Files
swift-mirror/stdlib/public/SwiftRemoteMirror/SwiftRemoteMirror.cpp

1079 lines
38 KiB
C++

//===--- SwiftRemoteMirror.cpp - C wrapper for Reflection API -------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SwiftRemoteMirror/Platform.h"
#include "swift/SwiftRemoteMirror/SwiftRemoteMirror.h"
#include <iostream>
#include <variant>
#define SWIFT_CLASS_IS_SWIFT_MASK swift_reflection_classIsSwiftMask
extern "C" {
SWIFT_REMOTE_MIRROR_LINKAGE
unsigned long long swift_reflection_classIsSwiftMask = 2;
SWIFT_REMOTE_MIRROR_LINKAGE uint32_t swift_reflection_libraryVersion = 3;
}
#include "swift/Demangling/Demangler.h"
#include "swift/RemoteInspection/ReflectionContext.h"
#include "swift/RemoteInspection/TypeLowering.h"
#include "swift/Remote/CMemoryReader.h"
#include "swift/Basic/Unreachable.h"
#if defined(__APPLE__) && defined(__MACH__)
#include <TargetConditionals.h>
#endif
using namespace swift;
using namespace swift::reflection;
using namespace swift::remote;
using RuntimeWithObjCInterop =
External<WithObjCInterop<RuntimeTarget<sizeof(uintptr_t)>>>;
using RuntimeNoObjCInterop =
External<NoObjCInterop<RuntimeTarget<sizeof(uintptr_t)>>>;
using ReflectionContextWithObjCInterop =
swift::reflection::ReflectionContext<RuntimeWithObjCInterop>;
using ReflectionContextNoObjCInterop =
swift::reflection::ReflectionContext<RuntimeNoObjCInterop>;
struct SwiftReflectionContext {
using ContextVariant =
std::variant<std::unique_ptr<ReflectionContextWithObjCInterop>,
std::unique_ptr<ReflectionContextNoObjCInterop>>;
ContextVariant context;
std::vector<std::function<void()>> freeFuncs;
std::vector<std::tuple<swift_addr_t, swift_addr_t>> dataSegments;
std::function<void(void)> freeTemporaryAllocation = [] {};
SwiftReflectionContext(bool objCInteropIsEnabled, MemoryReaderImpl impl) {
auto Reader = std::make_shared<CMemoryReader>(impl);
if (objCInteropIsEnabled) {
context = std::make_unique<ReflectionContextWithObjCInterop>(Reader);
} else {
context = std::make_unique<ReflectionContextNoObjCInterop>(Reader);
}
}
~SwiftReflectionContext() {
freeTemporaryAllocation();
for (auto f : freeFuncs)
f();
}
// Allocate a single temporary object that will stay allocated until the next
// call to this method, or until the context is destroyed.
template <typename T>
T *allocateTemporaryObject() {
freeTemporaryAllocation();
T *obj = new T;
freeTemporaryAllocation = [obj] { delete obj; };
return obj;
}
// Allocate a single temporary object that will stay allocated until the next
// call to allocateTemporaryObject, or until the context is destroyed. Does
// NOT free any existing objects created with allocateTemporaryObject or
// allocateSubsequentTemporaryObject. Use to allocate additional objects after
// a call to allocateTemporaryObject when multiple objects are needed
// simultaneously.
template <typename T>
T *allocateSubsequentTemporaryObject() {
T *obj = new T;
auto oldFree = freeTemporaryAllocation;
freeTemporaryAllocation = [obj, oldFree] {
delete obj;
oldFree();
};
return obj;
}
// Call fn with a pointer to context.
template <typename Fn>
auto withContext(const Fn &fn) {
return std::visit([&](auto &&context) { return fn(context.get()); },
this->context);
}
};
uint16_t
swift_reflection_getSupportedMetadataVersion() {
return SWIFT_REFLECTION_METADATA_VERSION;
}
template <uint8_t WordSize>
static int minimalDataLayoutQueryFunction(void *ReaderContext,
DataLayoutQueryType type,
void *inBuffer, void *outBuffer) {
// TODO: The following should be set based on the target.
// This code sets it to match the platform this code was compiled for.
#if defined(__APPLE__) && __APPLE__
auto applePlatform = true;
#else
auto applePlatform = false;
#endif
#if defined(__APPLE__) && __APPLE__ && ((defined(TARGET_OS_IOS) && TARGET_OS_IOS) || (defined(TARGET_OS_IOS) && TARGET_OS_WATCH) || (defined(TARGET_OS_TV) && TARGET_OS_TV) || defined(__arm64__))
auto iosDerivedPlatform = true;
#else
auto iosDerivedPlatform = false;
#endif
if (type == DLQ_GetPointerSize || type == DLQ_GetSizeSize) {
auto result = static_cast<uint8_t *>(outBuffer);
*result = WordSize;
return 1;
}
if (type == DLQ_GetObjCReservedLowBits) {
auto result = static_cast<uint8_t *>(outBuffer);
if (applePlatform && !iosDerivedPlatform && WordSize == 8) {
// Obj-C reserves low bit on 64-bit macOS only.
