true;
}
return false;
}
bool importer::isViewType(const clang::CXXRecordDecl *decl) {
return !hasOwnedValueAttr(decl) && hasPointerInSubobjects(decl);
}
static bool copyConstructorIsDefaulted(const clang::CXXRecordDecl *decl) {
auto ctor = llvm::find_if(decl->ctors(), [](clang::CXXConstructorDecl *ctor) {
return ctor->isCopyConstructor();
});
assert(ctor != decl->ctor_end());
return ctor->isDefaulted();
}
static bool copyAssignOperatorIsDefaulted(const clang::CXXRecordDecl *decl) {
auto copyAssignOp = llvm::find_if(decl->decls(), [](clang::Decl *member) {
if (auto method = dyn_cast<clang::CXXMethodDecl>(member))
return method->isCopyAssignmentOperator();
return false;
});
assert(copyAssignOp != decl->decls_end());
return cast<clang::CXXMethodDecl>(*copyAssignOp)->isDefaulted();
}
/// Recursively checks that there are no user-provided copy constructors or
/// destructors in any fields or base classes.
/// Does not check C++ records with specific API annotations.
static bool isSufficientlyTrivial(const clang::CXXRecordDecl *decl) {
// Probably a class template that has not yet been specialized:
if (!decl->getDefinition())
return true;
if ((decl->hasUserDeclaredCopyConstructor() &&
!copyConstructorIsDefaulted(decl)) ||
(decl->hasUserDeclaredCopyAssignment() &&
!copyAssignOperatorIsDefaulted(decl)) ||
(decl->hasUserDeclaredDestructor() && decl->getDestructor() &&
!decl->getDestructor()->isDefaulted()))
return false;
auto checkType = [](clang::QualType t) {
if (auto recordType = dyn_cast<clang::RecordType>(t.getCanonicalType())) {
if (auto cxxRecord =
dyn_cast<clang::CXXRecordDecl>(recordType->getDecl())) {
if (hasImportAsRefAttr(cxxRecord) || hasOwnedValueAttr(cxxRecord) ||
hasUnsafeAPIAttr(cxxRecord))
return true;
if (!isSufficientlyTrivial(cxxRecord))
return false;
}
}
return true;
};
for (auto field : decl->fields()) {
if (!checkType(field->getType()))
return false;
}
for (auto base : decl->bases()) {
if (!checkType(base.getType()))
return false;
}
return true;
}
/// Checks if a record provides the required value type lifetime operations
/// (copy and destroy).
static bool hasCopyTypeOperations(const clang::CXXRecordDecl *decl) {
// Hack for a base type of std::optional from the Microsoft standard library.
if (decl->isInStdNamespace() && decl->getIdentifier() &&
decl->getName() == "_Optional_construct_base")
return true;
if (decl->hasSimpleCopyConstructor())
return true;
// If we have no way of copying the type we can't import the class
// at all because we cannot express the correct semantics as a swift
// struct.
return llvm::any_of(decl->ctors(), [](clang::CXXConstructorDecl *ctor) {
return ctor->isCopyConstructor() && !ctor->isDeleted() &&
// FIXME: Support default arguments (rdar://142414553)
ctor->getNumParams() == 1 &&
ctor->getAccess() == clang::AccessSpecifier::AS_public;
});
}
static bool hasMoveTypeOperations(const clang::CXXRecordDecl *decl) {
// If we have no way of copying the type we can't import the class
// at all because we cannot express the correct semantics as a swift
// struct.
