Files
swift-mirror/lib/SILOptimizer/Utils/Devirtualize.cpp
Slava Pestov 6ffa8fd489 AST: Change signature of LookupConformanceFn
Instead of passing in the substituted type, we pass in the
InFlightSubstitution. This allows the substituted type to be
recovered if needed, but we can now skip computing it for
the common case of LookUpConformanceInSubstitutionMap.
2025-04-30 13:42:20 -04:00

1511 lines
56 KiB
C++

//===--- Devirtualize.cpp - Helper for devirtualizing apply ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-devirtualize-utility"
#include "swift/SILOptimizer/Utils/Devirtualize.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/CalleeCache.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/OptimizationRemark.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/SILValue.h"
#include "swift/SILOptimizer/Analysis/ClassHierarchyAnalysis.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Casting.h"
using namespace swift;
STATISTIC(NumClassDevirt, "Number of class_method applies devirtualized");
STATISTIC(NumWitnessDevirt, "Number of witness_method applies devirtualized");
//===----------------------------------------------------------------------===//
// Class Method Optimization
//===----------------------------------------------------------------------===//
void swift::getAllSubclasses(ClassHierarchyAnalysis *cha, ClassDecl *cd,
CanType classType, SILModule &module,
ClassHierarchyAnalysis::ClassList &subs) {
// Collect the direct and indirect subclasses for the class.
// Sort these subclasses in the order they should be tested by the
// speculative devirtualization. Different strategies could be used,
// E.g. breadth-first, depth-first, etc.
// Currently, let's use the breadth-first strategy.
// The exact static type of the instance should be tested first.
auto &directSubs = cha->getDirectSubClasses(cd);
auto &indirectSubs = cha->getIndirectSubClasses(cd);
subs.append(directSubs.begin(), directSubs.end());
subs.append(indirectSubs.begin(), indirectSubs.end());
// FIXME: This is wrong -- we could have a non-generic class nested
// inside a generic class
if (isa<BoundGenericClassType>(classType)) {
// Filter out any subclasses that do not inherit from this
// specific bound class.
auto removedIt =
std::remove_if(subs.begin(), subs.end(), [&classType](ClassDecl *sub) {
// FIXME: Add support for generic subclasses.
if (sub->isGenericContext())
return false;
auto subCanTy = sub->getDeclaredInterfaceType()->getCanonicalType();
// Handle the usual case here: the class in question
// should be a real subclass of a bound generic class.
return !classType->isBindableToSuperclassOf(subCanTy);
});
subs.erase(removedIt, subs.end());
}
}
/// Returns true, if a method implementation corresponding to
/// the class_method applied to an instance of the class cd is
/// effectively final, i.e. it is statically known to be not overridden
/// by any subclasses of the class cd.
///
/// \p applySite invocation instruction
/// \p classType type of the instance
/// \p cd static class of the instance whose method is being invoked
/// \p cha class hierarchy analysis
static bool isEffectivelyFinalMethod(FullApplySite applySite, CanType classType,
ClassDecl *cd,
ClassHierarchyAnalysis *cha) {
if (cd && cd->isFinal())
return true;
auto *cmi = cast<MethodInst>(applySite.getCallee());
if (!calleesAreStaticallyKnowable(applySite.getModule(), cmi->getMember()))
return false;
auto *method = cmi->getMember().getAbstractFunctionDecl();
assert(method && "Expected abstract function decl!");
assert(!method->isFinal() && "Unexpected indirect call to final method!");
// If this method is not overridden in the module,
// there is no other implementation.
if (!method->isOverridden())
return true;
// Class declaration may be nullptr, e.g. for cases like:
// func foo<C:Base>(c: C) {}, where C is a class, but
// it does not have a class decl.
if (!cd)
return false;
if (!cha)
return false;
// We can analyze the class hierarchy rooted at this class and
// eventually devirtualize a method call more efficiently.
ClassHierarchyAnalysis::ClassList subs;
getAllSubclasses(cha, cd, classType, applySite.getModule(), subs);
// This is the implementation of the method to be used
// if the exact class of the instance would be cd.
auto *ImplMethod = cd->findImplementingMethod(method);
// First, analyze all direct subclasses.
for (auto S : subs) {
// Check if the subclass overrides a method and provides
// a different implementation.
auto *ImplFD = S->findImplementingMethod(method);
if (ImplFD != ImplMethod)
return false;
}
return true;
}
/// Check if a given class is final in terms of a current
/// compilation, i.e.:
/// - it is really final
/// - or it is private and has not sub-classes
/// - or it is an internal class without sub-classes and
/// it is a whole-module compilation.
static bool isKnownFinalClass(ClassDecl *cd, SILModule &module,
ClassHierarchyAnalysis *cha) {
if (cd->isFinal())
return true;
// Only handle classes defined within the SILModule's associated context.
if (!cd->isChildContextOf(module.getAssociatedContext()))
return false;
if (!cd->hasAccess())
return false;
// Only consider 'private' members, unless we are in whole-module compilation.
switch (cd->getEffectiveAccess()) {
case AccessLevel::Open:
return false;
case AccessLevel::Public:
case AccessLevel::Package:
case AccessLevel::Internal:
if (!module.isWholeModule())
return false;
break;
case AccessLevel::FilePrivate:
case AccessLevel::Private:
break;
}
// Take the ClassHierarchyAnalysis into account.
// If a given class has no subclasses and
// - private
// - or internal and it is a WMO compilation
// then this class can be considered final for the purpose
// of devirtualization.
if (cha) {
if (!cha->hasKnownDirectSubclasses(cd)) {
switch (cd->getEffectiveAccess()) {
case AccessLevel::Open:
return false;
case AccessLevel::Public:
case AccessLevel::Package:
case AccessLevel::Internal:
if (!module.isWholeModule())
return false;
break;
case AccessLevel::FilePrivate:
case AccessLevel::Private:
break;
}
return true;
}
}
return false;
}
// Attempt to get the instance for S, whose static type is the same as
// its exact dynamic type, returning a null SILValue() if we cannot find it.
// The information that a static type is the same as the exact dynamic,
// can be derived e.g.:
// - from a constructor or
// - from a successful outcome of a checked_cast_br [exact] instruction.