// Other Apple platforms don't reserve this bit (even when
// running on x86_64-based simulators).
*result = 1;
} else {
*result = 0;
}
return 1;
}
if (type == DLQ_GetLeastValidPointerValue) {
auto result = static_cast<uint64_t *>(outBuffer);
if (applePlatform && WordSize == 8) {
// Swift reserves the first 4GiB on all 64-bit Apple platforms
*result = 0x100000000;
} else {
// Swift reserves the first 4KiB everywhere else
*result = 0x1000;
}
return 1;
}
return 0;
}
// Caveat: This basically only works correctly if running on the same
// host as the target. Otherwise, you'll need to use
// swift_reflection_createReflectionContextWithDataLayout() below
// with an appropriate data layout query function that understands
// the target environment.
SwiftReflectionContextRef
swift_reflection_createReflectionContext(void *ReaderContext,
uint8_t PointerSize,
FreeBytesFunction Free,
ReadBytesFunction ReadBytes,
GetStringLengthFunction GetStringLength,
GetSymbolAddressFunction GetSymbolAddress) {
assert((PointerSize == 4 || PointerSize == 8) && "We only support 32-bit and 64-bit.");
assert(PointerSize == sizeof(uintptr_t) &&
"We currently only support the pointer size this file was compiled with.");
auto *DataLayout = PointerSize == 4 ? minimalDataLayoutQueryFunction<4>
: minimalDataLayoutQueryFunction<8>;
MemoryReaderImpl ReaderImpl {
PointerSize,
ReaderContext,
DataLayout,
Free,
ReadBytes,
GetStringLength,
GetSymbolAddress
};
return new SwiftReflectionContext(SWIFT_OBJC_INTEROP, ReaderImpl);
}
SwiftReflectionContextRef
swift_reflection_createReflectionContextWithDataLayout(void *ReaderContext,
QueryDataLayoutFunction DataLayout,
FreeBytesFunction Free,
ReadBytesFunction ReadBytes,
GetStringLengthFunction GetStringLength,
GetSymbolAddressFunction GetSymbolAddress) {
uint8_t PointerSize = sizeof(uintptr_t);
MemoryReaderImpl ReaderImpl {
PointerSize,
ReaderContext,
DataLayout,
Free,
ReadBytes,
GetStringLength,
GetSymbolAddress
};
// If the client implements DLQ_GetObjCInteropIsEnabled, use that value.
// If they don't, use this platform's default.
bool dataLayoutSaysObjCInteropIsEnabled = true;
if (DataLayout(ReaderContext, DLQ_GetObjCInteropIsEnabled, nullptr,
(void *)&dataLayoutSaysObjCInteropIsEnabled)) {
return new SwiftReflectionContext(dataLayoutSaysObjCInteropIsEnabled,
ReaderImpl);
} else {
return new SwiftReflectionContext(SWIFT_OBJC_INTEROP, ReaderImpl);
}
}
void swift_reflection_destroyReflectionContext(SwiftReflectionContextRef ContextRef) {
delete ContextRef;
}
template<typename Iterator>
ReflectionSection<Iterator> sectionFromInfo(const swift_reflection_info_t &Info,
const swift_reflection_section_pair_t &Section) {
auto RemoteSectionStart = (uint64_t)(uintptr_t)Section.section.Begin
- Info.LocalStartAddress
+ Info.RemoteStartAddress;
auto Start = RemoteRef<void>(RemoteSectionStart, Section.section.Begin);
return ReflectionSection<Iterator>(Start,
(uintptr_t)Section.section.End - (uintptr_t)Section.section.Begin);
}
template <typename Iterator>
ReflectionSection<Iterator> reflectionSectionFromLocalAndRemote(
const swift_reflection_section_mapping_t &Section) {
auto RemoteSectionStart = (uint64_t)Section.remote_section.StartAddress;
auto Start = RemoteRef<void>(RemoteSectionStart, Section.local_section.Begin);
return ReflectionSection<Iterator>(Start,
(uintptr_t)Section.remote_section.Size);
}
void
swift_reflection_addReflectionInfo(SwiftReflectionContextRef ContextRef,
swift_reflection_info_t Info) {
ContextRef->withContext([&](auto *Context) {
// The `offset` fields must be zero.
