Files
swift-mirror/lib/Sema/DerivedConformance/DerivedConformance.cpp

1005 lines
38 KiB
C++

//===--- DerivedConformance.cpp ---------------------------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2025 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "DerivedConformance.h"
#include "TypeCheckConcurrency.h"
#include "TypeChecker.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "swift/ClangImporter/ClangModule.h"
using namespace swift;
enum NonconformingMemberKind { AssociatedValue, StoredProperty };
DerivedConformance::DerivedConformance(
const NormalProtocolConformance *conformance, NominalTypeDecl *nominal,
ProtocolDecl *protocol)
: Context(nominal->getASTContext()), Conformance(conformance),
Nominal(nominal), Protocol(protocol) {
auto *DC = Conformance->getDeclContext();
ConformanceDecl = DC->getInnermostDeclarationDeclContext();
assert(ConformanceDecl);
assert(DC->getSelfNominalTypeDecl() == nominal);
}
DeclContext *DerivedConformance::getConformanceContext() const {
return Conformance->getDeclContext();
}
ModuleDecl *DerivedConformance::getParentModule() const {
return getConformanceContext()->getParentModule();
}
void DerivedConformance::addMembersToConformanceContext(
ArrayRef<Decl *> children) {
auto IDC = cast<IterableDeclContext>(ConformanceDecl);
for (auto child : children)
IDC->addMember(child);
}
void DerivedConformance::addMemberToConformanceContext(
Decl *member, Decl *hint) {
auto IDC = cast<IterableDeclContext>(ConformanceDecl);
IDC->addMember(member, hint, /*insertAtHead=*/false);
}
void DerivedConformance::addMemberToConformanceContext(
Decl *member, bool insertAtHead) {
auto IDC = cast<IterableDeclContext>(ConformanceDecl);
IDC->addMember(member, /*hint=*/nullptr, insertAtHead);
}
Type DerivedConformance::getProtocolType() const {
return Protocol->getDeclaredInterfaceType();
}
bool DerivedConformance::derivesProtocolConformance(DeclContext *DC,
NominalTypeDecl *Nominal,
ProtocolDecl *Protocol) {
const auto derivableKind = Protocol->getKnownDerivableProtocolKind();
if (!derivableKind)
return false;
// When the necessary requirements are met, the conformance to OptionSet
// is serendipitously derived via memberwise initializer synthesis.
if (*derivableKind == KnownDerivableProtocolKind::OptionSet) {
return false;
}
if (*derivableKind == KnownDerivableProtocolKind::Hashable) {
// We can always complete a partial Hashable implementation, and we can
// synthesize a full Hashable implementation for structs and enums with
// Hashable components.
return canDeriveHashable(Nominal);
}
if (*derivableKind == KnownDerivableProtocolKind::Actor)
return canDeriveActor(DC, Nominal);
if (*derivableKind == KnownDerivableProtocolKind::Identifiable)
return canDeriveIdentifiable(Nominal, DC);
if (*derivableKind == KnownDerivableProtocolKind::DistributedActor)
return canDeriveDistributedActor(Nominal, DC);
if (*derivableKind == KnownDerivableProtocolKind::DistributedActorSystem)
return canDeriveDistributedActorSystem(Nominal, DC);
if (*derivableKind == KnownDerivableProtocolKind::AdditiveArithmetic)
return canDeriveAdditiveArithmetic(Nominal, DC);
// Eagerly return true here. Actual synthesis conditions are checked in
// `DerivedConformance::deriveDifferentiable`: they are complicated and depend
// on the requirement being derived.
if (*derivableKind == KnownDerivableProtocolKind::Differentiable)
return true;
if (*derivableKind == KnownDerivableProtocolKind::Encodable) {
return canDeriveEncodable(Nominal);
}
if (*derivableKind == KnownDerivableProtocolKind::Decodable) {
return canDeriveDecodable(Nominal);
}
if (auto *enumDecl = dyn_cast<EnumDecl>(Nominal)) {
switch (*derivableKind) {
// The presence of a raw type is an explicit declaration that
// the compiler should derive a RawRepresentable conformance.
case KnownDerivableProtocolKind::RawRepresentable:
return canDeriveRawRepresentable(DC, Nominal);
// Enums without associated values can implicitly derive Equatable
// conformance.
case KnownDerivableProtocolKind::Equatable:
return canDeriveEquatable(DC, Nominal);
case KnownDerivableProtocolKind::Comparable:
return !enumDecl->hasPotentiallyUnavailableCaseValue()
&& canDeriveComparable(DC, enumDecl);
// "Simple" enums without availability attributes can explicitly derive
// a CaseIterable conformance.