if (llvm::any_of(decl->ctors(), [](clang::CXXConstructorDecl *ctor) {
return ctor->isMoveConstructor() &&
(ctor->isDeleted() || ctor->getAccess() != clang::AS_public);
}))
return false;
return llvm::any_of(decl->ctors(), [](clang::CXXConstructorDecl *ctor) {
return ctor->isMoveConstructor() &&
// FIXME: Support default arguments (rdar://142414553)
ctor->getNumParams() == 1;
});
}
static bool hasDestroyTypeOperations(const clang::CXXRecordDecl *decl) {
if (auto dtor = decl->getDestructor()) {
if (dtor->isDeleted() || dtor->getAccess() != clang::AS_public) {
return false;
}
return true;
}
return false;
}
static bool hasCustomCopyOrMoveConstructor(const clang::CXXRecordDecl *decl) {
return decl->hasUserDeclaredCopyConstructor() ||
decl->hasUserDeclaredMoveConstructor();
}
static bool
hasConstructorWithUnsupportedDefaultArgs(const clang::CXXRecordDecl *decl) {
return llvm::any_of(decl->ctors(), [](clang::CXXConstructorDecl *ctor) {
return (ctor->isCopyConstructor() || ctor->isMoveConstructor()) &&
// FIXME: Support default arguments (rdar://142414553)
ctor->getNumParams() != 1;
});
}
static bool isSwiftClassType(const clang::CXXRecordDecl *decl) {
// Swift type must be annotated with external_source_symbol attribute.
auto essAttr = decl->getAttr<clang::ExternalSourceSymbolAttr>();
if (!essAttr || essAttr->getLanguage() != "Swift" ||
essAttr->getDefinedIn().empty() || essAttr->getUSR().empty())
return false;
// Ensure that the baseclass is swift::RefCountedClass.
auto baseDecl = decl;
do {
if (baseDecl->getNumBases() != 1)
return false;
auto baseClassSpecifier = *baseDecl->bases_begin();
auto Ty = baseClassSpecifier.getType();
auto nextBaseDecl = Ty->getAsCXXRecordDecl();
if (!nextBaseDecl)
return false;
baseDecl = nextBaseDecl;
} while (baseDecl->getName() != "RefCountedClass");
return true;
}
CxxRecordSemanticsKind
CxxRecordSemantics::evaluate(Evaluator &evaluator,
CxxRecordSemanticsDescriptor desc) const {
const auto *decl = desc.decl;
ClangImporter::Implementation *importerImpl = desc.importerImpl;
if (hasImportAsRefAttr(decl) ||
getRefParentOrDiag(decl, desc.ctx, importerImpl))
return CxxRecordSemanticsKind::Reference;
auto cxxDecl = dyn_cast<clang::CXXRecordDecl>(decl);
if (!cxxDecl) {
return CxxRecordSemanticsKind::Trivial;
}
if (isSwiftClassType(cxxDecl))
return CxxRecordSemanticsKind::SwiftClassType;
if (!hasDestroyTypeOperations(cxxDecl) ||
(!hasCopyTypeOperations(cxxDecl) && !hasMoveTypeOperations(cxxDecl))) {
if (hasConstructorWithUnsupportedDefaultArgs(cxxDecl))
return CxxRecordSemanticsKind::UnavailableConstructors;
return CxxRecordSemanticsKind::MissingLifetimeOperation;
}
if (hasNonCopyableAttr(cxxDecl) && hasMoveTypeOperations(cxxDecl)) {
return CxxRecordSemanticsKind::MoveOnly;
}
if (hasOwnedValueAttr(cxxDecl)) {
return CxxRecordSemanticsKind::Owned;
}
if (hasIteratorAPIAttr(cxxDecl) || isIterator(cxxDecl)) {
return CxxRecordSemanticsKind::Iterator;
}
if (hasCopyTypeOperations(cxxDecl)) {
return CxxRecordSemanticsKind::Owned;
}
if (hasMoveTypeOperations(cxxDecl)) {
return CxxRecordSemanticsKind::MoveOnly;
}
if (isSufficientlyTrivial(cxxDecl)) {
return CxxRecordSemanticsKind::Trivial;
}
llvm_unreachable("Could not classify C++ type.");
}
ValueDecl *
CxxRecordAsSwiftType::evaluate(Evaluator &evaluator,
CxxRecordSemanticsDescriptor desc) const {
auto cxxDecl = dyn_cast<clang::CXXRecordDecl>(desc.decl);
if (!cxxDecl)
return nullptr;
if (!isSwiftClassType(cxxDecl))
return nullptr;
SmallVector<ValueDecl *, 1> results;
auto *essaAttr = cxxDecl->getAttr<clang::ExternalSourceSymbolAttr>();
auto *mod = desc.ctx.getModuleByName(essaAttr->getDefinedIn());
if (!mod) {
// TODO: warn about missing 'import'.