if (Info.field.offset != 0
|| Info.associated_types.offset != 0
|| Info.builtin_types.offset != 0
|| Info.capture.offset != 0
|| Info.type_references.offset != 0
|| Info.reflection_strings.offset != 0) {
std::cerr << "reserved field in swift_reflection_info_t is not zero\n";
abort();
}
ReflectionInfo ContextInfo{
sectionFromInfo<FieldDescriptorIterator>(Info, Info.field),
sectionFromInfo<AssociatedTypeIterator>(Info, Info.associated_types),
sectionFromInfo<BuiltinTypeDescriptorIterator>(Info,
Info.builtin_types),
sectionFromInfo<CaptureDescriptorIterator>(Info, Info.capture),
sectionFromInfo<const void *>(Info, Info.type_references),
sectionFromInfo<const void *>(Info, Info.reflection_strings),
ReflectionSection<const void *>(nullptr, 0),
ReflectionSection<MultiPayloadEnumDescriptorIterator>(0, 0),
{}};
Context->addReflectionInfo(ContextInfo);
});
}
void swift_reflection_addReflectionMappingInfo(
SwiftReflectionContextRef ContextRef,
swift_reflection_mapping_info_t Info) {
return ContextRef->withContext([&](auto *Context) {
ReflectionInfo ContextInfo{
reflectionSectionFromLocalAndRemote<FieldDescriptorIterator>(
Info.field),
reflectionSectionFromLocalAndRemote<AssociatedTypeIterator>(
Info.associated_types),
reflectionSectionFromLocalAndRemote<BuiltinTypeDescriptorIterator>(
Info.builtin_types),
reflectionSectionFromLocalAndRemote<CaptureDescriptorIterator>(
Info.capture),
reflectionSectionFromLocalAndRemote<const void *>(Info.type_references),
reflectionSectionFromLocalAndRemote<const void *>(
Info.reflection_strings),
ReflectionSection<const void *>(nullptr, 0),
MultiPayloadEnumSection(0, 0),
{}};
Context->addReflectionInfo(ContextInfo);
});
}
int
swift_reflection_addImage(SwiftReflectionContextRef ContextRef,
swift_addr_t imageStart) {
return ContextRef->withContext([&](auto *Context) {
return Context->addImage(RemoteAddress(imageStart)).has_value();
});
}
int
swift_reflection_readIsaMask(SwiftReflectionContextRef ContextRef,
uintptr_t *outIsaMask) {
return ContextRef->withContext([&](auto *Context) {
auto isaMask = Context->readIsaMask();
if (isaMask) {
*outIsaMask = *isaMask;
return true;
}
*outIsaMask = 0;
return false;
});
}
swift_typeref_t
swift_reflection_typeRefForMetadata(SwiftReflectionContextRef ContextRef,
uintptr_t Metadata) {
return ContextRef->withContext([&](auto *Context) {
auto TR = Context->readTypeFromMetadata(Metadata);
return reinterpret_cast<swift_typeref_t>(TR);
});
}
int
swift_reflection_ownsObject(SwiftReflectionContextRef ContextRef, uintptr_t Object) {
return ContextRef->withContext([&](auto *Context) {
return Context->ownsObject(RemoteAddress(Object));
});
}
int
swift_reflection_ownsAddress(SwiftReflectionContextRef ContextRef, uintptr_t Address) {
return ContextRef->withContext([&](auto *Context) {
return Context->ownsAddress(RemoteAddress(Address));
});
}
int
swift_reflection_ownsAddressStrict(SwiftReflectionContextRef ContextRef, uintptr_t Address) {
return ContextRef->withContext([&](auto *Context) {
return Context->ownsAddress(RemoteAddress(Address), false);
});
}
uintptr_t
swift_reflection_metadataForObject(SwiftReflectionContextRef ContextRef,
uintptr_t Object) {
return ContextRef->withContext([&](auto *Context) -> uintptr_t {
auto MetadataAddress = Context->readMetadataFromInstance(Object);
if (!MetadataAddress)
return 0;
return *MetadataAddress;
});
}
swift_reflection_ptr_t
swift_reflection_metadataNominalTypeDescriptor(SwiftReflectionContextRef ContextRef,
swift_reflection_ptr_t MetadataAddress) {
return ContextRef->withContext([&](auto *Context) {
return Context->nominalTypeDescriptorFromMetadata(MetadataAddress);
});
}
int swift_reflection_metadataIsActor(SwiftReflectionContextRef ContextRef,
swift_reflection_ptr_t Metadata) {
return ContextRef->withContext(
[&](auto *Context) { return Context->metadataIsActor(Metadata); });
}
swift_typeref_t
swift_reflection_typeRefForInstance(SwiftReflectionContextRef ContextRef,
uintptr_t Object) {
return ContextRef->withContext(
[&](auto *Context) -> swift_typeref_t {
auto MetadataAddress = Context->readMetadataFromInstance(Object);
if (!MetadataAddress)
return 0;
auto TR = Context->readTypeFromMetadata(*MetadataAddress);
return reinterpret_cast<swift_typeref_t>(TR);
});
}
swift_typeref_t
swift_reflection_typeRefForMangledTypeName(SwiftReflectionContextRef ContextRef,
const char *MangledTypeName,
uint64_t Length) {