//
// FIXME: Lift the availability restriction.
case KnownDerivableProtocolKind::CaseIterable:
return !enumDecl->hasPotentiallyUnavailableCaseValue()
&& enumDecl->hasOnlyCasesWithoutAssociatedValues();
// @objc enums can explicitly derive their _BridgedNSError conformance.
case KnownDerivableProtocolKind::BridgedNSError:
return enumDecl->isObjC() && enumDecl->hasCases()
&& enumDecl->hasOnlyCasesWithoutAssociatedValues();
// Enums without associated values and enums with a raw type of String
// or Int can explicitly derive CodingKey conformance.
case KnownDerivableProtocolKind::CodingKey: {
Type rawType = enumDecl->getRawType();
if (rawType) {
return rawType->isString() || rawType->isInt();
}
// hasOnlyCasesWithoutAssociatedValues will return true for empty enums;
// empty enums are allowed to conform as well.
return enumDecl->hasOnlyCasesWithoutAssociatedValues();
}
default:
return false;
}
} else if (isa<StructDecl>(Nominal)) {
switch (*derivableKind) {
case KnownDerivableProtocolKind::Equatable:
// Structs can explicitly derive Equatable conformance.
return canDeriveEquatable(DC, Nominal);
default:
return false;
}
}
return false;
}
SmallVector<VarDecl *, 3>
DerivedConformance::storedPropertiesNotConformingToProtocol(
DeclContext *DC, StructDecl *theStruct, ProtocolDecl *protocol) {
auto storedProperties = theStruct->getStoredProperties();
SmallVector<VarDecl *, 3> nonconformingProperties;
for (auto propertyDecl : storedProperties) {
if (!propertyDecl->isUserAccessible())
continue;
auto type = propertyDecl->getValueInterfaceType();
if (!type)
nonconformingProperties.push_back(propertyDecl);
if (!checkConformance(DC->mapTypeIntoContext(type), protocol)) {
nonconformingProperties.push_back(propertyDecl);
}
}
return nonconformingProperties;
}
void DerivedConformance::tryDiagnoseFailedDerivation(DeclContext *DC,
NominalTypeDecl *nominal,
ProtocolDecl *protocol) {
auto knownProtocol = protocol->getKnownProtocolKind();
if (!knownProtocol)
return;
if (*knownProtocol == KnownProtocolKind::Equatable) {
tryDiagnoseFailedEquatableDerivation(DC, nominal);
}
if (*knownProtocol == KnownProtocolKind::Hashable) {
tryDiagnoseFailedHashableDerivation(DC, nominal);
}
if (*knownProtocol == KnownProtocolKind::Comparable) {
tryDiagnoseFailedComparableDerivation(DC, nominal);
}
if (*knownProtocol == KnownProtocolKind::DistributedActor) {
tryDiagnoseFailedDistributedActorDerivation(DC, nominal);
}
if (*knownProtocol == KnownProtocolKind::DistributedActorSystem) {
tryDiagnoseFailedDistributedActorSystemDerivation(DC, nominal);
}
}
void DerivedConformance::diagnoseAnyNonConformingMemberTypes(
DeclContext *DC, NominalTypeDecl *nominal, ProtocolDecl *protocol) {
ASTContext &ctx = DC->getASTContext();
if (auto *enumDecl = dyn_cast<EnumDecl>(nominal)) {
auto nonconformingAssociatedTypes =
associatedValuesNotConformingToProtocol(DC, enumDecl, protocol);
for (auto *typeToDiagnose : nonconformingAssociatedTypes) {
SourceLoc reprLoc;
if (auto *repr = typeToDiagnose->getTypeRepr())
reprLoc = repr->getStartLoc();
ctx.Diags.diagnose(
reprLoc, diag::missing_member_type_conformance_prevents_synthesis,
NonconformingMemberKind::AssociatedValue,
typeToDiagnose->getInterfaceType(),
protocol->getDeclaredInterfaceType(),
nominal->getDeclaredInterfaceType());
}
}
if (auto *structDecl = dyn_cast<StructDecl>(nominal)) {
auto nonconformingStoredProperties =
storedPropertiesNotConformingToProtocol(DC, structDecl, protocol);
for (auto *propertyToDiagnose : nonconformingStoredProperties) {
ctx.Diags.diagnose(
propertyToDiagnose->getLoc(),
diag::missing_member_type_conformance_prevents_synthesis,
NonconformingMemberKind::StoredProperty,
propertyToDiagnose->getInterfaceType(),
protocol->getDeclaredInterfaceType(),
nominal->getDeclaredInterfaceType());
}
}
}
void DerivedConformance::diagnoseIfSynthesisUnsupportedForDecl(
NominalTypeDecl *nominal, ProtocolDecl *protocol) {
auto shouldDiagnose = false;
if (protocol->isSpecificProtocol(KnownProtocolKind::Equatable) ||
protocol->isSpecificProtocol(KnownProtocolKind::Hashable)) {
shouldDiagnose = isa<ClassDecl>(nominal);
}
if (protocol->isSpecificProtocol(KnownProtocolKind::Comparable)) {
shouldDiagnose = !isa<EnumDecl>(nominal);
}
if (shouldDiagnose) {
auto &ctx = nominal->getASTContext();
ctx.Diags.diagnose(nominal->getLoc(),
diag::automatic_protocol_synthesis_unsupported, protocol,
nominal);
}
}
ValueDecl *DerivedConformance::getDerivableRequirement(NominalTypeDecl *nominal,
ValueDecl *requirement) {
// Note: whenever you update this function, also update
// deriveProtocolRequirement.