SILValue swift::getInstanceWithExactDynamicType(SILValue instance,
ClassHierarchyAnalysis *cha) {
auto *f = instance->getFunction();
auto &module = f->getModule();
while (instance) {
instance = stripCasts(instance);
if (isa<AllocRefInst>(instance) || isa<MetatypeInst>(instance)) {
if (instance->getType().getASTType()->hasDynamicSelfType())
return SILValue();
return instance;
}
auto *arg = dyn_cast<SILArgument>(instance);
if (!arg)
break;
auto *singlePred = arg->getParent()->getSinglePredecessorBlock();
if (!singlePred) {
if (!isa<SILFunctionArgument>(arg))
break;
auto *cd = arg->getType().getClassOrBoundGenericClass();
// Check if this class is effectively final.
if (!cd || !isKnownFinalClass(cd, module, cha))
break;
return arg;
}
// Traverse the chain of predecessors.
if (isa<BranchInst>(singlePred->getTerminator())
|| isa<CondBranchInst>(singlePred->getTerminator())) {
instance = cast<SILPhiArgument>(arg)->getIncomingPhiValue(singlePred);
continue;
}
// If it is a BB argument received on a success branch
// of a checked_cast_br, then we know its exact type.
auto *ccbi = dyn_cast<CheckedCastBranchInst>(singlePred->getTerminator());
if (!ccbi)
break;
if (!ccbi->isExact() || ccbi->getSuccessBB() != arg->getParent())
break;
return instance;
}
return SILValue();
}
/// Try to determine the exact dynamic type of an object.
/// returns the exact dynamic type of the object, or an empty type if the exact
/// type could not be determined.
SILType swift::getExactDynamicType(SILValue instance,
ClassHierarchyAnalysis *cha,
bool forUnderlyingObject) {
auto *f = instance->getFunction();
auto &module = f->getModule();
// Set of values to be checked for their exact types.
SmallVector<SILValue, 8> worklist;
// The detected type of the underlying object.
SILType resultType;
// Set of processed values.
llvm::SmallSet<SILValue, 8> processed;
worklist.push_back(instance);
while (!worklist.empty()) {
auto v = worklist.pop_back_val();
if (!v)
return SILType();
if (processed.count(v))
continue;
processed.insert(v);
// For underlying object strip casts and projections.
// For the object itself, simply strip casts.
v = forUnderlyingObject ? getUnderlyingObject(v) : stripCasts(v);
if (isa<AllocRefInst>(v) || isa<MetatypeInst>(v)) {
if (resultType && resultType != v->getType())
return SILType();
resultType = v->getType();
continue;
}
if (isa<LiteralInst>(v)) {
if (resultType && resultType != v->getType())
return SILType();
resultType = v->getType();
continue;
}
if (isa<StructInst>(v) || isa<TupleInst>(v) || isa<EnumInst>(v)) {
if (resultType && resultType != v->getType())
return SILType();
resultType = v->getType();
continue;
}
if (forUnderlyingObject) {
if (isa<AllocationInst>(v)) {
if (resultType && resultType != v->getType())
return SILType();
resultType = v->getType();
continue;
}
}
auto arg = dyn_cast<SILArgument>(v);
if (!arg) {
// We don't know what it is.
return SILType();
}
if (auto *fArg = dyn_cast<SILFunctionArgument>(arg)) {
// Bail on metatypes for now.
if (fArg->getType().is<AnyMetatypeType>()) {
return SILType();
}
auto *cd = fArg->getType().getClassOrBoundGenericClass();
// If it is not class and it is a trivial type, then it
// should be the exact type.
if (!cd && fArg->getType().isTrivial(*f)) {
if (resultType && resultType != fArg->getType())
return SILType();
resultType = fArg->getType();
continue;
}
if (!cd) {
// It is not a class or a trivial type, so we don't know what it is.
return SILType();
}
// Check if this class is effectively final.
if (!isKnownFinalClass(cd, module, cha)) {
return SILType();
}
if (resultType && resultType != fArg->getType())
return SILType();
resultType = fArg->getType();
continue;
}
auto *singlePred = arg->getParent()->getSinglePredecessorBlock();
if (singlePred) {
// If it is a BB argument received on a success branch
// of a checked_cast_br, then we know its exact type.
auto *ccbi = dyn_cast<CheckedCastBranchInst>(singlePred->getTerminator());
if (ccbi && ccbi->isExact() && ccbi->getSuccessBB() == arg->getParent()) {
if (resultType && resultType != arg->getType())
return SILType();
resultType = arg->getType();
continue;
}
}
// It is a BB argument, look through incoming values. If they all have the
// same exact type, then we consider it to be the type of the BB argument.
SmallVector<SILValue, 4> incomingValues;
if (arg->getSingleTerminatorOperands(incomingValues)) {
for (auto inValue : incomingValues) {
worklist.push_back(inValue);
}
continue;
}
// The exact type is unknown.
return SILType();
}
return resultType;
}
/// Try to determine the exact dynamic type of the underlying object.
/// returns the exact dynamic type of a value, or an empty type if the exact
/// type could not be determined.
SILType
swift::getExactDynamicTypeOfUnderlyingObject(SILValue instance,
ClassHierarchyAnalysis *cha) {
return getExactDynamicType(instance, cha, /* forUnderlyingObject */ true);
}
/// Combine two substitution maps as follows.
///
/// The result is written in terms of the generic parameters of 'genericSig'.
///
/// Generic parameters with a depth less than 'firstDepth'
/// come from 'firstSubMap'.
///
/// Generic parameters with a depth greater than 'firstDepth' come from
/// 'secondSubMap', but are looked up starting with a depth or index of
/// 'secondDepth'.
///
/// The 'how' parameter determines if we're looking at the depth or index.
static SubstitutionMap
combineSubstitutionMaps(SubstitutionMap firstSubMap,
SubstitutionMap secondSubMap,
unsigned firstDepth,
unsigned secondDepth,
GenericSignature genericSig) {
return SubstitutionMap::get(
genericSig,
[&](SubstitutableType *type) {
auto *gp = cast<GenericTypeParamType>(type);
if (gp->getDepth() < firstDepth)
return QuerySubstitutionMap{firstSubMap}(gp);
auto *replacement = gp->withDepth(
gp->getDepth() + secondDepth - firstDepth);
return QuerySubstitutionMap{secondSubMap}(replacement);
},
// We might not have enough information in the substitution maps alone.
//
// Eg,
//
// class Base<T1> {
// func foo<U1>(_: U1) where T1 : P {}
// }
//
// class Derived<T2> : Base<Foo<T2>> {
// override func foo<U2>(_: U2) where T2 : Q {}
// }
//
// Suppose we're devirtualizing a call to Base.foo() on a value whose
// type is known to be Derived<Bar>. We start with substitutions written
// in terms of Base.foo()'s generic signature:
//
// <T1, U1 where T1 : P>
// T1 := Foo<Bar>
// T1 : P := Foo<Bar> : P
//
// We want to build substitutions in terms of Derived.foo()'s
// generic signature:
//
// <T2, U2 where T2 : Q>
// T2 := Bar
// T2 : Q := Bar : Q
//
// The conformance Bar : Q is difficult to recover in the general case.
//
// Some combination of storing substitution maps in BoundGenericTypes
// as well as for method overrides would solve this, but for now, just
// punt to global lookup.
LookUpConformanceInModule());
}
// Start with the substitutions from the apply.