return ContextRef->withContext([&](auto *Context) {
auto TR =
Context->readTypeFromMangledName(MangledTypeName, Length).getType();
return reinterpret_cast<swift_typeref_t>(TR);
});
}
char *
swift_reflection_copyDemangledNameForTypeRef(
SwiftReflectionContextRef ContextRef, swift_typeref_t OpaqueTypeRef) {
auto TR = reinterpret_cast<const TypeRef *>(OpaqueTypeRef);
Demangle::Demangler Dem;
auto Name = nodeToString(TR->getDemangling(Dem));
return strdup(Name.c_str());
}
char *
swift_reflection_copyNameForTypeRef(SwiftReflectionContextRef ContextRef,
swift_typeref_t OpaqueTypeRef,
bool mangled) {
auto TR = reinterpret_cast<const TypeRef *>(OpaqueTypeRef);
Demangle::Demangler Dem;
if (mangled) {
auto Mangling = mangleNode(TR->getDemangling(Dem), Mangle::ManglingFlavor::Default);
if (Mangling.isSuccess()) {
return strdup(Mangling.result().c_str());
}
}
else {
auto Name = nodeToString(TR->getDemangling(Dem));
return strdup(Name.c_str());
}
return nullptr;
}
SWIFT_REMOTE_MIRROR_LINKAGE
char *
swift_reflection_copyDemangledNameForProtocolDescriptor(
SwiftReflectionContextRef ContextRef, swift_reflection_ptr_t Proto) {
return ContextRef->withContext([&](auto *Context) {
Demangle::Demangler Dem;
auto Demangling = Context->readDemanglingForContextDescriptor(Proto, Dem);
auto Name = nodeToString(Demangling);
return strdup(Name.c_str());
});
}
swift_typeref_t
swift_reflection_genericArgumentOfTypeRef(swift_typeref_t OpaqueTypeRef,
unsigned Index) {
auto TR = reinterpret_cast<const TypeRef *>(OpaqueTypeRef);
if (auto BG = dyn_cast<BoundGenericTypeRef>(TR)) {
auto &Params = BG->getGenericParams();
assert(Index < Params.size());
return reinterpret_cast<swift_typeref_t>(Params[Index]);
}
return 0;
}
unsigned
swift_reflection_genericArgumentCountOfTypeRef(swift_typeref_t OpaqueTypeRef) {
auto TR = reinterpret_cast<const TypeRef *>(OpaqueTypeRef);
if (auto BG = dyn_cast<BoundGenericTypeRef>(TR)) {
auto &Params = BG->getGenericParams();
return Params.size();
}
return 0;
}
swift_layout_kind_t getTypeInfoKind(const TypeInfo &TI) {
switch (TI.getKind()) {
case TypeInfoKind::Invalid: {
return SWIFT_UNKNOWN;
}
case TypeInfoKind::Builtin: {
auto &BuiltinTI = cast<BuiltinTypeInfo>(TI);
if (BuiltinTI.getMangledTypeName() == "Bp")
return SWIFT_RAW_POINTER;
return SWIFT_BUILTIN;
}
case TypeInfoKind::Record: {
auto &RecordTI = cast<RecordTypeInfo>(TI);
switch (RecordTI.getRecordKind()) {
case RecordKind::Invalid:
return SWIFT_UNKNOWN;
case RecordKind::Tuple:
return SWIFT_TUPLE;
case RecordKind::Struct:
return SWIFT_STRUCT;
case RecordKind::ThickFunction:
return SWIFT_THICK_FUNCTION;
case RecordKind::OpaqueExistential:
return SWIFT_OPAQUE_EXISTENTIAL;
case RecordKind::ClassExistential:
return SWIFT_CLASS_EXISTENTIAL;
case RecordKind::ErrorExistential:
return SWIFT_ERROR_EXISTENTIAL;
case RecordKind::ExistentialMetatype:
return SWIFT_EXISTENTIAL_METATYPE;
case RecordKind::ClassInstance:
return SWIFT_CLASS_INSTANCE;
case RecordKind::ClosureContext:
return SWIFT_CLOSURE_CONTEXT;
}
}
case TypeInfoKind::Enum: {
auto &EnumTI = cast<EnumTypeInfo>(TI);
switch (EnumTI.getEnumKind()) {
case EnumKind::NoPayloadEnum:
return SWIFT_NO_PAYLOAD_ENUM;
case EnumKind::SinglePayloadEnum:
return SWIFT_SINGLE_PAYLOAD_ENUM;
case EnumKind::MultiPayloadEnum:
return SWIFT_MULTI_PAYLOAD_ENUM;
}
}
case TypeInfoKind::Reference: {
auto &ReferenceTI = cast<ReferenceTypeInfo>(TI);
switch (ReferenceTI.getReferenceKind()) {
case ReferenceKind::Strong: return SWIFT_STRONG_REFERENCE;
#define REF_STORAGE(Name, name, NAME) \
case ReferenceKind::Name: return SWIFT_##NAME##_REFERENCE;
#include "swift/AST/ReferenceStorage.def"
}
}
case TypeInfoKind::Array: {
return SWIFT_ARRAY;
}
}
swift_unreachable("Unhandled TypeInfoKind in switch");
}
static swift_typeinfo_t convertTypeInfo(const TypeInfo *TI) {
if (TI == nullptr) {
return {
SWIFT_UNKNOWN,
0,
0,
0,
0
};
}
unsigned NumFields = 0;
if (auto *RecordTI = dyn_cast<EnumTypeInfo>(TI)) {
NumFields = RecordTI->getNumCases();
} else if (auto *RecordTI = dyn_cast<RecordTypeInfo>(TI)) {
NumFields = RecordTI->getNumFields();
}
return {
getTypeInfoKind(*TI),
TI->getSize(),
TI->getAlignment(),
TI->getStride(),
NumFields
};
}
static swift_childinfo_t convertChild(const TypeInfo *TI, unsigned Index) {
if (!TI)
return {};
const FieldInfo *FieldInfo = nullptr;
if (auto *EnumTI = dyn_cast<EnumTypeInfo>(TI)) {