ASTContext &ctx = nominal->getASTContext();
const auto name = requirement->getName();
// Local function that retrieves the requirement with the same name as
// the provided requirement, but within the given known protocol.
auto getRequirement = [&](KnownProtocolKind kind) -> ValueDecl * {
// Dig out the protocol.
auto proto = ctx.getProtocol(kind);
if (!proto) return nullptr;
auto conformance = lookupConformance(
nominal->getDeclaredInterfaceType(), proto);
if (conformance) {
auto DC = conformance.getConcrete()->getDeclContext();
// Check whether this nominal type derives conformances to the protocol.
if (!DerivedConformance::derivesProtocolConformance(DC, nominal, proto))
return nullptr;
}
// Retrieve the requirement.
return proto->getSingleRequirement(name);
};
// Properties.
if (isa<VarDecl>(requirement)) {
// RawRepresentable.rawValue
if (name.isSimpleName(ctx.Id_rawValue))
return getRequirement(KnownProtocolKind::RawRepresentable);
// Hashable.hashValue
if (name.isSimpleName(ctx.Id_hashValue))
return getRequirement(KnownProtocolKind::Hashable);
// CaseIterable.allValues
if (name.isSimpleName(ctx.Id_allCases))
return getRequirement(KnownProtocolKind::CaseIterable);
// _BridgedNSError._nsErrorDomain
if (name.isSimpleName(ctx.Id_nsErrorDomain))
return getRequirement(KnownProtocolKind::BridgedNSError);
// CodingKey.stringValue
if (name.isSimpleName(ctx.Id_stringValue))
return getRequirement(KnownProtocolKind::CodingKey);
// CodingKey.intValue
if (name.isSimpleName(ctx.Id_intValue))
return getRequirement(KnownProtocolKind::CodingKey);
// AdditiveArithmetic.zero
if (name.isSimpleName(ctx.Id_zero))
return getRequirement(KnownProtocolKind::AdditiveArithmetic);
// Actor.unownedExecutor
if (name.isSimpleName(ctx.Id_unownedExecutor)) {
if (nominal->isDistributedActor()) {
return getRequirement(KnownProtocolKind::DistributedActor);
} else {
return getRequirement(KnownProtocolKind::Actor);
}
}
// DistributedActor.id
if (name.isSimpleName(ctx.Id_id))
return getRequirement(KnownProtocolKind::DistributedActor);
// DistributedActor.actorSystem
if (name.isSimpleName(ctx.Id_actorSystem))
return getRequirement(KnownProtocolKind::DistributedActor);
return nullptr;
}
// Functions.
if (auto func = dyn_cast<FuncDecl>(requirement)) {
if (func->isOperator() && name.getBaseName() == "<")
return getRequirement(KnownProtocolKind::Comparable);
if (func->isOperator() && name.getBaseName() == "==")
return getRequirement(KnownProtocolKind::Equatable);
// AdditiveArithmetic.+
// AdditiveArithmetic.-
if (func->isOperator() && name.getArgumentNames().size() == 2 &&
(name.getBaseName() == "+" || name.getBaseName() == "-")) {
return getRequirement(KnownProtocolKind::AdditiveArithmetic);
}
// Differentiable.move(by:)
if (name.isCompoundName() && name.getBaseName() == ctx.Id_move) {
auto argumentNames = name.getArgumentNames();
if (argumentNames.size() == 1 && argumentNames[0] == ctx.Id_by)
return getRequirement(KnownProtocolKind::Differentiable);
}
// Encodable.encode(to: Encoder)
if (name.isCompoundName() && name.getBaseName() == ctx.Id_encode) {
auto argumentNames = name.getArgumentNames();
if (argumentNames.size() == 1 && argumentNames[0] == ctx.Id_to)
return getRequirement(KnownProtocolKind::Encodable);
}
// Hashable.hash(into: inout Hasher)
if (name.isCompoundName() && name.getBaseName() == ctx.Id_hash) {
auto argumentNames = name.getArgumentNames();
if (argumentNames.size() == 1 && argumentNames[0] == ctx.Id_into)
return getRequirement(KnownProtocolKind::Hashable);
}
// static DistributedActor.resolve(id:using:)
if (name.isCompoundName() && name.getBaseName() == ctx.Id_resolve &&
func->isStatic()) {
auto argumentNames = name.getArgumentNames();
if (argumentNames.size() == 2 &&
argumentNames[0] == ctx.Id_id &&
argumentNames[1] == ctx.Id_using) {
return getRequirement(KnownProtocolKind::DistributedActor);
}
}
// DistributedActor.actorSystem
if (name.isCompoundName() &&
name.getBaseName() == ctx.Id_invokeHandlerOnReturn)
return getRequirement(KnownProtocolKind::DistributedActorSystem);
return nullptr;
}
// Initializers.
