Files
swift-mirror/lib/SILOptimizer/Analysis/AccessStorageAnalysis.cpp
Arnold Schwaighofer 7a251af60c AccessEnforcement: Fix analysis to include mayReleases as potentially
executing unknown code

This means we have to claw back some performance by recognizing harmless
releases.

Such as releases on types we known don't call a deinit with unknown
side-effects.

rdar://143497196
rdar://143141695
2025-02-07 15:10:13 -08:00

557 lines
20 KiB
C++

//===--- AccessStorageAnalysis.cpp - Accessed Storage Analysis ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-sea"
#include "swift/Basic/Assertions.h"
#include "swift/SILOptimizer/Analysis/AccessStorageAnalysis.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/Analysis/DestructorAnalysis.h"
#include "swift/SILOptimizer/Analysis/FunctionOrder.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/PassManager/PassManager.h"
using namespace swift;
// -----------------------------------------------------------------------------
// MARK: Accessing the results.
// -----------------------------------------------------------------------------
bool AccessStorageResult::hasNoNestedConflict(
const AccessStorage &otherStorage) const {
assert(otherStorage.isUniquelyIdentified());
assert(!hasUnidentifiedAccess());
return getStorageAccessInfo(otherStorage).hasNoNestedConflict();
}
bool AccessStorageResult::mayConflictWith(
SILAccessKind otherAccessKind, const AccessStorage &otherStorage) const {
if (hasUnidentifiedAccess()
&& accessKindMayConflict(otherAccessKind,
unidentifiedAccess.value())) {
return true;
}
for (auto &storageAccess : storageAccessSet) {
assert(storageAccess && "FunctionAccessStorage mapped invalid storage.");
if (!accessKindMayConflict(otherAccessKind, storageAccess.getAccessKind()))
continue;
if (!otherStorage.isDistinctFrom(storageAccess))
return true;
}
return false;
}
StorageAccessInfo AccessStorageResult::getStorageAccessInfo(
const AccessStorage &otherStorage) const {
// Construct a fake StorageAccessInfo to do a hash lookup for the real
// StorageAccessInfo. The DenseSet key is limited to the AccessStorage base
// class members.
StorageAccessInfo storageKey(otherStorage, SILAccessKind::Read, false);
auto iter = storageAccessSet.find(storageKey);
assert(iter != storageAccessSet.end());
return *iter;
}
// -----------------------------------------------------------------------------
// MARK: Constructing the results.
// -----------------------------------------------------------------------------
static bool updateAccessKind(SILAccessKind &LHS, SILAccessKind RHS) {
bool changed = false;
// Assume we don't track Init/Deinit.
if (LHS == SILAccessKind::Read && RHS == SILAccessKind::Modify) {
LHS = RHS;
changed = true;
}
return changed;
}
static bool updateOptionalAccessKind(std::optional<SILAccessKind> &LHS,
std::optional<SILAccessKind> RHS) {
if (RHS == std::nullopt)
return false;
if (LHS == std::nullopt) {
LHS = RHS;
return true;
}
return updateAccessKind(LHS.value(), RHS.value());
}
bool StorageAccessInfo::mergeFrom(const StorageAccessInfo &RHS) {
bool changed = false;
SILAccessKind accessKind = getAccessKind();
assert(accessKind == SILAccessKind::Read
|| accessKind == SILAccessKind::Modify && "uninitialized info");
if (updateAccessKind(accessKind, RHS.getAccessKind())) {
setAccessKind(accessKind);
changed = true;
}
if (hasNoNestedConflict() && !RHS.hasNoNestedConflict()) {
setNoNestedConflict(false);
changed = true;
}
return changed;
}
bool AccessStorageResult::updateUnidentifiedAccess(SILAccessKind accessKind) {
if (unidentifiedAccess == std::nullopt) {
unidentifiedAccess = accessKind;
return true;
}
return updateAccessKind(unidentifiedAccess.value(), accessKind);
}
// Merge the given AccessStorageResult in `other` into this
// AccessStorageResult. Use the given `transformStorage` to map `other`
// AccessStorage into this context. If `other` is from a callee, argument
// substitution will be performed if possible. However, there's no guarantee
// that the merged access values will belong to this region.