FieldInfo = &(EnumTI->getCases()[Index]);
} else if (auto *RecordTI = dyn_cast<RecordTypeInfo>(TI)) {
FieldInfo = &(RecordTI->getFields()[Index]);
} else {
assert(false && "convertChild(TI): TI must be record or enum typeinfo");
return {
"unknown TypeInfo kind",
0,
SWIFT_UNKNOWN,
0,
};
}
return {
FieldInfo->Name.c_str(),
FieldInfo->Offset,
getTypeInfoKind(FieldInfo->TI),
reinterpret_cast<swift_typeref_t>(FieldInfo->TR),
};
}
template <typename ReflectionContext>
static swift_layout_kind_t convertAllocationChunkKind(
typename ReflectionContext::AsyncTaskAllocationChunk::ChunkKind Kind) {
switch (Kind) {
case ReflectionContext::AsyncTaskAllocationChunk::ChunkKind::Unknown:
return SWIFT_UNKNOWN;
case ReflectionContext::AsyncTaskAllocationChunk::ChunkKind::NonPointer:
return SWIFT_BUILTIN;
case ReflectionContext::AsyncTaskAllocationChunk::ChunkKind::RawPointer:
return SWIFT_RAW_POINTER;
case ReflectionContext::AsyncTaskAllocationChunk::ChunkKind::StrongReference:
return SWIFT_STRONG_REFERENCE;
case ReflectionContext::AsyncTaskAllocationChunk::ChunkKind::UnownedReference:
return SWIFT_UNOWNED_REFERENCE;
case ReflectionContext::AsyncTaskAllocationChunk::ChunkKind::WeakReference:
return SWIFT_WEAK_REFERENCE;
case ReflectionContext::AsyncTaskAllocationChunk::ChunkKind::
UnmanagedReference:
return SWIFT_UNMANAGED_REFERENCE;
}
}
static const char *returnableCString(SwiftReflectionContextRef ContextRef,
std::optional<std::string> String) {
if (String) {
auto *TmpStr = ContextRef->allocateTemporaryObject<std::string>();
*TmpStr = *String;
return TmpStr->c_str();
}
return nullptr;
}
swift_typeinfo_t
swift_reflection_infoForTypeRef(SwiftReflectionContextRef ContextRef,
swift_typeref_t OpaqueTypeRef) {
return ContextRef->withContext([&](auto *Context) {
auto TR = reinterpret_cast<const TypeRef *>(OpaqueTypeRef);
auto TI = Context->getTypeInfo(TR, nullptr);
return convertTypeInfo(TI);
});
}
swift_childinfo_t
swift_reflection_childOfTypeRef(SwiftReflectionContextRef ContextRef,
swift_typeref_t OpaqueTypeRef,
unsigned Index) {
return ContextRef->withContext([&](auto *Context) {
auto TR = reinterpret_cast<const TypeRef *>(OpaqueTypeRef);
auto *TI = Context->getTypeInfo(TR, nullptr);
return convertChild(TI, Index);
});
}
swift_typeinfo_t
swift_reflection_infoForMetadata(SwiftReflectionContextRef ContextRef,
uintptr_t Metadata) {
return ContextRef->withContext([&](auto *Context) {
auto *TI = Context->getMetadataTypeInfo(Metadata, nullptr);
return convertTypeInfo(TI);
});
}
swift_childinfo_t
swift_reflection_childOfMetadata(SwiftReflectionContextRef ContextRef,
uintptr_t Metadata,
unsigned Index) {
return ContextRef->withContext([&](auto *Context) {
auto *TI = Context->getMetadataTypeInfo(Metadata, nullptr);
return convertChild(TI, Index);
});
}
swift_typeinfo_t
swift_reflection_infoForInstance(SwiftReflectionContextRef ContextRef,
uintptr_t Object) {
return ContextRef->withContext([&](auto *Context) {
auto *TI = Context->getInstanceTypeInfo(Object, nullptr);
return convertTypeInfo(TI);
});
}
swift_childinfo_t
swift_reflection_childOfInstance(SwiftReflectionContextRef ContextRef,
uintptr_t Object,
unsigned Index) {
return ContextRef->withContext([&](auto *Context) {
auto *TI = Context->getInstanceTypeInfo(Object, nullptr);
return convertChild(TI, Index);
});
}
int swift_reflection_projectExistential(SwiftReflectionContextRef ContextRef,
swift_addr_t ExistentialAddress,
swift_typeref_t ExistentialTypeRef,
swift_typeref_t *InstanceTypeRef,
swift_addr_t *StartOfInstanceData) {
return ContextRef->withContext([&](auto *Context) {
auto ExistentialTR = reinterpret_cast<const TypeRef *>(ExistentialTypeRef);
auto RemoteExistentialAddress = RemoteAddress(ExistentialAddress);
const TypeRef *InstanceTR = nullptr;
RemoteAddress RemoteStartOfInstanceData(nullptr);
auto Success = Context->projectExistential(
RemoteExistentialAddress, ExistentialTR, &InstanceTR,
&RemoteStartOfInstanceData, nullptr);
if (Success) {
*InstanceTypeRef = reinterpret_cast<swift_typeref_t>(InstanceTR);
*StartOfInstanceData = RemoteStartOfInstanceData.getAddressData();
}
return Success;
});
}
int swift_reflection_projectExistentialAndUnwrapClass(SwiftReflectionContextRef ContextRef,
swift_addr_t ExistentialAddress,
swift_typeref_t ExistentialTypeRef,
swift_typeref_t *InstanceTypeRef,
swift_addr_t *StartOfInstanceData) {
return ContextRef->withContext([&](auto *Context) {