// Try to propagate them to find out the real substitutions required
// to invoke the method.
static SubstitutionMap
getSubstitutionsForCallee(SILModule &module, CanSILFunctionType baseCalleeType,
CanType derivedSelfType, FullApplySite applySite) {
// If the base method is not polymorphic, no substitutions are required,
// even if we originally had substitutions for calling the derived method.
if (!baseCalleeType->isPolymorphic())
return SubstitutionMap();
// Add any generic substitutions for the base class.
Type baseSelfType = baseCalleeType->getSelfParameter().getArgumentType(
module, baseCalleeType,
applySite.getFunction()->getTypeExpansionContext());
if (auto metatypeType = baseSelfType->getAs<MetatypeType>())
baseSelfType = metatypeType->getInstanceType();
auto *baseClassDecl = baseSelfType->getClassOrBoundGenericClass();
assert(baseClassDecl && "not a class method");
unsigned baseDepth = 0;
SubstitutionMap baseSubMap;
if (auto baseClassSig = baseClassDecl->getGenericSignatureOfContext()) {
baseDepth = baseClassSig.getNextDepth();
// Compute the type of the base class, starting from the
// derived class type and the type of the method's self
// parameter.
Type derivedClass = derivedSelfType;
if (auto metatypeType = derivedClass->getAs<MetatypeType>())
derivedClass = metatypeType->getInstanceType();
baseSubMap = derivedClass->getContextSubstitutionMap(
baseClassDecl);
}
SubstitutionMap origSubMap = applySite.getSubstitutionMap();
Type calleeSelfType =
applySite.getOrigCalleeType()->getSelfParameter().getArgumentType(
module, applySite.getOrigCalleeType(),
applySite.getFunction()->getTypeExpansionContext());
if (auto metatypeType = calleeSelfType->getAs<MetatypeType>())
calleeSelfType = metatypeType->getInstanceType();
auto *calleeClassDecl = calleeSelfType->getClassOrBoundGenericClass();
assert(calleeClassDecl && "self is not a class type");
// Add generic parameters from the method itself, ignoring any generic
// parameters from the derived class.
unsigned origDepth = calleeClassDecl->getGenericSignature().getNextDepth();
auto baseCalleeSig = baseCalleeType->getInvocationGenericSignature();
return combineSubstitutionMaps(baseSubMap,
origSubMap,
baseDepth,
origDepth,
baseCalleeSig);
}
// Return the new apply and true if a cast required CFG modification.
static std::pair<ApplyInst *, bool /* changedCFG */>
replaceApplyInst(SILBuilder &builder, SILPassManager *pm, SILLocation loc, ApplyInst *oldAI,
SILValue newFn, SubstitutionMap newSubs,
ArrayRef<SILValue> newArgs, ArrayRef<SILValue> newArgBorrows) {
auto *newAI =
builder.createApply(loc, newFn, newSubs, newArgs,
oldAI->getApplyOptions());
if (!newArgBorrows.empty()) {
for (SILValue arg : newArgBorrows) {
builder.createEndBorrow(loc, arg);
}
}
// Check if any casting is required for the return value. newAI cannot be a
// guaranteed value, so this cast cannot generate borrow scopes and it can be
// used anywhere the original oldAI was used.
auto castRes = castValueToABICompatibleType(
&builder, pm, loc, newAI, newAI->getType(), oldAI->getType(), /*usePoints*/ {});
oldAI->replaceAllUsesWith(castRes.first);
return {newAI, castRes.second};
}
// Return the new try_apply and true if a cast required CFG modification.
static std::pair<TryApplyInst *, bool /* changedCFG */>
replaceTryApplyInst(SILBuilder &builder, SILPassManager *pm, SILLocation loc, TryApplyInst *oldTAI,
SILValue newFn, SubstitutionMap newSubs,
ArrayRef<SILValue> newArgs, SILFunctionConventions conv,
ArrayRef<SILValue> newArgBorrows) {
SILBasicBlock *normalBB = oldTAI->getNormalBB();
SILBasicBlock *resultBB = nullptr;
SILType newResultTy =
conv.getSILResultType(builder.getTypeExpansionContext());
// Does the result value need to be casted?
auto oldResultTy = normalBB->getArgument(0)->getType();
bool resultCastRequired = newResultTy != oldResultTy;
// Create a new normal BB only if the result of the new apply differs
// in type from the argument of the original normal BB.
if (!resultCastRequired) {
resultBB = normalBB;
} else {
resultBB = builder.getFunction().createBasicBlockBefore(normalBB);
resultBB->createPhiArgument(newResultTy, OwnershipKind::Owned);
}
// We can always just use the original error BB because we'll be
// deleting the edge to it from the old TAI.
SILBasicBlock *errorBB = oldTAI->getErrorBB();
// Insert a try_apply here.
// Note that this makes this block temporarily double-terminated!
// We won't fix that until deleteDevirtualizedApply.
auto newTAI =
builder.createTryApply(loc, newFn, newSubs, newArgs, resultBB, errorBB,
oldTAI->getApplyOptions());
if (!newArgBorrows.empty()) {
builder.setInsertionPoint(normalBB->begin());
for (SILValue arg : newArgBorrows) {
builder.createEndBorrow(loc, arg);
}
builder.setInsertionPoint(errorBB->begin());
for (SILValue arg : newArgBorrows) {
builder.createEndBorrow(loc, arg);
}
}
if (resultCastRequired) {
builder.setInsertionPoint(resultBB);
SILValue resultValue = resultBB->getArgument(0);
// resultValue cannot be a guaranteed value, so this cast cannot generate
// borrow scopes and it can be used anywhere the original oldAI was
// used--usePoints are not required.
std::tie(resultValue, std::ignore) = castValueToABICompatibleType(
&builder, pm, loc, resultValue, newResultTy, oldResultTy, /*usePoints*/ {});
builder.createBranch(loc, normalBB, {resultValue});
}
builder.setInsertionPoint(normalBB->begin());
return {newTAI, resultCastRequired};
}
// Return the new begin_apply and true if a cast required CFG modification.
static std::pair<BeginApplyInst *, bool /* changedCFG */>
replaceBeginApplyInst(SILBuilder &builder, SILPassManager *pm, SILLocation loc,
BeginApplyInst *oldBAI, SILValue newFn,
SubstitutionMap newSubs, ArrayRef<SILValue> newArgs,
ArrayRef<SILValue> newArgBorrows) {
bool changedCFG = false;
auto *newBAI = builder.createBeginApply(loc, newFn, newSubs, newArgs,
oldBAI->getApplyOptions());
// Forward the token.
oldBAI->getTokenResult()->replaceAllUsesWith(newBAI->getTokenResult());
if (auto *allocation = oldBAI->getCalleeAllocationResult()) {
allocation->replaceAllUsesWith(newBAI->getCalleeAllocationResult());
}
auto oldYields = oldBAI->getYieldedValues();
auto newYields = newBAI->getYieldedValues();
assert(oldYields.size() == newYields.size());
for (auto i : indices(oldYields)) {
auto oldYield = oldYields[i];
auto newYield = newYields[i];
// Insert any end_borrow if the yielded value before the token's uses.