return nullptr;
}
// FIXME: Support renamed declarations.
auto swiftName = cxxDecl->getName();
// FIXME: handle nested Swift types once they're supported.
mod->lookupValue(desc.ctx.getIdentifier(swiftName), NLKind::UnqualifiedLookup,
results);
if (results.size() == 1) {
if (isa<ClassDecl>(results[0]))
return results[0];
}
return nullptr;
}
static bool anySubobjectsSelfContained(const clang::CXXRecordDecl *decl) {
// std::pair and std::tuple might have copy and move constructors, or base
// classes with copy and move constructors, but they are not self-contained
// types, e.g. `std::pair<UnsafeType, T>`.
if (decl->isInStdNamespace() &&
(decl->getName() == "pair" || decl->getName() == "tuple"))
return false;
if (!decl->getDefinition())
return false;
if (hasCustomCopyOrMoveConstructor(decl) || hasOwnedValueAttr(decl))
return true;
auto checkType = [](clang::QualType t) {
if (auto recordType = dyn_cast<clang::RecordType>(t.getCanonicalType())) {
if (auto cxxRecord =
dyn_cast<clang::CXXRecordDecl>(recordType->getDecl())) {
return anySubobjectsSelfContained(cxxRecord);
}
}
return false;
};
for (auto field : decl->fields()) {
if (checkType(field->getType()))
return true;
}
for (auto base : decl->bases()) {
if (checkType(base.getType()))
return true;
}
return false;
}
bool IsSafeUseOfCxxDecl::evaluate(Evaluator &evaluator,
SafeUseOfCxxDeclDescriptor desc) const {
const clang::Decl *decl = desc.decl;
if (auto method = dyn_cast<clang::CXXMethodDecl>(decl)) {
// The user explicitly asked us to import this method.
if (hasUnsafeAPIAttr(method))
return true;
// If it's a static method, it cannot project anything. It's fine.
if (method->isOverloadedOperator() || method->isStatic() ||
isa<clang::CXXConstructorDecl>(decl))
return true;
if (isForeignReferenceType(method->getReturnType()))
return true;
// begin and end methods likely return an interator, so they're unsafe. This
// is required so that automatic the conformance to RAC works properly.
if (method->getNameAsString() == "begin" ||
method->getNameAsString() == "end")
return false;
auto parentQualType = method
->getParent()->getTypeForDecl()->getCanonicalTypeUnqualified();
bool parentIsSelfContained =
!isForeignReferenceType(parentQualType) &&
anySubobjectsSelfContained(method->getParent());
// If it returns a pointer or reference from an owned parent, that's a
// projection (unsafe).
if (method->getReturnType()->isPointerType() ||
method->getReturnType()->isReferenceType())
return !parentIsSelfContained;
// Check if it's one of the known unsafe methods we currently
// mark as safe by default.
if (isUnsafeStdMethod(method))
return false;
// Try to figure out the semantics of the return type. If it's a
// pointer/iterator, it's unsafe.
if (auto returnType = dyn_cast<clang::RecordType>(
method->getReturnType().getCanonicalType())) {
if (auto cxxRecordReturnType =
dyn_cast<clang::CXXRecordDecl>(returnType->getDecl())) {
if (isSwiftClassType(cxxRecordReturnType))
return true;
if (hasIteratorAPIAttr(cxxRecordReturnType) ||
isIterator(cxxRecordReturnType))
return false;
// Mark this as safe to help our diganostics down the road.