//
// Return true if these results changed, requiring further propagation through
// the call graph.
bool AccessStorageResult::mergeAccesses(
const AccessStorageResult &other,
std::function<StorageAccessInfo(const StorageAccessInfo &)>
transformStorage) {
// The cost of BottomUpIPAnalysis can be quadratic for large recursive call
// graphs. That cost is multiplied by the size of storageAccessSet. Slowdowns
// can occur ~1000 elements. 200 is large enough to cover "normal" code,
// while ensuring compile time isn't affected.
if (storageAccessSet.size() > 200) {
setWorstEffects();
return true;
}
// To save compile time, if this storage already has worst-case effects, avoid
// growing its storageAccessSet.
if (hasWorstEffects())
return false;
// When `this` == `other` (for self-recursion), insertion in DenseMap
// invalidates the iterator. We still need to propagate and merge in that case
// because arguments can be recursively dependent. The alternative would be
// treating all self-recursion conservatively.
const AccessStorageResult *otherRegionAccesses = &other;
AccessStorageResult regionAccessCopy;
if (this == &other) {
regionAccessCopy = other;
otherRegionAccesses = &regionAccessCopy;
}
bool changed = false;
// Nondeterministically iterate for the sole purpose of inserting into another
// unordered set.
for (auto &rawStorageInfo : otherRegionAccesses->storageAccessSet) {
const StorageAccessInfo &otherStorageInfo =
transformStorage(rawStorageInfo);
// If transformStorage() returns invalid storage object for local storage,
// that should not be merged with the caller.
if (!otherStorageInfo)
continue;
if (otherStorageInfo.getKind() == AccessStorage::Unidentified) {
changed |= updateUnidentifiedAccess(otherStorageInfo.getAccessKind());
continue;
}
// Attempt to add identified AccessStorage to this map.
auto result = insertStorageAccess(otherStorageInfo);
if (result.second) {
// A new AccessStorage key was added to this map.
changed = true;
continue;
}
// Merge StorageAccessInfo into already-mapped AccessStorage.
changed |= result.first->mergeFrom(otherStorageInfo);
}
if (other.unidentifiedAccess != std::nullopt)
changed |= updateUnidentifiedAccess(other.unidentifiedAccess.value());
return changed;
}
bool AccessStorageResult::mergeFrom(const AccessStorageResult &other) {
// Merge accesses from other. Both `this` and `other` are either from the same
// function or are both callees of the same call site, so their parameters
// indices coincide. transformStorage is the identity function.
return mergeAccesses(other, [](const StorageAccessInfo &s) { return s; });
}
/// Returns the argument of the full apply or partial apply corresponding to the
/// callee's parameter index, or returns an invalid SILValue if the applied
/// closure cannot be found. This walks up the apply chain starting at the given
/// `fullApply` to find the applied argument.
static SILValue getCallerArg(FullApplySite fullApply, unsigned paramIndex) {
if (paramIndex < fullApply.getNumArguments())
return fullApply.getArgument(paramIndex);
SILValue callee = fullApply.getCalleeOrigin();
auto *PAI = dyn_cast<PartialApplyInst>(callee);
if (!PAI)
return SILValue();
unsigned appliedIndex =
paramIndex - ApplySite(PAI).getCalleeArgIndexOfFirstAppliedArg();
if (appliedIndex < PAI->getNumArguments())
return PAI->getArgument(appliedIndex);
// This must be a chain of partial_applies. We don't expect this in practice,
// so handle it conservatively.
return SILValue();
}
/// Transform AccessStorage from a callee into the caller context. If this is
/// uniquely identified local storage, then return an invalid storage object.
///
/// For correctness, AccessEnforcementOpts relies on all Argument access to
/// either be mapped into the caller's context or marked as an unidentified
/// access at the call site.