if (auto ctor = dyn_cast<ConstructorDecl>(requirement)) {
auto argumentNames = name.getArgumentNames();
if (argumentNames.size() == 1) {
if (argumentNames[0] == ctx.Id_rawValue)
return getRequirement(KnownProtocolKind::RawRepresentable);
// CodingKey.init?(stringValue:), CodingKey.init?(intValue:)
if (ctor->isFailable() &&
!ctor->isImplicitlyUnwrappedOptional() &&
(argumentNames[0] == ctx.Id_stringValue ||
argumentNames[0] == ctx.Id_intValue))
return getRequirement(KnownProtocolKind::CodingKey);
// Decodable.init(from: Decoder)
if (argumentNames[0] == ctx.Id_from)
return getRequirement(KnownProtocolKind::Decodable);
}
return nullptr;
}
// Associated types.
if (isa<AssociatedTypeDecl>(requirement)) {
// RawRepresentable.RawValue
if (name.isSimpleName(ctx.Id_RawValue))
return getRequirement(KnownProtocolKind::RawRepresentable);
// CaseIterable.AllCases
if (name.isSimpleName(ctx.Id_AllCases))
return getRequirement(KnownProtocolKind::CaseIterable);
// Differentiable.TangentVector
if (name.isSimpleName(ctx.Id_TangentVector))
return getRequirement(KnownProtocolKind::Differentiable);
return nullptr;
}
return nullptr;
}
DeclRefExpr *
DerivedConformance::createSelfDeclRef(AbstractFunctionDecl *fn) {
ASTContext &C = fn->getASTContext();
auto selfDecl = fn->getImplicitSelfDecl();
return new (C) DeclRefExpr(selfDecl, DeclNameLoc(), /*implicit*/true);
}
CallExpr *
DerivedConformance::createBuiltinCall(ASTContext &ctx,
BuiltinValueKind builtin,
ArrayRef<Type> typeArgs,
ArrayRef<Expr *> args) {
auto name = ctx.getIdentifier(getBuiltinName(builtin));
auto decl = getBuiltinValueDecl(ctx, name);
assert(decl);
ConcreteDeclRef declRef = decl;
auto fnType = decl->getInterfaceType();
if (auto genericFnType = fnType->getAs<GenericFunctionType>()) {
auto generics = genericFnType->getGenericSignature();
auto subs = SubstitutionMap::get(generics, typeArgs,
LookUpConformanceInModule{});
declRef = ConcreteDeclRef(decl, subs);
fnType = genericFnType->substGenericArgs(subs);
} else {
assert(typeArgs.empty());
}
auto resultType = fnType->castTo<FunctionType>()->getResult();
Expr *ref = new (ctx) DeclRefExpr(declRef, DeclNameLoc(),
/*Implicit=*/true,
AccessSemantics::Ordinary, fnType);
auto *argList = ArgumentList::forImplicitUnlabeled(ctx, args);
auto *call = CallExpr::createImplicit(ctx, ref, argList);
call->setType(resultType);
call->setThrows(nullptr);
return call;
}
CallExpr *DerivedConformance::createDiagnoseUnavailableCodeReachedCallExpr(
ASTContext &ctx) {
FuncDecl *diagnoseDecl = ctx.getDiagnoseUnavailableCodeReached();
assert(diagnoseDecl);
auto diagnoseDeclRefExpr =
new (ctx) DeclRefExpr(diagnoseDecl, DeclNameLoc(), true);
diagnoseDeclRefExpr->setType(diagnoseDecl->getInterfaceType());
auto argList = ArgumentList::createImplicit(ctx, {});
auto callExpr = CallExpr::createImplicit(ctx, diagnoseDeclRefExpr, argList);
callExpr->setType(ctx.getNeverType());
callExpr->setThrows(nullptr);
return callExpr;
}
AccessorDecl *
DerivedConformance::addGetterToReadOnlyDerivedProperty(VarDecl *property) {
auto getter = declareDerivedPropertyGetter(property);
property->setImplInfo(StorageImplInfo::getImmutableComputed());
property->setAccessors(SourceLoc(), {getter}, SourceLoc());
return getter;
}
AccessorDecl *
DerivedConformance::declareDerivedPropertyGetter(VarDecl *property) {
auto &C = property->getASTContext();
auto parentDC = property->getDeclContext();
ParameterList *params = ParameterList::createEmpty(C);
auto getterDecl = AccessorDecl::create(
C,
/*FuncLoc=*/SourceLoc(), /*AccessorKeywordLoc=*/SourceLoc(),
AccessorKind::Get, property,
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(), /*ThrownType=*/TypeLoc(),
params, property->getInterfaceType(), parentDC);
getterDecl->setImplicit();
getterDecl->setIsTransparent(false);
getterDecl->copyFormalAccessFrom(property);
return getterDecl;
}
static VarDecl::Introducer
mapIntroducer(DerivedConformance::SynthesizedIntroducer intro) {
switch (intro) {
case DerivedConformance::SynthesizedIntroducer::Let:
return VarDecl::Introducer::Let;
case DerivedConformance::SynthesizedIntroducer::Var:
return VarDecl::Introducer::Var;
}
llvm_unreachable("Invalid synthesized introducer!");
}
std::pair<VarDecl *, PatternBindingDecl *>
DerivedConformance::declareDerivedProperty(SynthesizedIntroducer intro,
Identifier name,
Type propertyInterfaceType,
bool isStatic, bool isFinal) {
auto parentDC = getConformanceContext();
VarDecl *propDecl = new (Context) VarDecl(
/*IsStatic*/ isStatic, mapIntroducer(intro), SourceLoc(), name, parentDC);
propDecl->setImplicit();
propDecl->setSynthesized();
propDecl->copyFormalAccessFrom(Nominal, /*sourceIsParentContext*/ true);
propDecl->setInterfaceType(propertyInterfaceType);
auto propertyContextType =
getConformanceContext()->mapTypeIntoContext(propertyInterfaceType);
Pattern *propPat =
NamedPattern::createImplicit(Context, propDecl, propertyContextType);
propPat = TypedPattern::createImplicit(Context, propPat, propertyContextType);
auto *pbDecl = PatternBindingDecl::createImplicit(
Context, StaticSpellingKind::None, propPat, /*InitExpr*/ nullptr,
parentDC);
return {propDecl, pbDecl};
}
bool DerivedConformance::checkAndDiagnoseDisallowedContext(
ValueDecl *synthesizing) const {
// In general, conformances can't be synthesized in extensions across files;
// but we have to allow it as a special case for Equatable and Hashable on
// enums with no associated values to preserve source compatibility.
bool allowCrossfileExtensions = false;
if (Protocol->isSpecificProtocol(KnownProtocolKind::Equatable) ||
Protocol->isSpecificProtocol(KnownProtocolKind::Hashable)) {
auto ED = dyn_cast<EnumDecl>(Nominal);
allowCrossfileExtensions = ED && ED->hasOnlyCasesWithoutAssociatedValues();
}
if (!allowCrossfileExtensions &&
Nominal->getModuleScopeContext() !=
getConformanceContext()->getModuleScopeContext()) {
ConformanceDecl->diagnose(diag::cannot_synthesize_in_crossfile_extension,
Nominal, synthesizing->getName(),
getProtocolType());
Nominal->diagnose(diag::kind_declared_here, DescriptiveDeclKind::Type);
// Try to insert a stub.
auto Extension = cast<ExtensionDecl>(getConformanceContext());
auto FixitLocation = Extension->getBraces().Start;
llvm::SmallString<128> Text;
{
llvm::raw_svector_ostream SS(Text);
swift::printRequirementStub(synthesizing, Nominal,
Nominal->getDeclaredType(),
Extension->getStartLoc(), SS);
if (!Text.empty()) {
ConformanceDecl->diagnose(diag::missing_witnesses_general)
.fixItInsertAfter(FixitLocation, Text.str());
}
}
return true;
}
// A non-final class can't have a protocol-witnesses initializer in an
// extension.
if (auto CD = dyn_cast<ClassDecl>(Nominal)) {
if (!CD->isSemanticallyFinal() && isa<ConstructorDecl>(synthesizing) &&
isa<ExtensionDecl>(ConformanceDecl)) {
ConformanceDecl->diagnose(
diag::cannot_synthesize_init_in_extension_of_nonfinal,
getProtocolType(), synthesizing->getName());
return true;
}
}
if (auto ED = dyn_cast<EnumDecl>(Nominal)) {
if (ED->getAllCases().empty() &&
(Protocol->isSpecificProtocol(KnownProtocolKind::Encodable) ||
Protocol->isSpecificProtocol(KnownProtocolKind::Decodable))) {
ED->diagnose(diag::codable_synthesis_empty_enum_not_supported,
getProtocolType(), Nominal->getBaseIdentifier());
return false;
}
}
return false;
}
/// Returns a generated guard statement that checks whether the given lhs and
/// rhs expressions are equal. If not equal, the else block for the guard
/// returns `guardReturnValue`.
/// \p C The AST context.
/// \p lhsExpr The first expression to compare for equality.
/// \p rhsExpr The second expression to compare for equality.
/// \p guardReturnValue The expression to return if the two sides are not equal
GuardStmt *DerivedConformance::returnIfNotEqualGuard(ASTContext &C,
Expr *lhsExpr,
Expr *rhsExpr,
Expr *guardReturnValue) {
SmallVector<StmtConditionElement, 1> conditions;
SmallVector<ASTNode, 1> statements;
auto *returnStmt = ReturnStmt::createImplicit(C, guardReturnValue);
statements.push_back(returnStmt);
// Next, generate the condition being checked.