if (!cxxRecordReturnType->getDefinition()) {
return true;
}
// A projection of a view type (such as a string_view) from a self
// contained parent is a proejction (unsafe).
if (!anySubobjectsSelfContained(cxxRecordReturnType) &&
isViewType(cxxRecordReturnType)) {
return !parentIsSelfContained;
}
}
}
}
// Otherwise, it's safe.
return true;
}
void swift::simple_display(llvm::raw_ostream &out,
CxxRecordSemanticsDescriptor desc) {
out << "Matching API semantics of C++ record '"
<< desc.decl->getNameAsString() << "'.\n";
}
SourceLoc swift::extractNearestSourceLoc(CxxRecordSemanticsDescriptor desc) {
return SourceLoc();
}
void swift::simple_display(llvm::raw_ostream &out,
SafeUseOfCxxDeclDescriptor desc) {
out << "Checking if '";
if (auto namedDecl = dyn_cast<clang::NamedDecl>(desc.decl))
out << namedDecl->getNameAsString();
else
out << "<invalid decl>";
out << "' is safe to use in context.\n";
}
SourceLoc swift::extractNearestSourceLoc(SafeUseOfCxxDeclDescriptor desc) {
return SourceLoc();
}
CustomRefCountingOperationResult CustomRefCountingOperation::evaluate(
Evaluator &evaluator, CustomRefCountingOperationDescriptor desc) const {
auto swiftDecl = desc.decl;
auto operation = desc.kind;
auto &ctx = swiftDecl->getASTContext();
std::string operationStr = operation == CustomRefCountingOperationKind::retain
? "retain:"
: "release:";
auto decl = cast<clang::RecordDecl>(swiftDecl->getClangDecl());
if (!hasImportAsRefAttr(decl)) {
if (auto parentRefDecl = getRefParentOrDiag(decl, ctx, nullptr))
decl = parentRefDecl;
}
if (!decl->hasAttrs())
return {CustomRefCountingOperationResult::noAttribute, nullptr, ""};
llvm::SmallVector<const clang::SwiftAttrAttr *, 1> retainReleaseAttrs;
for (auto *attr : decl->getAttrs()) {
if (auto swiftAttr = llvm::dyn_cast<clang::SwiftAttrAttr>(attr)) {
if (swiftAttr->getAttribute().starts_with(operationStr)) {
retainReleaseAttrs.push_back(swiftAttr);
}
}
}
if (retainReleaseAttrs.empty())
return {CustomRefCountingOperationResult::noAttribute, nullptr, ""};
if (retainReleaseAttrs.size() > 1)
return {CustomRefCountingOperationResult::tooManyAttributes, nullptr, ""};
auto name = retainReleaseAttrs.front()
->getAttribute()
.drop_front(StringRef(operationStr).size())
.str();
if (name == "immortal")
return {CustomRefCountingOperationResult::immortal, nullptr, name};
llvm::SmallVector<ValueDecl *, 1> results =
getValueDeclsForName(swiftDecl->getClangDecl(), ctx, name);
if (results.size() == 1)
return {CustomRefCountingOperationResult::foundOperation, results.front(),
name};
if (results.empty())
return {CustomRefCountingOperationResult::notFound, nullptr, name};
return {CustomRefCountingOperationResult::tooManyFound, nullptr, name};
}
/// Check whether the given Clang type involves an unsafe type.
static bool hasUnsafeType(Evaluator &evaluator, clang::QualType clangType) {
// Handle pointers.
auto pointeeType = clangType->getPointeeType();
if (!pointeeType.isNull()) {
// Function pointers are okay.
if (pointeeType->isFunctionType())
return false;
// Pointers to record types are okay if they come in as foreign reference
// types.