auto ExistentialTR = reinterpret_cast<const TypeRef *>(ExistentialTypeRef);
auto RemoteExistentialAddress = RemoteAddress(ExistentialAddress);
auto Pair = Context->projectExistentialAndUnwrapClass(
RemoteExistentialAddress, *ExistentialTR);
if (!Pair.has_value())
return false;
*InstanceTypeRef =
reinterpret_cast<swift_typeref_t>(std::get<const TypeRef *>(*Pair));
*StartOfInstanceData = std::get<RemoteAddress>(*Pair).getAddressData();
return true;
});
}
int swift_reflection_projectEnumValue(SwiftReflectionContextRef ContextRef,
swift_addr_t EnumAddress,
swift_typeref_t EnumTypeRef,
int *CaseIndex) {
return ContextRef->withContext([&](auto *Context) {
auto EnumTR = reinterpret_cast<const TypeRef *>(EnumTypeRef);
auto RemoteEnumAddress = RemoteAddress(EnumAddress);
if (!Context->projectEnumValue(RemoteEnumAddress, EnumTR, CaseIndex,
nullptr)) {
return false;
}
auto TI = Context->getTypeInfo(EnumTR, nullptr);
auto *RecordTI = dyn_cast<EnumTypeInfo>(TI);
assert(RecordTI != nullptr);
if (static_cast<size_t>(*CaseIndex) >= RecordTI->getNumCases()) {
return false;
}
return true;
});
}
void swift_reflection_dumpTypeRef(swift_typeref_t OpaqueTypeRef) {
auto TR = reinterpret_cast<const TypeRef *>(OpaqueTypeRef);
if (TR == nullptr) {
std::cout << "<null type reference>\n";
} else {
TR->dump(std::cout);
}
}
void swift_reflection_dumpInfoForTypeRef(SwiftReflectionContextRef ContextRef,
swift_typeref_t OpaqueTypeRef) {
ContextRef->withContext([&](auto *Context) {
auto TR = reinterpret_cast<const TypeRef *>(OpaqueTypeRef);
auto TI = Context->getTypeInfo(TR, nullptr);
if (TI == nullptr) {
std::cout << "<null type info>\n";
} else {
TI->dump(std::cout);
Demangle::Demangler Dem;
auto Mangling = mangleNode(TR->getDemangling(Dem), Mangle::ManglingFlavor::Default);
std::string MangledName;
if (Mangling.isSuccess()) {
MangledName = Mangling.result();
std::cout << "Mangled name: " << MANGLING_PREFIX_STR << MangledName
<< "\n";
} else {
MangledName = "<failed to mangle name>";
std::cout
<< "Failed to get mangled name: Node " << Mangling.error().node
<< " error " << Mangling.error().code << ":"
<< Mangling.error().line << "\n";
}
char *DemangledName =
swift_reflection_copyNameForTypeRef(ContextRef, OpaqueTypeRef, false);
std::cout << "Demangled name: " << DemangledName << "\n";
free(DemangledName);
}
});
}
void swift_reflection_dumpInfoForMetadata(SwiftReflectionContextRef ContextRef,
uintptr_t Metadata) {
ContextRef->withContext([&](auto *Context) {
auto TI = Context->getMetadataTypeInfo(Metadata, nullptr);
if (TI == nullptr) {
std::cout << "<null type info>\n";
} else {
TI->dump(std::cout);
}
});
}
void swift_reflection_dumpInfoForInstance(SwiftReflectionContextRef ContextRef,
uintptr_t Object) {
ContextRef->withContext([&](auto *Context) {
auto TI = Context->getInstanceTypeInfo(Object, nullptr);
if (TI == nullptr) {
std::cout << "<null type info>\n";
} else {
TI->dump(std::cout);
}
});
}
size_t swift_reflection_demangle(const char *MangledName, size_t Length,
char *OutDemangledName, size_t MaxLength) {
if (MangledName == nullptr || Length == 0)
return 0;
std::string Mangled(MangledName, Length);
auto Demangled = Demangle::demangleTypeAsString(Mangled);
strncpy(OutDemangledName, Demangled.c_str(), MaxLength);
return Demangled.size();
}
const char *swift_reflection_iterateConformanceCache(
SwiftReflectionContextRef ContextRef,
void (*Call)(swift_reflection_ptr_t Type,
swift_reflection_ptr_t Proto,
void *ContextPtr),
void *ContextPtr) {
return ContextRef->withContext([&](auto *Context) {
auto Error = Context->iterateConformances([&](auto Type, auto Proto) {
Call(Type, Proto, ContextPtr);
});
return returnableCString(ContextRef, Error);
});
}
const char *swift_reflection_iterateMetadataAllocations(
SwiftReflectionContextRef ContextRef,
void (*Call)(swift_metadata_allocation_t Allocation,
void *ContextPtr),
void *ContextPtr) {
return ContextRef->withContext([&](auto *Context) {
auto Error = Context->iterateMetadataAllocations([&](auto Allocation) {
swift_metadata_allocation CAllocation;
CAllocation.Tag = Allocation.Tag;
CAllocation.Ptr = Allocation.Ptr;
CAllocation.Size = Allocation.Size;
Call(CAllocation, ContextPtr);
});
return returnableCString(ContextRef, Error);
});
}
// Convert Allocation to a MetadataAllocation<Runtime>, where <Runtime> is
// the same as the <Runtime> template of Context.