///
/// Note: This does *not* map the storage index into the caller function's index
/// range. (When the storage value doesn't need to be remapped, it returns the
/// original storage value.) It's simpler to set the storage index later when it
/// is actually added to the function's storageAccessSet.
static StorageAccessInfo
transformCalleeStorage(const StorageAccessInfo &storage,
FullApplySite fullApply) {
if (storage.isLocal()) {
// Do not merge local storage.
return StorageAccessInfo(AccessStorage(), storage);
}
// Remap reference storage. The caller's argument becomes the new object. The
// old storage info is inherited.
if (storage.isReference()) {
auto object = storage.getObject();
if (auto *arg = dyn_cast<SILFunctionArgument>(object)) {
if (SILValue argVal = getCallerArg(fullApply, arg->getIndex())) {
// Remap this storage info. The argument source value is now the new
// object. The old storage info is inherited.
auto callerStorage = storage.transformReference(argVal);
return StorageAccessInfo(callerStorage, storage);
}
}
// Continue using the callee value as the storage object.
return storage;
}
switch (storage.getKind()) {
case AccessStorage::Box:
case AccessStorage::Class:
case AccessStorage::Tail:
case AccessStorage::Stack:
llvm_unreachable("Handled immediately above");
case AccessStorage::Nested:
llvm_unreachable("Nested storage should not be used here");
case AccessStorage::Global:
// Global accesses is universal.
return storage;
case AccessStorage::Yield:
// Continue to hold on to yields from the callee because we don't have
// any better placeholder in the callee.
return storage;
case AccessStorage::Unidentified:
// For unidentified storage, continue to reference the value in the callee
// because we don't have any better placeholder for a callee-defined object.
return storage;
case AccessStorage::Argument: {
// Transitively search for the storage base in the caller.
if (SILValue argVal = getCallerArg(fullApply, storage.getParamIndex())) {
// Remap the argument source value and inherit the old storage info.
if (auto calleeStorage = AccessStorage::compute(argVal))
return StorageAccessInfo(calleeStorage, storage);
}
// If the argument can't be transformed, demote it to an unidentified
// access.
//
// This is an untested bailout. It is only reachable if the call graph
// contains an edge that getCallerArg is unable to analyze OR if
// AccessStorage::compute returns an invalid SILValue, which won't
// pass SIL verification.
//
// TODO: To handle invalid argVal, consider allowing Unidentified access for
// invalid values. This may be useful for partially invalidating results.
return StorageAccessInfo(
AccessStorage(storage.getValue(), AccessStorage::Unidentified),
storage);
}
}
llvm_unreachable("unhandled kind");
}
bool AccessStorageResult::mergeFromApply(
const AccessStorageResult &calleeAccess, FullApplySite fullApply) {
// Merge accesses from calleeAccess. Transform any Argument type
// AccessStorage into the caller context to be added to `this` storage map.
return mergeAccesses(calleeAccess, [&fullApply](const StorageAccessInfo &s) {
return transformCalleeStorage(s, fullApply);
});
}
template <typename B>
void AccessStorageResult::visitBeginAccess(B *beginAccess) {
if (beginAccess->getEnforcement() != SILAccessEnforcement::Dynamic)
return;
auto storage = AccessStorage::compute(beginAccess->getSource());
if (storage.getKind() == AccessStorage::Unidentified) {
// This also catches invalid storage.