if (auto recordDecl = pointeeType->getAsRecordDecl()) {
if (hasImportAsRefAttr(recordDecl))
return false;
}
// All other pointers are considered unsafe.
return true;
}
// Handle records recursively.
if (auto recordDecl = clangType->getAsTagDecl()) {
auto safety =
evaluateOrDefault(evaluator, ClangDeclExplicitSafety({recordDecl}),
ExplicitSafety::Unspecified);
switch (safety) {
case ExplicitSafety::Unsafe:
return true;
case ExplicitSafety::Safe:
case ExplicitSafety::Unspecified:
return false;
}
}
// Everything else is safe.
return false;
}
ExplicitSafety ClangDeclExplicitSafety::evaluate(
Evaluator &evaluator,
SafeUseOfCxxDeclDescriptor desc
) const {
// FIXME: Somewhat duplicative with importAsUnsafe.
// FIXME: Also similar to hasPointerInSubobjects
// FIXME: should probably also subsume IsSafeUseOfCxxDecl
// Explicitly unsafe.
auto decl = desc.decl;
if (hasUnsafeAPIAttr(decl) || hasSwiftAttribute(decl, "unsafe"))
return ExplicitSafety::Unsafe;
// Explicitly safe.
if (hasSwiftAttribute(decl, "safe"))
return ExplicitSafety::Safe;
// Enums are always safe.
if (isa<clang::EnumDecl>(decl))
return ExplicitSafety::Safe;
// If it's not a record, leave it unspecified.
auto recordDecl = dyn_cast<clang::RecordDecl>(decl);
if (!recordDecl)
return ExplicitSafety::Unspecified;
// Escapable and non-escapable annotations imply that the declaration is
// safe.
if (evaluateOrDefault(
evaluator,
ClangTypeEscapability({recordDecl->getTypeForDecl(), nullptr}),
CxxEscapability::Unknown) != CxxEscapability::Unknown)
return ExplicitSafety::Safe;
// If we don't have a definition, leave it unspecified.
recordDecl = recordDecl->getDefinition();
if (!recordDecl)
return ExplicitSafety::Unspecified;
// If this is a C++ class, check its bases.
if (auto cxxRecordDecl = dyn_cast<clang::CXXRecordDecl>(recordDecl)) {
for (auto base : cxxRecordDecl->bases()) {
if (hasUnsafeType(evaluator, base.getType()))
return ExplicitSafety::Unsafe;
}
}
// Check the fields.
for (auto field : recordDecl->fields()) {
if (hasUnsafeType(evaluator, field->getType()))
return ExplicitSafety::Unsafe;
}
// Okay, call it safe.
return ExplicitSafety::Safe;
}
bool ClangDeclExplicitSafety::isCached() const {
return isa<clang::RecordDecl>(std::get<0>(getStorage()).decl);
}
const clang::TypedefType *ClangImporter::getTypeDefForCXXCFOptionsDefinition(
const clang::Decl *candidateDecl) {
if (!Impl.SwiftContext.LangOpts.EnableCXXInterop)
return nullptr;
auto enumDecl = dyn_cast<clang::EnumDecl>(candidateDecl);
if (!enumDecl)
return nullptr;
if (!enumDecl->getDeclName().isEmpty())
return nullptr;
const clang::ElaboratedType *elaboratedType =
dyn_cast<clang::ElaboratedType>(enumDecl->getIntegerType().getTypePtr());
if (auto typedefType =
elaboratedType
? dyn_cast<clang::TypedefType>(elaboratedType->desugar())
: dyn_cast<clang::TypedefType>(
enumDecl->getIntegerType().getTypePtr())) {
auto enumExtensibilityAttr =
elaboratedType
? enumDecl->getAttr<clang::EnumExtensibilityAttr>()
: typedefType->getDecl()->getAttr<clang::EnumExtensibilityAttr>();
const bool hasFlagEnumAttr =
elaboratedType ? enumDecl->hasAttr<clang::FlagEnumAttr>()
: typedefType->getDecl()->hasAttr<clang::FlagEnumAttr>();
if (enumExtensibilityAttr &&
enumExtensibilityAttr->getExtensibility() ==
clang::EnumExtensibilityAttr::Open &&
hasFlagEnumAttr) {
return Impl.isUnavailableInSwift(typedefType->getDecl()) ? typedefType
: nullptr;
}
}
return nullptr;
}
bool importer::requiresCPlusPlus(const clang::Module *module) {
// The libc++ modulemap doesn't currently declare the requirement.