SmallVector<SILInstruction *, 4> users(
makeUserIteratorRange(oldYield->getUses()));
if (!users.empty()) {
auto yieldCastRes = castValueToABICompatibleType(
&builder, pm, loc, newYield, newYield->getType(), oldYield->getType(),
users);
oldYield->replaceAllUsesWith(yieldCastRes.first);
changedCFG |= yieldCastRes.second;
}
}
if (newArgBorrows.empty())
return {newBAI, changedCFG};
// Insert the end_borrows after end_apply and abort_apply users.
for (auto *use : newBAI->getEndApplyUses()) {
SILBuilderWithScope borrowBuilder(
&*std::next(use->getUser()->getIterator()),
builder.getBuilderContext());
for (SILValue borrow : newArgBorrows) {
borrowBuilder.createEndBorrow(loc, borrow);
}
}
return {newBAI, changedCFG};
}
// Return the new partial_apply and true if a cast required CFG modification.
static std::pair<PartialApplyInst *, bool /* changedCFG */>
replacePartialApplyInst(SILBuilder &builder, SILPassManager *pm, SILLocation loc,
PartialApplyInst *oldPAI, SILValue newFn,
SubstitutionMap newSubs, ArrayRef<SILValue> newArgs) {
auto convention = oldPAI->getCalleeConvention();
auto isolation = oldPAI->getResultIsolation();
auto *newPAI =
builder.createPartialApply(loc, newFn, newSubs, newArgs, convention,
isolation);
// Check if any casting is required for the partially-applied function.
// A non-guaranteed cast needs no usePoints.
assert(newPAI->getOwnershipKind() != OwnershipKind::Guaranteed);
auto castRes = castValueToABICompatibleType(
&builder, pm, loc, newPAI, newPAI->getType(), oldPAI->getType(),
/*usePoints*/ {});
oldPAI->replaceAllUsesWith(castRes.first);
return {newPAI, castRes.second};
}
// Return the new apply and true if the CFG was also modified.
static std::pair<ApplySite, bool /* changedCFG */>
replaceApplySite(SILBuilder &builder, SILPassManager *pm, SILLocation loc, ApplySite oldAS,
SILValue newFn, SubstitutionMap newSubs,
ArrayRef<SILValue> newArgs, SILFunctionConventions conv,
ArrayRef<SILValue> newArgBorrows) {
switch (oldAS.getKind()) {
case ApplySiteKind::ApplyInst: {
auto *oldAI = cast<ApplyInst>(oldAS);
return replaceApplyInst(builder, pm, loc, oldAI, newFn, newSubs, newArgs,
newArgBorrows);
}
case ApplySiteKind::TryApplyInst: {
auto *oldTAI = cast<TryApplyInst>(oldAS);
return replaceTryApplyInst(builder, pm, loc, oldTAI, newFn, newSubs, newArgs,
conv, newArgBorrows);
}
case ApplySiteKind::BeginApplyInst: {
auto *oldBAI = dyn_cast<BeginApplyInst>(oldAS);
return replaceBeginApplyInst(builder, pm, loc, oldBAI, newFn, newSubs, newArgs,
newArgBorrows);
}
case ApplySiteKind::PartialApplyInst: {
assert(newArgBorrows.empty());
auto *oldPAI = cast<PartialApplyInst>(oldAS);
return replacePartialApplyInst(builder, pm, loc, oldPAI, newFn, newSubs,
newArgs);
}
}
llvm_unreachable("covered switch");
}
/// Delete an apply site that's been successfully devirtualized.
void swift::deleteDevirtualizedApply(ApplySite old) {
auto *oldApply = old.getInstruction();
recursivelyDeleteTriviallyDeadInstructions(oldApply, true);
}
SILFunction *swift::getTargetClassMethod(SILModule &module, ClassDecl *cd,
CanType classType, MethodInst *mi) {
assert((isa<ClassMethodInst>(mi) || isa<SuperMethodInst>(mi)) &&
"Only class_method and super_method instructions are supported");
SILDeclRef member = mi->getMember();
SILType silType = SILType::getPrimitiveObjectType(classType);
if (auto *vtable = module.lookUpSpecializedVTable(silType)) {
return vtable->getEntry(module, member)->getImplementation();
}
return module.lookUpFunctionInVTable(cd, member);
}
CanType swift::getSelfInstanceType(CanType classOrMetatypeType) {
if (auto metaType = dyn_cast<MetatypeType>(classOrMetatypeType))
classOrMetatypeType = metaType.getInstanceType();
if (auto selfType = dyn_cast<DynamicSelfType>(classOrMetatypeType))
classOrMetatypeType = selfType.getSelfType();
return classOrMetatypeType;
}
/// Check if it is possible to devirtualize an Apply instruction
/// and a class member obtained using the class_method instruction into
/// a direct call to a specific member of a specific class.
///
/// \p applySite is the apply to devirtualize.
/// \p cd is the class declaration we are devirtualizing for.
/// return true if it is possible to devirtualize, false - otherwise.
bool swift::canDevirtualizeClassMethod(FullApplySite applySite, ClassDecl *cd,
CanType classType,
OptRemark::Emitter *ore,
bool isEffectivelyFinalMethod) {
LLVM_DEBUG(llvm::dbgs() << " Trying to devirtualize : "
<< *applySite.getInstruction());
SILModule &module = applySite.getModule();
auto *mi = cast<MethodInst>(applySite.getCallee());
// Find the implementation of the member which should be invoked.
auto *f = getTargetClassMethod(module, cd, classType, mi);
// If we do not find any such function, we have no function to devirtualize
// to... so bail.
if (!f) {
LLVM_DEBUG(llvm::dbgs() << " FAIL: Could not find matching VTable "
"or vtable method for this class.\n");
return false;
}
// We need to disable the “effectively final” opt if a function is inlinable
if (isEffectivelyFinalMethod && applySite.getFunction()->isSerialized()) {
LLVM_DEBUG(llvm::dbgs() << " FAIL: Could not optimize function "
"because it is an effectively-final inlinable: "
<< applySite.getFunction()->getName() << "\n");
return false;
}
// Mandatory inlining does class method devirtualization. I'm not sure if this
// is really needed, but some test rely on this.
// So even for Onone functions we have to do it if the SILStage is raw.
if (f->getModule().getStage() != SILStage::Raw && !f->shouldOptimize()) {
// Do not consider functions that should not be optimized.