//
// Accepting the Context parameter is a workaround for templated lambda callers
// not having direct access to <Runtime>. The Swift project doesn't compile
// with a new enough C++ version to use explicitly-templated lambdas, so we
// need some other method of extracting <Runtime>.
template <typename Runtime>
static MetadataAllocation<Runtime> convertMetadataAllocation(
const swift::reflection::ReflectionContext<Runtime> *Context,
const swift_metadata_allocation_t &Allocation) {
(void)Context;
MetadataAllocation<Runtime> ConvertedAllocation;
ConvertedAllocation.Tag = Allocation.Tag;
ConvertedAllocation.Ptr = Allocation.Ptr;
ConvertedAllocation.Size = Allocation.Size;
return ConvertedAllocation;
}
swift_reflection_ptr_t swift_reflection_allocationMetadataPointer(
SwiftReflectionContextRef ContextRef,
swift_metadata_allocation_t Allocation) {
return ContextRef->withContext([&](auto *Context) {
auto ConvertedAllocation = convertMetadataAllocation(Context, Allocation);
return Context->allocationMetadataPointer(ConvertedAllocation);
});
}
const char *swift_reflection_metadataAllocationTagName(
SwiftReflectionContextRef ContextRef, swift_metadata_allocation_tag_t Tag) {
return ContextRef->withContext([&](auto *Context) {
auto Result = Context->metadataAllocationTagName(Tag);
return returnableCString(ContextRef, Result);
});
}
int swift_reflection_metadataAllocationCacheNode(
SwiftReflectionContextRef ContextRef,
swift_metadata_allocation_t Allocation,
swift_metadata_cache_node_t *OutNode) {
return ContextRef->withContext([&](auto *Context) {
auto ConvertedAllocation = convertMetadataAllocation(Context, Allocation);
auto Result = Context->metadataAllocationCacheNode(ConvertedAllocation);
if (!Result)
return 0;
OutNode->Left = Result->Left;
OutNode->Right = Result->Right;
return 1;
});
}
const char *swift_reflection_iterateMetadataAllocationBacktraces(
SwiftReflectionContextRef ContextRef,
swift_metadataAllocationBacktraceIterator Call, void *ContextPtr) {
return ContextRef->withContext([&](auto *Context) {
auto Error = Context->iterateMetadataAllocationBacktraces(
[&](auto AllocationPtr, auto Count, auto Ptrs) {
// Ptrs is an array of StoredPointer, but the callback expects an
// array of swift_reflection_ptr_t. Those may are not always the same
// type. (For example, swift_reflection_ptr_t can be 64-bit on 32-bit
// systems, while StoredPointer is always the pointer size of the
// target system.) Convert the array to an array of
// swift_reflection_ptr_t.
std::vector<swift_reflection_ptr_t> ConvertedPtrs{&Ptrs[0],
&Ptrs[Count]};
Call(AllocationPtr, Count, ConvertedPtrs.data(), ContextPtr);
});
return returnableCString(ContextRef, Error);
});
}
swift_async_task_slab_return_t
swift_reflection_asyncTaskSlabPointer(SwiftReflectionContextRef ContextRef,
swift_reflection_ptr_t AsyncTaskPtr) {
return ContextRef->withContext([&](auto *Context) {
// We only care about the AllocatorSlabPtr field. Disable child task and
// async backtrace iteration to save wasted work.