if (isCxxStdModule(module))
return true;
// Modulemaps often declare the requirement for the top-level module only.
if (auto parent = module->Parent) {
if (requiresCPlusPlus(parent))
return true;
}
return llvm::any_of(module->Requirements, [](clang::Module::Requirement req) {
return req.FeatureName == "cplusplus";
});
}
bool importer::isCxxStdModule(const clang::Module *module) {
return isCxxStdModule(module->getTopLevelModuleName(),
module->getTopLevelModule()->IsSystem);
}
bool importer::isCxxStdModule(StringRef moduleName, bool IsSystem) {
if (moduleName == "std")
return true;
// In recent libc++ versions the module is split into multiple top-level
// modules (std_vector, std_utility, etc).
if (IsSystem && moduleName.starts_with("std_")) {
if (moduleName == "std_errno_h")
return false;
return true;
}
return false;
}
std::optional<clang::QualType>
importer::getCxxReferencePointeeTypeOrNone(const clang::Type *type) {
if (type->isReferenceType())
return type->getPointeeType();
return {};
}
bool importer::isCxxConstReferenceType(const clang::Type *type) {
auto pointeeType = getCxxReferencePointeeTypeOrNone(type);
return pointeeType && pointeeType->isConstQualified();
}
AccessLevel importer::convertClangAccess(clang::AccessSpecifier access) {
switch (access) {
case clang::AS_public:
// C++ 'public' is actually closer to Swift 'open' than Swift 'public',
// since C++ 'public' does not prevent users from subclassing a type or
// overriding a method. However, subclassing and overriding are currently
// unsupported across the interop boundary, so we conservatively map C++
// 'public' to Swift 'public' in case there are other C++ subtleties that
// are being missed at this time (e.g., C++ 'final' vs Swift 'final').
return AccessLevel::Public;
case clang::AS_protected:
// Swift does not have a notion of protected fields, so map C++ 'protected'
// to Swift 'private'.
return AccessLevel::Private;
case clang::AS_private:
// N.B. Swift 'private' is more restrictive than C++ 'private' because it
// also cares about what source file the member is accessed.
return AccessLevel::Private;
case clang::AS_none:
// The fictional 'none' specifier is given to top-level C++ declarations,
// for which C++ lacks the syntax to give an access specifier. (It may also
// be used in other cases I'm not aware of.) Those declarations are globally
// visible and thus correspond to Swift 'public' (with the same caveats
// about Swift 'public' vs 'open'; see above).