updateOptionalAccessKind(unidentifiedAccess, beginAccess->getAccessKind());
return;
}
StorageAccessInfo storageAccess(storage, beginAccess);
auto result = insertStorageAccess(storageAccess);
if (!result.second)
result.first->mergeFrom(storageAccess);
}
void AccessStorageResult::analyzeInstruction(SILInstruction *I,
DestructorAnalysis *DA) {
assert(!FullApplySite::isa(I) && "caller should merge");
if (auto *BAI = dyn_cast<BeginAccessInst>(I))
visitBeginAccess(BAI);
else if (auto *BUAI = dyn_cast<BeginUnpairedAccessInst>(I))
visitBeginAccess(BUAI);
else if (I->mayRelease() && !isDestructorSideEffectFree(I, DA))
setWorstEffects();
}
void StorageAccessInfo::print(raw_ostream &os) const {
os << " [" << getSILAccessKindName(getAccessKind()) << "] ";
if (hasNoNestedConflict())
os << "[no_nested_conflict] ";
AccessStorage::print(os);
}
void StorageAccessInfo::dump() const { print(llvm::dbgs()); }
void AccessStorageResult::print(raw_ostream &os) const {
for (auto &storageAccess : storageAccessSet)
storageAccess.print(os);
if (unidentifiedAccess != std::nullopt) {
os << " unidentified accesses: "
<< getSILAccessKindName(unidentifiedAccess.value()) << "\n";
}
}
void AccessStorageResult::dump() const { print(llvm::dbgs()); }
// -----------------------------------------------------------------------------
// MARK: FunctionAccessStorage, implementation of
// GenericFunctionEffectAnalysis.
// -----------------------------------------------------------------------------
bool FunctionAccessStorage::summarizeFunction(SILFunction *F) {
assert(accessResult.isEmpty() && "expected uninitialized results.");
if (F->isDefinition())
return false;
// If the function definition is unavailable, set unidentifiedAccess to a
// conservative value, since analyzeInstruction will never be called.
//
// If FunctionSideEffects can be summarized, use that information.
auto b = F->getMemoryBehavior(/*observeRetains*/ false);
if (b == MemoryBehavior::MayHaveSideEffects) {
setWorstEffects();
// May as well consider this a successful summary since there are no
// instructions to visit anyway.
return true;
}
if (b >= MemoryBehavior::MayWrite) {
accessResult.setUnidentifiedAccess(SILAccessKind::Modify);
} else if (b == MemoryBehavior::MayRead) {
accessResult.setUnidentifiedAccess(SILAccessKind::Read);
}
// If function side effects is "readnone" then this result will have an empty
// storageAccessSet and unidentifiedAccess == None.
return true;
}
bool FunctionAccessStorage::summarizeCall(FullApplySite fullApply) {
assert(accessResult.isEmpty() && "expected uninitialized results.");
if (SILFunction *callee = fullApply.getReferencedFunctionOrNull()) {
if (callee->getName() == "_swift_stdlib_malloc_size" ||
callee->getName() == "_swift_stdlib_has_malloc_size") {
return true;
}
}
return false;
}
void AccessStorageAnalysis::initialize(
SILPassManager *PM) {
BCA = PM->getAnalysis<BasicCalleeAnalysis>();
DA = PM->getAnalysis<DestructorAnalysis>();
}
void AccessStorageAnalysis::invalidate() {
functionInfoMap.clear();
allocator.DestroyAll();
LLVM_DEBUG(llvm::dbgs() << "invalidate all\n");
}
void AccessStorageAnalysis::invalidate(
SILFunction *F, InvalidationKind K) {
if (FunctionInfo *FInfo = functionInfoMap.lookup(F)) {
LLVM_DEBUG(llvm::dbgs() << " invalidate " << FInfo->F->getName() << '\n');
invalidateIncludingAllCallers(FInfo);
}
}
void AccessStorageAnalysis::getCalleeEffects(
FunctionAccessStorage &calleeEffects, FullApplySite fullApply) {
if (calleeEffects.summarizeCall(fullApply))
return;
auto callees = BCA->getCalleeList(fullApply);
if (!callees.allCalleesVisible() ||
// @callee_owned function calls implicitly release the context, which
// may call deinits of boxed values.