LLVM_DEBUG(llvm::dbgs()
<< " FAIL: Could not optimize function "
<< " because it is marked no-opt: " << f->getName() << "\n");
return false;
}
if (applySite.getFunction()->isAnySerialized()) {
// function_ref inside fragile function cannot reference a private or
// hidden symbol.
if (!f->hasValidLinkageForFragileRef(
applySite.getFunction()->getSerializedKind()))
return false;
}
// devirtualizeClassMethod below does not support this case. It currently
// assumes it can try_apply call the target.
if (!f->getLoweredFunctionType()->hasErrorResult()
&& isa<TryApplyInst>(applySite.getInstruction())) {
LLVM_DEBUG(llvm::dbgs() << " FAIL: Trying to devirtualize a "
"try_apply but vtable entry has no error result.\n");
return false;
}
// A narrow fix for https://github.com/swiftlang/swift/issues/79318
// to make sure that uses of distributed requirement witnesses are
// not devirtualized because that results in a loss of the ad-hoc
// requirement infomation in the re-created substitution map.
//
// We have a similar check in `canSpecializeFunction` which presents
// specialization for exactly the same reason.
//
// TODO: A better way to fix this would be to record the ad-hoc conformance
// requirement in `RequirementEnvironment` and adjust IRGen to handle it.
if (f->hasLocation()) {
if (auto *funcDecl =
dyn_cast_or_null<FuncDecl>(f->getLocation().getAsDeclContext())) {
if (funcDecl->isDistributedWitnessWithAdHocSerializationRequirement())
return false;
}
}
return true;
}
/// Devirtualize an apply of a class method.
///
/// \p applySite is the apply to devirtualize.
/// \p ClassOrMetatype is a class value or metatype value that is the
/// self argument of the apply we will devirtualize.
/// return the result value of the new ApplyInst if created one or null.
///
/// Return the new apply and true if the CFG was also modified.
std::pair<FullApplySite, bool /* changedCFG */>
swift::devirtualizeClassMethod(SILPassManager *pm, FullApplySite applySite,
SILValue classOrMetatype, ClassDecl *cd,
CanType classType, OptRemark::Emitter *ore) {
bool changedCFG = false;
LLVM_DEBUG(llvm::dbgs() << " Trying to devirtualize : "
<< *applySite.getInstruction());
SILModule &module = applySite.getModule();
auto *mi = cast<MethodInst>(applySite.getCallee());
auto *f = getTargetClassMethod(module, cd, classType, mi);
CanSILFunctionType genCalleeType = f->getLoweredFunctionTypeInContext(
TypeExpansionContext(*applySite.getFunction()));
SubstitutionMap subs = getSubstitutionsForCallee(
module, genCalleeType, classOrMetatype->getType().getASTType(),
applySite);
CanSILFunctionType substCalleeType = genCalleeType;
if (genCalleeType->isPolymorphic())
substCalleeType = genCalleeType->substGenericArgs(
module, subs, TypeExpansionContext(*applySite.getFunction()));
SILFunctionConventions substConv(substCalleeType, module);
SILBuilderWithScope builder(applySite.getInstruction());
SILLocation loc = applySite.getLoc();
auto *fri = builder.createFunctionRefFor(loc, f);
// Create the argument list for the new apply, casting when needed
// in order to handle covariant indirect return types and
// contravariant argument types.
SmallVector<SILValue, 8> newArgs;
// If we have a value that is owned, but that we are going to use in as a
// guaranteed argument, we need to borrow/unborrow the argument. Otherwise, we
// will introduce new consuming uses. In contrast, if we have an owned value,
// we are ok due to the forwarding nature of upcasts.
SmallVector<SILValue, 8> newArgBorrows;
auto indirectResultArgIter = applySite.getIndirectSILResults().begin();
for (auto resultTy : substConv.getIndirectSILResultTypes(
applySite.getFunction()->getTypeExpansionContext())) {
auto castRes = castValueToABICompatibleType(
&builder, pm, loc, *indirectResultArgIter, indirectResultArgIter->getType(),
resultTy, {applySite.getInstruction()});
newArgs.push_back(castRes.first);
changedCFG |= castRes.second;
++indirectResultArgIter;
}
if (SILType errorTy = substConv.getIndirectErrorResultType(applySite.getFunction()->getTypeExpansionContext())) {
auto errorArgs = applySite.getIndirectSILErrorResults();
ASSERT(errorArgs.size() == 1);
SILValue errorArg = errorArgs[0];
auto castRes = castValueToABICompatibleType(
&builder, pm, loc, errorArg, errorArg->getType(),
errorTy, {applySite.getInstruction()});
newArgs.push_back(castRes.first);
changedCFG |= castRes.second;
}
auto paramArgIter = applySite.getArgumentsWithoutIndirectResults().begin();
// Skip the last parameter, which is `self`. Add it below.
for (auto param : substConv.getParameters()) {
auto paramType =
substConv.getSILType(param, builder.getTypeExpansionContext());
SILValue arg = *paramArgIter;
if (builder.hasOwnership() && arg->getType().isObject() &&
arg->getOwnershipKind() == OwnershipKind::Owned &&
param.isGuaranteedInCaller()) {
SILBuilderWithScope borrowBuilder(applySite.getInstruction(), builder);
arg = borrowBuilder.createBeginBorrow(loc, arg);
newArgBorrows.push_back(arg);
}
auto argCastRes =
castValueToABICompatibleType(&builder, pm, loc, arg,
paramArgIter->getType(), paramType,
{applySite.getInstruction()});
newArgs.push_back(argCastRes.first);
changedCFG |= argCastRes.second;
++paramArgIter;
}
ApplySite newAS;
bool neededCFGChange;
std::tie(newAS, neededCFGChange) = replaceApplySite(
builder, pm, loc, applySite, fri, subs, newArgs, substConv, newArgBorrows);
changedCFG |= neededCFGChange;
FullApplySite newAI = FullApplySite::isa(newAS.getInstruction());
assert(newAI);
LLVM_DEBUG(llvm::dbgs() << " SUCCESS: " << f->getName() << "\n");
if (ore)
ore->emit([&]() {
using namespace OptRemark;
return RemarkPassed("ClassMethodDevirtualized",
*applySite.getInstruction())
<< "Devirtualized call to class method " << NV("Method", f);
});
++NumClassDevirt;
return {newAI, changedCFG};
}
std::pair<FullApplySite, bool> swift::tryDevirtualizeClassMethod(
SILPassManager *pm, FullApplySite applySite, SILValue classInstance, ClassDecl *cd,
CanType classType, OptRemark::Emitter *ore, bool isEffectivelyFinalMethod) {
if (!canDevirtualizeClassMethod(applySite, cd, classType, ore,
isEffectivelyFinalMethod))
return {FullApplySite(), false};
return devirtualizeClassMethod(pm, applySite, classInstance, cd, classType, ore);
}
//===----------------------------------------------------------------------===//
// Witness Method Optimization
//===----------------------------------------------------------------------===//
/// Compute substitutions for making a direct call to a SIL function with
/// @convention(witness_method) convention.