return AccessLevel::Public;
}
}
AccessLevel
ClangInheritanceInfo::accessForBaseDecl(const ValueDecl *baseDecl) const {
if (!isInheriting())
return AccessLevel::Public;
static_assert(AccessLevel::Private < AccessLevel::Public &&
"std::min() relies on this ordering");
auto inherited =
access ? importer::convertClangAccess(*access) : AccessLevel::Private;
return std::min(baseDecl->getFormalAccess(), inherited);
}
void ClangInheritanceInfo::setUnavailableIfNecessary(
const ValueDecl *baseDecl, ValueDecl *clonedDecl) const {
if (!isInheriting())
return;
auto *clangDecl =
dyn_cast_or_null<clang::NamedDecl>(baseDecl->getClangDecl());
if (!clangDecl)
return;
const char *msg = nullptr;
if (clangDecl->getAccess() == clang::AS_private)
msg = "this base member is not accessible because it is private";
else if (isNestedPrivate())
msg = "this base member is not accessible because of private inheritance";
if (msg)
clonedDecl->getAttrs().add(AvailableAttr::createUniversallyUnavailable(
clonedDecl->getASTContext(), msg));
}
SmallVector<std::pair<StringRef, clang::SourceLocation>, 1>
importer::getPrivateFileIDAttrs(const clang::CXXRecordDecl *decl) {
llvm::SmallVector<std::pair<StringRef, clang::SourceLocation>, 1> files;
constexpr auto prefix = StringRef("private_fileid:");
if (decl->hasAttrs()) {
for (const auto *attr : decl->getAttrs()) {
const auto *swiftAttr = dyn_cast<clang::SwiftAttrAttr>(attr);
if (swiftAttr && swiftAttr->getAttribute().starts_with(prefix))
files.push_back({swiftAttr->getAttribute().drop_front(prefix.size()),
attr->getLocation()});
}
}
return files;
}
bool importer::declIsCxxOnly(const Decl *decl) {
if (auto *clangDecl = decl->getClangDecl()) {
return llvm::TypeSwitch<const clang::Decl *, bool>(clangDecl)
.template Case<const clang::NamespaceAliasDecl>(
[](auto) { return true; })
.template Case<const clang::NamespaceDecl>([](auto) { return true; })
// For the issues this filter function was trying to resolve at its
// time of writing, it suffices to only filter out namespaces. But
// there are many other kinds of clang::Decls that only appear in C++.
// This is obvious for some decls, e.g., templates, using directives,
// non-trivial structs, and scoped enums; but it is not obvious for
// other kinds of decls, e.g., an enum member or some variable.
//
// TODO: enumerate those kinds in a more precise and robust way
.Default([](auto) { return false; });
}
return false;
}
bool importer::isClangNamespace(const DeclContext *dc) {
if (const auto *ed = dc->getSelfEnumDecl())
return isa_and_nonnull<clang::NamespaceDecl>(ed->getClangDecl());
return false;
}
bool importer::isSymbolicCircularBase(const clang::CXXRecordDecl *symbolicClass,
const clang::RecordDecl *base) {
auto *classTemplate = symbolicClass->getDescribedClassTemplate();
if (!classTemplate)
return false;
auto *specializedBase =
dyn_cast<clang::ClassTemplateSpecializationDecl>(base);
if (!specializedBase)
return false;
return classTemplate->getCanonicalDecl() ==
specializedBase->getSpecializedTemplate()->getCanonicalDecl();
}
std::optional<ResultConvention>
swift::importer::getCxxRefConventionWithAttrs(const clang::Decl *decl) {
using RC = ResultConvention;
if (auto result =
matchSwiftAttr<RC>(decl, {{"returns_unretained", RC::Unowned},
{"returns_retained", RC::Owned}}))
return result;
const clang::Type *returnTy = nullptr;
if (const auto *func = llvm::dyn_cast<clang::FunctionDecl>(decl))
returnTy = func->getReturnType().getTypePtrOrNull();
else if (const auto *method = llvm::dyn_cast<clang::ObjCMethodDecl>(decl))
returnTy = method->getReturnType().getTypePtrOrNull();
if (!returnTy)
return std::nullopt;
const clang::Type *desugaredReturnTy =
returnTy->getUnqualifiedDesugaredType();
if (const auto *ptrType =
llvm::dyn_cast<clang::PointerType>(desugaredReturnTy)) {
if (const clang::RecordDecl *record =
ptrType->getPointeeType()->getAsRecordDecl()) {
return matchSwiftAttrConsideringInheritance<RC>(
record, {{"returned_as_unretained_by_default", RC::Unowned}});
}
}
return std::nullopt;
}