// lhs == rhs
auto cmpFuncExpr = new (C) UnresolvedDeclRefExpr(
DeclNameRef(C.Id_EqualsOperator), DeclRefKind::BinaryOperator,
DeclNameLoc());
auto *cmpExpr = BinaryExpr::create(C, lhsExpr, cmpFuncExpr, rhsExpr,
/*implicit*/ true);
conditions.emplace_back(cmpExpr);
// Build and return the complete guard statement.
// guard lhs == rhs else { return lhs < rhs }
auto body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc());
return new (C) GuardStmt(SourceLoc(), C.AllocateCopy(conditions), body);
}
/// Returns a generated guard statement that checks whether the given lhs and
/// rhs expressions are equal. If not equal, the else block for the guard
/// returns `false`.
/// \p C The AST context.
/// \p lhsExpr The first expression to compare for equality.
/// \p rhsExpr The second expression to compare for equality.
GuardStmt *DerivedConformance::returnFalseIfNotEqualGuard(ASTContext &C,
Expr *lhsExpr,
Expr *rhsExpr) {
// return false
auto falseExpr = new (C) BooleanLiteralExpr(false, SourceLoc(), true);
return returnIfNotEqualGuard(C, lhsExpr, rhsExpr, falseExpr);
}
/// Returns a generated guard statement that checks whether the given expr is true.
/// If it is false, the else block for the guard returns `nil`.
/// \p C The AST context.
/// \p testExpr The expression that should be tested.
/// \p baseType The wrapped type of the to-be-returned Optional<Wrapped>.
GuardStmt *DerivedConformance::returnNilIfFalseGuardTypeChecked(ASTContext &C,
Expr *testExpr,
Type optionalWrappedType) {
auto nilExpr = new (C) NilLiteralExpr(SourceLoc(), /*implicit=*/true);
nilExpr->setType(optionalWrappedType->wrapInOptionalType());
SmallVector<StmtConditionElement, 1> conditions;
SmallVector<ASTNode, 1> statements;
auto *returnStmt = ReturnStmt::createImplicit(C, nilExpr);
statements.push_back(returnStmt);
// Next, generate the condition being checked.
conditions.emplace_back(testExpr);
// Build and return the complete guard statement.
// guard lhs == rhs else { return lhs < rhs }
auto body = BraceStmt::create(C, SourceLoc(), statements, SourceLoc());
return new (C) GuardStmt(SourceLoc(), C.AllocateCopy(conditions), body);
}
/// Returns a generated guard statement that checks whether the given lhs and
/// rhs expressions are equal. If not equal, the else block for the guard
/// returns lhs < rhs.
/// \p C The AST context.
/// \p lhsExpr The first expression to compare for equality.
/// \p rhsExpr The second expression to compare for equality.
GuardStmt *DerivedConformance::returnComparisonIfNotEqualGuard(ASTContext &C,
Expr *lhsExpr,
Expr *rhsExpr) {
// return lhs < rhs
auto ltFuncExpr = new (C) UnresolvedDeclRefExpr(
DeclNameRef(C.Id_LessThanOperator), DeclRefKind::BinaryOperator,
DeclNameLoc());
auto *ltExpr = BinaryExpr::create(C, lhsExpr, ltFuncExpr, rhsExpr,
/*implicit*/ true);
return returnIfNotEqualGuard(C, lhsExpr, rhsExpr, ltExpr);
}
/// Build a type-checked integer literal.
static IntegerLiteralExpr *buildIntegerLiteral(ASTContext &C, unsigned index) {
Type intType = C.getIntType();
auto literal = IntegerLiteralExpr::createFromUnsigned(C, index, SourceLoc());
literal->setType(intType);
literal->setBuiltinInitializer(C.getIntBuiltinInitDecl(C.getIntDecl()));
return literal;
}
/// Create AST statements which convert from an enum to an Int with a switch.
/// \p stmts The generated statements are appended to this vector.
/// \p parentDC Either an extension or the enum itself.
/// \p enumDecl The enum declaration.
/// \p enumVarDecl The enum input variable.
/// \p funcDecl The parent function.
/// \p indexName The name of the output variable.
/// \return A DeclRefExpr of the output variable (of type Int).