///
/// Such functions have a substituted generic signature where the
/// abstract `Self` parameter from the original type of the protocol
/// requirement is replaced by a concrete type.
///
/// Thus, the original substitutions of the apply instruction that
/// are written in terms of the requirement's generic signature need
/// to be remapped to substitutions suitable for the witness signature.
///
/// Supported remappings are:
///
/// - (Concrete witness thunk) Original substitutions:
/// [Self := ConcreteType, R0 := X0, R1 := X1, ...]
/// - Requirement generic signature:
/// <Self : P, R0, R1, ...>
/// - Witness thunk generic signature:
/// <W0, W1, ...>
/// - Remapped substitutions:
/// [W0 := X0, W1 := X1, ...]
///
/// - (Class witness thunk) Original substitutions:
/// [Self := C<A0, A1>, T0 := X0, T1 := X1, ...]
/// - Requirement generic signature:
/// <Self : P, R0, R1, ...>
/// - Witness thunk generic signature:
/// <Self : C<B0, B1>, B0, B1, W0, W1, ...>
/// - Remapped substitutions:
/// [Self := C<B0, B1>, B0 := A0, B1 := A1, W0 := X0, W1 := X1]
///
/// - (Default witness thunk) Original substitutions:
/// [Self := ConcreteType, R0 := X0, R1 := X1, ...]
/// - Requirement generic signature:
/// <Self : P, R0, R1, ...>
/// - Witness thunk generic signature:
/// <Self : P, W0, W1, ...>
/// - Remapped substitutions:
/// [Self := ConcreteType, W0 := X0, W1 := X1, ...]
///
/// \param conformanceRef The (possibly-specialized) conformance
/// \param requirementSig The generic signature of the requirement
/// \param witnessThunkSig The generic signature of the witness method
/// \param origSubMap The substitutions from the call instruction
/// \param isSelfAbstract True if the Self type of the witness method is
/// still abstract (i.e., not a concrete type).
/// \param classWitness The ClassDecl if this is a class witness method
static SubstitutionMap
getWitnessMethodSubstitutions(
ASTContext &ctx,
ProtocolConformanceRef conformanceRef,
GenericSignature requirementSig,
GenericSignature witnessThunkSig,
SubstitutionMap origSubMap,
bool isSelfAbstract,
ClassDecl *classWitness) {
if (witnessThunkSig.isNull())
return SubstitutionMap();
if (isSelfAbstract && !classWitness)
return origSubMap;
assert(!conformanceRef.isAbstract());
auto conformance = conformanceRef.getConcrete();
auto selfType = conformance->getProtocol()->getSelfInterfaceType();
// If `Self` maps to a bound generic type, this gives us the
// substitutions for the concrete type's generic parameters.
auto baseSubMap = conformance->getSubstitutionMap();
auto *rootConformance = conformance->getRootConformance();
unsigned baseDepth = rootConformance->getGenericSignature().getNextDepth();
// witnessThunkSig begins with the optional class 'Self', followed by the
// generic parameters of the concrete conforming type, followed by the
// generic parameters of the protocol requirement, if any.
//
// - The 'Self' parameter is replaced with the conforming type.
// - The conforming type's generic parameters are replaced by the
// conformance substitutions.
// - The protocol requirement's generic parameters are replaced from the
// substitution map at the call site.
return SubstitutionMap::get(
witnessThunkSig,
[&](SubstitutableType *type) {
auto *paramType = type->castTo<GenericTypeParamType>();
unsigned depth = paramType->getDepth();
if (classWitness != nullptr) {
if (depth == 0) {
assert(paramType->getIndex() == 0);
return selfType.subst(origSubMap);
}
--depth;
}
if (depth < baseDepth) {
paramType = paramType->withDepth(depth);
return Type(paramType).subst(baseSubMap);
}
depth = depth - baseDepth + 1;
paramType = paramType->withDepth(depth);
return Type(paramType).subst(origSubMap);
},
[&](InFlightSubstitution &IFS, Type type, ProtocolDecl *proto) {
auto *paramType = type->getRootGenericParam();
unsigned depth = paramType->getDepth();
if (classWitness != nullptr) {
if (depth == 0) {
assert(type->isEqual(paramType));
assert(paramType->getIndex() == 0);
return conformanceRef;
}
--depth;
}
if (depth < baseDepth) {
type = CanType(type.transformRec([&](TypeBase *t) -> std::optional<Type> {
if (t == paramType)
return paramType->withDepth(depth);
assert(!isa<GenericTypeParamType>(t));
return std::nullopt;
}));
return baseSubMap.lookupConformance(type->getCanonicalType(), proto);
}
depth = depth - baseDepth + 1;
type = CanType(type.transformRec([&](TypeBase *t) -> std::optional<Type> {
if (t == paramType)
return paramType->withDepth(depth);
assert(!isa<GenericTypeParamType>(t));
return std::nullopt;
}));
return origSubMap.lookupConformance(type->getCanonicalType(), proto);
});
}
SubstitutionMap
swift::getWitnessMethodSubstitutions(SILModule &module, ApplySite applySite,
SILFunction *f,
ProtocolConformanceRef cRef) {
auto witnessFnTy = f->getLoweredFunctionTypeInContext(
TypeExpansionContext(*applySite.getFunction()));
assert(witnessFnTy->getRepresentation() ==
SILFunctionTypeRepresentation::WitnessMethod);
auto requirementSig = applySite.getOrigCalleeType()->getInvocationGenericSignature();
auto witnessThunkSig = witnessFnTy->getInvocationGenericSignature();
SubstitutionMap origSubs = applySite.getSubstitutionMap();
auto &ctx = module.getASTContext();
bool isSelfAbstract =
witnessFnTy
->getSelfInstanceType(
module, applySite.getFunction()->getTypeExpansionContext())
->is<GenericTypeParamType>();
auto *classWitness = witnessFnTy->getWitnessMethodClass(
module, applySite.getFunction()->getTypeExpansionContext());
return ::getWitnessMethodSubstitutions(ctx, cRef, requirementSig,
witnessThunkSig, origSubs,
isSelfAbstract, classWitness);
}
/// Generate a new apply of a function_ref to replace an apply of a
/// witness_method when we've determined the actual function we'll end
/// up calling.
///
/// Return the new apply and true if the CFG was also modified.
static std::pair<ApplySite, bool>
devirtualizeWitnessMethod(SILPassManager *pm, ApplySite applySite, SILFunction *f,
ProtocolConformanceRef cRef,
OptRemark::Emitter *ore) {
bool changedCFG = false;
// We know the witness thunk and the corresponding set of substitutions
// required to invoke the protocol method at this point.
auto &module = applySite.getModule();
// Collect all the required substitutions.