// TODO: be less conservative about what destructors might be called.
fullApply.getOrigCalleeType()->isCalleeConsumed()) {
calleeEffects.setWorstEffects();
return;
}
// We can see all the callees, so merge the effects from all of them.
for (auto *callee : callees)
calleeEffects.mergeFrom(getEffects(callee));
}
void AccessStorageAnalysis::analyzeFunction(
FunctionInfo *functionInfo, FunctionOrder &bottomUpOrder,
int recursionDepth) {
functionInfo->needUpdateCallers = true;
if (bottomUpOrder.prepareForVisiting(functionInfo))
return;
auto *F = functionInfo->F;
if (functionInfo->functionEffects.summarizeFunction(F))
return;
LLVM_DEBUG(llvm::dbgs() << " >> analyze " << F->getName() << '\n');
// Check all instructions of the function
for (auto &BB : *F) {
for (auto &I : BB) {
if (auto fullApply = FullApplySite::isa(&I))
analyzeCall(functionInfo, fullApply, bottomUpOrder, recursionDepth);
else
functionInfo->functionEffects.analyzeInstruction(&I, DA);
}
}
LLVM_DEBUG(llvm::dbgs() << " << finished " << F->getName() << '\n');
}
void AccessStorageAnalysis::analyzeCall(
FunctionInfo *functionInfo, FullApplySite fullApply,
FunctionOrder &bottomUpOrder, int recursionDepth) {
FunctionAccessStorage applyEffects;
if (applyEffects.summarizeCall(fullApply)) {
functionInfo->functionEffects.mergeFromApply(applyEffects, fullApply);
return;
}
if (recursionDepth >= MaxRecursionDepth) {
functionInfo->functionEffects.setWorstEffects();
return;
}
CalleeList callees = BCA->getCalleeList(fullApply);
if (!callees.allCalleesVisible() ||
// @callee_owned function calls implicitly release the context, which
// may call deinits of boxed values.
// TODO: be less conservative about what destructors might be called.
fullApply.getOrigCalleeType()->isCalleeConsumed()) {
functionInfo->functionEffects.setWorstEffects();
return;
}
// Derive the effects of the apply from the known callees.
// Defer merging callee effects until the callee is scheduled
for (SILFunction *callee : callees) {
FunctionInfo *calleeInfo = getFunctionInfo(callee);
calleeInfo->addCaller(functionInfo, fullApply);
if (!calleeInfo->isVisited()) {
// Recursively visit the called function.
analyzeFunction(calleeInfo, bottomUpOrder, recursionDepth + 1);
bottomUpOrder.tryToSchedule(calleeInfo);
}
}
}
void AccessStorageAnalysis::recompute(
FunctionInfo *initialInfo) {
allocNewUpdateID();
LLVM_DEBUG(llvm::dbgs() << "recompute function-effect analysis with UpdateID "
<< getCurrentUpdateID() << '\n');
// Collect and analyze all functions to recompute, starting at initialInfo.
FunctionOrder bottomUpOrder(getCurrentUpdateID());
analyzeFunction(initialInfo, bottomUpOrder, 0);
// Build the bottom-up order.
bottomUpOrder.tryToSchedule(initialInfo);
bottomUpOrder.finishScheduling();
// Second step: propagate the side-effect information up the call-graph until
// it stabilizes.
bool needAnotherIteration;
do {
LLVM_DEBUG(llvm::dbgs() << "new iteration\n");
needAnotherIteration = false;
for (FunctionInfo *functionInfo : bottomUpOrder) {
if (!functionInfo->needUpdateCallers)
continue;
LLVM_DEBUG(llvm::dbgs() << " update callers of "
<< functionInfo->F->getName() << '\n');
functionInfo->needUpdateCallers = false;
// Propagate the function effects to all callers.
for (const auto &E : functionInfo->getCallers()) {
assert(E.isValid());
// Only include callers which we are actually recomputing.
if (!bottomUpOrder.wasRecomputedWithCurrentUpdateID(E.Caller))
continue;
LLVM_DEBUG(llvm::dbgs() << " merge into caller "
<< E.Caller->F->getName() << '\n');
if (E.Caller->functionEffects.mergeFromApply(
functionInfo->functionEffects, FullApplySite(E.FAS))) {
E.Caller->needUpdateCallers = true;
if (!E.Caller->isScheduledAfter(functionInfo)) {
// This happens if we have a cycle in the call-graph.
needAnotherIteration = true;
}
}
}
}
} while (needAnotherIteration);
}
SILAnalysis *swift::createAccessStorageAnalysis(SILModule *) {
return new AccessStorageAnalysis();
}