DeclRefExpr *DerivedConformance::convertEnumToIndex(SmallVectorImpl<ASTNode> &stmts,
DeclContext *parentDC,
EnumDecl *enumDecl,
VarDecl *enumVarDecl,
AbstractFunctionDecl *funcDecl,
const char *indexName) {
ASTContext &C = enumDecl->getASTContext();
Type enumType = enumVarDecl->getTypeInContext();
Type intType = C.getIntType();
auto indexVar = new (C) VarDecl(/*IsStatic*/false, VarDecl::Introducer::Var,
SourceLoc(), C.getIdentifier(indexName),
funcDecl);
indexVar->setInterfaceType(intType);
indexVar->setImplicit();
// generate: var indexVar
Pattern *indexPat = NamedPattern::createImplicit(C, indexVar, intType);
indexPat = TypedPattern::createImplicit(C, indexPat, intType);
auto *indexBind = PatternBindingDecl::createImplicit(
C, StaticSpellingKind::None, indexPat, /*InitExpr*/ nullptr, funcDecl);
unsigned index = 0;
SmallVector<CaseStmt *, 4> cases;
for (auto elt : enumDecl->getAllElements()) {
if (auto *unavailableElementCase =
DerivedConformance::unavailableEnumElementCaseStmt(enumType, elt,
funcDecl)) {
cases.push_back(unavailableElementCase);
continue;
}
// generate: case .<Case>:
auto *pat = EnumElementPattern::createImplicit(
enumType, elt, /*subPattern*/ nullptr, /*DC*/ funcDecl);
auto labelItem = CaseLabelItem(pat);
// generate: indexVar = <index>
auto indexExpr = buildIntegerLiteral(C, index++);
auto indexRef = new (C) DeclRefExpr(indexVar, DeclNameLoc(),
/*implicit*/true,
AccessSemantics::Ordinary,
LValueType::get(intType));
auto assignExpr = new (C) AssignExpr(indexRef, SourceLoc(),
indexExpr, /*implicit*/ true);
assignExpr->setType(TupleType::getEmpty(C));
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(assignExpr),
SourceLoc());
cases.push_back(CaseStmt::create(C, CaseParentKind::Switch, SourceLoc(),
labelItem, SourceLoc(), SourceLoc(), body,
/*case body vardecls*/ std::nullopt));
}
// generate: switch enumVar { }
auto enumRef = new (C) DeclRefExpr(enumVarDecl, DeclNameLoc(),
/*implicit*/true,
AccessSemantics::Ordinary,
enumVarDecl->getTypeInContext());
auto switchStmt =
SwitchStmt::createImplicit(LabeledStmtInfo(), enumRef, cases, C);
stmts.push_back(indexBind);
stmts.push_back(switchStmt);
return new (C) DeclRefExpr(indexVar, DeclNameLoc(), /*implicit*/ true,
AccessSemantics::Ordinary, intType);
}
/// Returns the ParamDecl for each associated value of the given enum whose type
/// does not conform to a protocol
/// \p theEnum The enum whose elements and associated values should be checked.
/// \p protocol The protocol being requested.
/// \return The ParamDecl of each associated value whose type does not conform.
SmallVector<ParamDecl *, 4>
DerivedConformance::associatedValuesNotConformingToProtocol(
DeclContext *DC, EnumDecl *theEnum, ProtocolDecl *protocol) {
SmallVector<ParamDecl *, 4> nonconformingAssociatedValues;
for (auto elt : theEnum->getAllElements()) {
auto PL = elt->getParameterList();
if (!PL)
continue;
for (auto param : *PL) {
auto type = param->getInterfaceType();
if (checkConformance(DC->mapTypeIntoContext(type), protocol).isInvalid()) {
nonconformingAssociatedValues.push_back(param);
}
}
}
return nonconformingAssociatedValues;
}
/// Returns true if, for every element of the given enum, it either has no
/// associated values or all of them conform to a protocol.
/// \p theEnum The enum whose elements and associated values should be checked.
/// \p protocol The protocol being requested.
/// \return True if all associated values of all elements of the enum conform.
bool DerivedConformance::allAssociatedValuesConformToProtocol(DeclContext *DC,
EnumDecl *theEnum,
ProtocolDecl *protocol) {
return associatedValuesNotConformingToProtocol(DC, theEnum, protocol).empty();
}
/// Returns the pattern used to match and bind the associated values (if any) of
/// an enum case.
/// \p enumElementDecl The enum element to match.
/// \p varPrefix The prefix character for variable names (e.g., a0, a1, ...).
/// \p varContext The context into which payload variables should be declared.
/// \p boundVars The array to which the pattern's variables will be appended.
/// \p useLabels If the argument has a label, use it instead of the generated
/// name.