//
// The complete set of substitutions may be different, e.g. because the found
// witness thunk f may have been created by a specialization pass and have
// additional generic parameters.
auto subMap = getWitnessMethodSubstitutions(module, applySite, f, cRef);
// Figure out the exact bound type of the function to be called by
// applying all substitutions.
auto typeExpansionContext =
applySite.getFunction()->getTypeExpansionContext();
auto calleeCanType = f->getLoweredFunctionTypeInContext(typeExpansionContext);
auto substCalleeCanType =
calleeCanType->substGenericArgs(module, subMap, typeExpansionContext);
// Collect arguments from the apply instruction.
SmallVector<SILValue, 4> arguments;
SmallVector<SILValue, 4> borrowedArgs;
// Iterate over the non self arguments and add them to the
// new argument list, upcasting when required.
SILBuilderWithScope argBuilder(applySite.getInstruction());
SILFunctionConventions substConv(substCalleeCanType, module);
unsigned substArgIdx = applySite.getCalleeArgIndexOfFirstAppliedArg();
for (auto arg : applySite.getArguments()) {
auto paramInfo = substConv.getSILArgumentConvention(substArgIdx);
auto paramType =
substConv.getSILArgumentType(substArgIdx++, typeExpansionContext);
if (arg->getType() != paramType) {
if (argBuilder.hasOwnership() &&
applySite.getKind() != ApplySiteKind::PartialApplyInst &&
arg->getType().isObject() &&
arg->getOwnershipKind() == OwnershipKind::Owned &&
paramInfo.isGuaranteedConventionInCaller()) {
SILBuilderWithScope borrowBuilder(applySite.getInstruction(),
argBuilder);
arg = borrowBuilder.createBeginBorrow(applySite.getLoc(), arg);
borrowedArgs.push_back(arg);
}
auto argCastRes = castValueToABICompatibleType(
&argBuilder, pm, applySite.getLoc(), arg, arg->getType(), paramType,
applySite.getInstruction());
arg = argCastRes.first;
changedCFG |= argCastRes.second;
}
arguments.push_back(arg);
}
assert(substArgIdx == substConv.getNumSILArguments());
// Replace old apply instruction by a new apply instruction that invokes
// the witness thunk.
SILBuilderWithScope applyBuilder(applySite.getInstruction());
SILLocation loc = applySite.getLoc();
auto *fri = applyBuilder.createFunctionRefFor(loc, f);
ApplySite newApplySite;
bool neededCFGChange = false;
std::tie(newApplySite, neededCFGChange) =
replaceApplySite(applyBuilder, pm, loc, applySite, fri, subMap, arguments,
substConv, borrowedArgs);
changedCFG |= neededCFGChange;
if (ore)
ore->emit([&]() {
using namespace OptRemark;
return RemarkPassed("WitnessMethodDevirtualized",
*applySite.getInstruction())
<< "Devirtualized call to " << NV("Method", f);
});
++NumWitnessDevirt;
return {newApplySite, changedCFG};
}
static bool isNonGenericThunkOfGenericExternalFunction(SILFunction *thunk) {
if (!thunk->isThunk())
return false;
if (thunk->getGenericSignature())
return false;
for (SILBasicBlock &block : *thunk) {
for (SILInstruction &inst : block) {
if (FullApplySite fas = FullApplySite::isa(&inst)) {
if (SILFunction *calledFunc = fas.getReferencedFunctionOrNull()) {
if (fas.hasSubstitutions() && !calledFunc->isDefinition())
return true;
}
}
}
}
return false;
}
static bool canDevirtualizeWitnessMethod(ApplySite applySite, bool isMandatory) {
SILFunction *f;
SILWitnessTable *wt;
auto *wmi = cast<WitnessMethodInst>(applySite.getCallee());
// Handle vanishing tuples: don't devirtualize a call to a tuple conformance
// if the lookup type can possibly be unwrapped after substitution.
if (auto tupleType = dyn_cast<TupleType>(wmi->getLookupType())) {
if (tupleType->containsPackExpansionType() &&
tupleType->getNumScalarElements() <= 1) {
return false;
}
}
std::tie(f, wt) = lookUpFunctionInWitnessTable(wmi, SILModule::LinkingMode::LinkAll);
if (!f)
return false;
// function_ref inside fragile function cannot reference a private or
// hidden symbol.
if (!isMandatory &&
applySite.getFunction()->isAnySerialized() &&
!f->hasValidLinkageForFragileRef(applySite.getFunction()->getSerializedKind()))
return false;
// devirtualizeWitnessMethod below does not support this case. It currently
// assumes it can try_apply call the target.
if (!f->getLoweredFunctionType()->hasErrorResult()
&& isa<TryApplyInst>(applySite.getInstruction())) {
LLVM_DEBUG(llvm::dbgs() << " FAIL: Trying to devirtualize a "
"try_apply but wtable entry has no error result.\n");
return false;
}
// The following check is for performance reasons: if `f` is a non-generic thunk
// which calls a (not inlinable) generic function in the defining module, it's
// more efficient to not devirtualize, but call the non-generic thunk - even though
// it's done through the witness table.
// Example:
// ```
// protocol P {
// func f(x: [Int]) // not generic
// }
// struct S: P {
// func f(x: some RandomAccessCollection<Int>) { ... } // generic
// }
// ```
// In the defining module, the generic conformance can be specialized (which is not
// possible in the client module, because it's not inlinable).
if (!isMandatory && isNonGenericThunkOfGenericExternalFunction(f)) {
return false;
}
// FIXME: devirtualizeWitnessMethod does not support cases with covariant
// 'Self'-rooted type parameters nested inside a collection type, like
// '[Self]' or '[* : Self.A]', because it doesn't know how to deal with
// associated collection upcasts.
const Type interfaceTy = wmi->getMember()
.getDecl()
->getInterfaceType()
// Skip the 'self' parameter.
->castTo<AnyFunctionType>()
->getResult();
if (!interfaceTy->hasTypeParameter())
return true;
auto subs = getWitnessMethodSubstitutions(f->getModule(), applySite,
f, wmi->getConformance());
CanSILFunctionType substCalleTy = f->getLoweredFunctionType()->substGenericArgs(
f->getModule(), subs,
applySite.getFunction()->getTypeExpansionContext());
CanSILFunctionType applySubstCalleeTy = applySite.getSubstCalleeType();
// If the function types match, there is no problem.
if (substCalleTy == applySubstCalleeTy)
return true;
auto selfGP = wmi->getLookupProtocol()->getSelfInterfaceType();
auto isSelfRootedTypeParameter = [selfGP](Type T) -> bool {
if (!T->hasTypeParameter())
return false;
if (T->isTypeParameter()) {
return T->getRootGenericParam()->isEqual(selfGP);
}
return false;
};
return !interfaceTy.findIf([&](Type T) -> bool {
if (!T->hasTypeParameter())
return false;
if (T->isArray() || T->isDictionary()) {
return T.findIf(isSelfRootedTypeParameter);
}
if (auto *FT = T->getAs<FunctionType>()) {
for (const auto &Param : FT->getParams()) {
if (Param.isVariadic() && T.findIf(isSelfRootedTypeParameter))
return true;
}
}
return false;
});
}
/// In the cases where we can statically determine the function that
/// we'll call to, replace an apply of a witness_method with an apply
/// of a function_ref, returning the new apply.
std::pair<ApplySite, bool>
swift::tryDevirtualizeWitnessMethod(SILPassManager *pm, ApplySite applySite,
OptRemark::Emitter *ore,
bool isMandatory) {
if (!canDevirtualizeWitnessMethod(applySite, isMandatory))
return {ApplySite(), false};
SILFunction *f;
SILWitnessTable *wt;
auto *wmi = cast<WitnessMethodInst>(applySite.getCallee());
std::tie(f, wt) = lookUpFunctionInWitnessTable(wmi, SILModule::LinkingMode::LinkAll);
return devirtualizeWitnessMethod(pm, applySite, f, wmi->getConformance(), ore);
}
//===----------------------------------------------------------------------===//
// Top Level Driver
//===----------------------------------------------------------------------===//
/// Attempt to devirtualize the given apply if possible, and return a
/// new instruction in that case, or nullptr otherwise.
///
/// Return the new apply and true if the CFG was also modified.
std::pair<ApplySite, bool>
swift::tryDevirtualizeApply(SILPassManager *pm, ApplySite applySite, ClassHierarchyAnalysis *cha,
OptRemark::Emitter *ore, bool isMandatory) {
LLVM_DEBUG(llvm::dbgs() << " Trying to devirtualize: "
<< *applySite.getInstruction());
// Devirtualize apply instructions that call witness_method instructions:
//
// %8 = witness_method $Optional<UInt16>, #LogicValue.boolValue!getter
// %9 = apply %8<Self = CodeUnit?>(%6#1) : ...
//
if (isa<WitnessMethodInst>(applySite.getCallee()))
return tryDevirtualizeWitnessMethod(pm, applySite, ore, isMandatory);
// TODO: check if we can also de-virtualize partial applies of class methods.
FullApplySite fas = FullApplySite::isa(applySite.getInstruction());
if (!fas)
return {ApplySite(), false};
/// Optimize a class_method and alloc_ref pair into a direct function
/// reference:
///
/// \code
/// %XX = alloc_ref $Foo
/// %YY = class_method %XX : $Foo, #Foo.get : $@convention(method)...
/// \endcode
///
/// or
///
/// %XX = metatype $...
/// %YY = class_method %XX : ...
///
/// into
///
/// %YY = function_ref @...
if (auto *cmi = dyn_cast<ClassMethodInst>(fas.getCallee())) {
auto instance = stripUpCasts(cmi->getOperand());
auto classType = getSelfInstanceType(instance->getType().getASTType());
auto *cd = classType.getClassOrBoundGenericClass();
if (isEffectivelyFinalMethod(fas, classType, cd, cha))
return tryDevirtualizeClassMethod(pm, fas, instance, cd, classType, ore,
true /*isEffectivelyFinalMethod*/);
// Try to check if the exact dynamic type of the instance is statically
// known.
if (auto instance = getInstanceWithExactDynamicType(cmi->getOperand(), cha)) {
// Update the classDecl, because we are stripping casts more aggressively
// in getInstanceWithExactDynamicType than in stripUpCasts.
CanType classType = getSelfInstanceType(instance->getType().getASTType());
// This should never be null - make the check just to be on the safe side.
if (ClassDecl *cd = classType.getClassOrBoundGenericClass())
return tryDevirtualizeClassMethod(pm, fas, instance, cd, classType, ore);
return {ApplySite(), false};
}
if (auto exactTy = getExactDynamicType(cmi->getOperand(), cha)) {
if (exactTy == cmi->getOperand()->getType())
return tryDevirtualizeClassMethod(pm, fas, cmi->getOperand(), cd, classType,
ore);
}
}
if (isa<SuperMethodInst>(fas.getCallee())) {
auto instance = fas.getArguments().back();
auto classType = getSelfInstanceType(instance->getType().getASTType());
auto *cd = classType.getClassOrBoundGenericClass();
return tryDevirtualizeClassMethod(pm, fas, instance, cd, classType, ore);
}
return {ApplySite(), false};
}
bool swift::canDevirtualizeApply(FullApplySite applySite,
ClassHierarchyAnalysis *cha) {
LLVM_DEBUG(llvm::dbgs() << " Trying to devirtualize: "
<< *applySite.getInstruction());
// Devirtualize apply instructions that call witness_method instructions:
//
// %8 = witness_method $Optional<UInt16>, #LogicValue.boolValue!getter
// %9 = apply %8<Self = CodeUnit?>(%6#1) : ...
//
if (isa<WitnessMethodInst>(applySite.getCallee()))
return canDevirtualizeWitnessMethod(applySite, /*isMandatory*/ false);
/// Optimize a class_method and alloc_ref pair into a direct function
/// reference:
///
/// \code
/// %XX = alloc_ref $Foo
/// %YY = class_method %XX : $Foo, #Foo.get : $@convention(method)...
/// \endcode
///
/// or
///
/// %XX = metatype $...
/// %YY = class_method %XX : ...
///
/// into
///
/// %YY = function_ref @...
if (auto *cmi = dyn_cast<ClassMethodInst>(applySite.getCallee())) {
auto instance = stripUpCasts(cmi->getOperand());
auto classType = getSelfInstanceType(instance->getType().getASTType());
auto *cd = classType.getClassOrBoundGenericClass();
if (isEffectivelyFinalMethod(applySite, classType, cd, cha))
return canDevirtualizeClassMethod(applySite, cd, classType,
nullptr /*ore*/,
true /*isEffectivelyFinalMethod*/);
// Try to check if the exact dynamic type of the instance is statically
// known.
if (auto instance = getInstanceWithExactDynamicType(cmi->getOperand(), cha)) {
CanType classType = getSelfInstanceType(instance->getType().getASTType());
ClassDecl *cd = classType.getClassOrBoundGenericClass();
return cd && canDevirtualizeClassMethod(applySite, cd, classType);
}
if (auto exactTy = getExactDynamicType(cmi->getOperand(), cha)) {
if (exactTy == cmi->getOperand()->getType())
return canDevirtualizeClassMethod(applySite, cd, classType);
}
}
if (isa<SuperMethodInst>(applySite.getCallee())) {
auto instance = applySite.getArguments().back();
auto classType = getSelfInstanceType(instance->getType().getASTType());
auto *cd = classType.getClassOrBoundGenericClass();
return canDevirtualizeClassMethod(applySite, cd, classType);
}
return false;
}