Pattern *DerivedConformance::enumElementPayloadSubpattern(
EnumElementDecl *enumElementDecl, char varPrefix, DeclContext *varContext,
SmallVectorImpl<VarDecl *> &boundVars, bool useLabels) {
auto parentDC = enumElementDecl->getDeclContext();
ASTContext &C = parentDC->getASTContext();
// No arguments, so no subpattern to match.
if (!enumElementDecl->hasAssociatedValues())
return nullptr;
auto payloadType = enumElementDecl->getPayloadInterfaceType();
if (auto tupleType = payloadType->getAs<TupleType>()) {
// Either multiple (labeled or unlabeled) arguments, or one labeled
// argument. Return a tuple pattern that matches the enum element in arity,
// types, and labels. For example:
// case a(x: Int) => (x: let a0)
// case b(Int, String) => (let a0, let a1)
SmallVector<TuplePatternElt, 4> elementPatterns;
int index = 0;
for (auto tupleElement : tupleType->getElements()) {
VarDecl *payloadVar;
if (useLabels && tupleElement.hasName()) {
payloadVar =
new (C) VarDecl(/*IsStatic*/ false, VarDecl::Introducer::Let,
SourceLoc(), tupleElement.getName(), varContext);
payloadVar->setInterfaceType(tupleElement.getType());
} else {
payloadVar = indexedVarDecl(varPrefix, index++, tupleElement.getType(),
varContext);
}
boundVars.push_back(payloadVar);
auto namedPattern = new (C) NamedPattern(payloadVar);
namedPattern->setImplicit();
auto letPattern = BindingPattern::createImplicit(
C, VarDecl::Introducer::Let, namedPattern);
elementPatterns.push_back(TuplePatternElt(tupleElement.getName(),
SourceLoc(), letPattern));
}
auto pat = TuplePattern::createImplicit(C, elementPatterns);
pat->setImplicit();
return pat;
}
// Otherwise, a one-argument unlabeled payload. Return a paren pattern whose
// underlying type is the same as the payload. For example:
// case a(Int) => (let a0)
auto payloadVar = indexedVarDecl(varPrefix, 0, payloadType, varContext);
boundVars.push_back(payloadVar);
auto namedPattern = new (C) NamedPattern(payloadVar);
namedPattern->setImplicit();
auto letPattern = new (C)
BindingPattern(SourceLoc(), VarDecl::Introducer::Let, namedPattern);
return ParenPattern::createImplicit(C, letPattern);
}
CaseStmt *DerivedConformance::unavailableEnumElementCaseStmt(
Type enumType, EnumElementDecl *elt, DeclContext *parentDC,
unsigned subPatternCount) {
assert(subPatternCount > 0);
ASTContext &C = parentDC->getASTContext();
if (!elt->isUnreachableAtRuntime() ||
elt->getParentEnum()->isUnreachableAtRuntime())
return nullptr;
// If the stdlib isn't new enough to contain the helper function for
// diagnosing execution of unavailable code then just synthesize this case
// normally.
if (!C.getDiagnoseUnavailableCodeReached())
return nullptr;
auto createElementPattern = [&]() -> EnumElementPattern * {
// .<elt>
return EnumElementPattern::createImplicit(
enumType, elt, /*subPattern*/ nullptr, /*DC*/ parentDC);
};
Pattern *labelItemPattern;
if (subPatternCount > 1) {
SmallVector<TuplePatternElt, 2> tuplePatternElts;
for (unsigned i = 0; i < subPatternCount; i++) {
tuplePatternElts.push_back(TuplePatternElt(createElementPattern()));
}
// (.<elt>, ..., .<elt>)
auto caseTuplePattern = TuplePattern::createImplicit(C, tuplePatternElts);
caseTuplePattern->setImplicit();
labelItemPattern = caseTuplePattern;
} else {
labelItemPattern = createElementPattern();
}
auto labelItem = CaseLabelItem(labelItemPattern);
auto *callExpr =
DerivedConformance::createDiagnoseUnavailableCodeReachedCallExpr(C);
auto body = BraceStmt::create(C, SourceLoc(), {callExpr}, SourceLoc());
return CaseStmt::create(C, CaseParentKind::Switch, SourceLoc(), labelItem,
SourceLoc(), SourceLoc(), body, {},
/*implicit*/ true);
}
/// Creates a named variable based on a prefix character and a numeric index.
/// \p prefixChar The prefix character for the variable's name.
/// \p index The numeric index to append to the variable's name.
/// \p type The type of the variable.
/// \p varContext The context of the variable.
/// \return A VarDecl named with the prefix and number.
VarDecl *DerivedConformance::indexedVarDecl(char prefixChar, int index, Type type,
DeclContext *varContext) {
ASTContext &C = varContext->getASTContext();
llvm::SmallString<8> indexVal;
indexVal.append(1, prefixChar);
APInt(32, index).toString(indexVal, 10, /*signed*/ false);
auto indexStr = C.AllocateCopy(indexVal);
auto indexStrRef = StringRef(indexStr.data(), indexStr.size());
auto varDecl = new (C) VarDecl(/*IsStatic*/false, VarDecl::Introducer::Let,
SourceLoc(), C.getIdentifier(indexStrRef),
varContext);
varDecl->setInterfaceType(type);
return varDecl;
}
bool swift::memberwiseAccessorsRequireActorIsolation(NominalTypeDecl *nominal) {
if (!getActorIsolation(nominal).isActorIsolated())
return false;
for (auto property : nominal->getStoredProperties()) {
if (!property->isUserAccessible())
continue;
if (!property->isLet())
return true;
}
return false;
}