unsigned ChildTaskLimit = 0;
unsigned AsyncBacktraceLimit = 0;
auto [Error, TaskInfo] = Context->asyncTaskInfo(
AsyncTaskPtr, ChildTaskLimit, AsyncBacktraceLimit);
swift_async_task_slab_return_t Result = {};
if (Error) {
Result.Error = returnableCString(ContextRef, Error);
}
Result.SlabPtr = TaskInfo.AllocatorSlabPtr;
return Result;
});
}
swift_async_task_slab_allocations_return_t
swift_reflection_asyncTaskSlabAllocations(SwiftReflectionContextRef ContextRef,
swift_reflection_ptr_t SlabPtr) {
return ContextRef->withContext([&](auto *Context) {
auto [Error, Info] = Context->asyncTaskSlabAllocations(SlabPtr);
swift_async_task_slab_allocations_return_t Result = {};
if (Result.Error) {
Result.Error = returnableCString(ContextRef, Error);
return Result;
}
Result.NextSlab = Info.NextSlab;
Result.SlabSize = Info.SlabSize;
auto *Chunks = ContextRef->allocateTemporaryObject<
std::vector<swift_async_task_allocation_chunk_t>>();
Chunks->reserve(Info.Chunks.size());
for (auto &Chunk : Info.Chunks) {
swift_async_task_allocation_chunk_t ConvertedChunk;
ConvertedChunk.Start = Chunk.Start;
ConvertedChunk.Length = Chunk.Length;
// This pedantry is required to properly template over *Context.
ConvertedChunk.Kind = convertAllocationChunkKind<
typename std::pointer_traits<decltype(Context)>::element_type>(
Chunk.Kind);
Chunks->push_back(ConvertedChunk);
}
Result.ChunkCount = Chunks->size();
Result.Chunks = Chunks->data();
return Result;
});
}
swift_async_task_info_t
swift_reflection_asyncTaskInfo(SwiftReflectionContextRef ContextRef,
swift_reflection_ptr_t AsyncTaskPtr) {
return ContextRef->withContext([&](auto *Context) {
// Limit the child task and async backtrace iteration to semi-reasonable
// numbers to avoid doing excessive work on bad data.
unsigned ChildTaskLimit = 1000000;
unsigned AsyncBacktraceLimit = 1000;
auto [Error, TaskInfo] = Context->asyncTaskInfo(
AsyncTaskPtr, ChildTaskLimit, AsyncBacktraceLimit);
swift_async_task_info_t Result = {};
if (Error) {
Result.Error = returnableCString(ContextRef, Error);
return Result;
}
Result.Kind = TaskInfo.Kind;
Result.EnqueuePriority = TaskInfo.EnqueuePriority;
Result.IsChildTask = TaskInfo.IsChildTask;
Result.IsFuture = TaskInfo.IsFuture;
Result.IsGroupChildTask = TaskInfo.IsGroupChildTask;
Result.IsAsyncLetTask = TaskInfo.IsAsyncLetTask;
Result.IsSynchronousStartTask = TaskInfo.IsSynchronousStartTask;
Result.MaxPriority = TaskInfo.MaxPriority;
Result.IsCancelled = TaskInfo.IsCancelled;
Result.IsStatusRecordLocked = TaskInfo.IsStatusRecordLocked;
Result.IsEscalated = TaskInfo.IsEscalated;
Result.HasIsRunning = TaskInfo.HasIsRunning;
Result.IsRunning = TaskInfo.IsRunning;
Result.IsEnqueued = TaskInfo.IsEnqueued;
Result.Id = TaskInfo.Id;
Result.HasThreadPort = TaskInfo.HasThreadPort;
Result.ThreadPort = TaskInfo.ThreadPort;
Result.RunJob = TaskInfo.RunJob;
Result.AllocatorSlabPtr = TaskInfo.AllocatorSlabPtr;
auto *ChildTasks =
ContextRef
->allocateTemporaryObject<std::vector<swift_reflection_ptr_t>>();
std::copy(TaskInfo.ChildTasks.begin(), TaskInfo.ChildTasks.end(),
std::back_inserter(*ChildTasks));
Result.ChildTaskCount = ChildTasks->size();
Result.ChildTasks = ChildTasks->data();
auto *AsyncBacktraceFrames = ContextRef->allocateSubsequentTemporaryObject<
std::vector<swift_reflection_ptr_t>>();
std::copy(TaskInfo.AsyncBacktraceFrames.begin(),
TaskInfo.AsyncBacktraceFrames.end(),
std::back_inserter(*AsyncBacktraceFrames));
Result.AsyncBacktraceFramesCount = AsyncBacktraceFrames->size();
Result.AsyncBacktraceFrames = AsyncBacktraceFrames->data();
return Result;
});
}
swift_actor_info_t
swift_reflection_actorInfo(SwiftReflectionContextRef ContextRef,
swift_reflection_ptr_t ActorPtr) {
return ContextRef->withContext([&](auto *Context) {
auto [Error, ActorInfo] = Context->actorInfo(ActorPtr);
swift_actor_info_t Result = {};
Result.Error = returnableCString(ContextRef, Error);
Result.State = ActorInfo.State;
Result.IsDistributedRemote = ActorInfo.IsDistributedRemote;
Result.IsPriorityEscalated = ActorInfo.IsPriorityEscalated;
Result.MaxPriority = ActorInfo.MaxPriority;
Result.FirstJob = ActorInfo.FirstJob;
Result.HasThreadPort = ActorInfo.HasThreadPort;
Result.ThreadPort = ActorInfo.ThreadPort;
return Result;
});
}
swift_reflection_ptr_t
swift_reflection_nextJob(SwiftReflectionContextRef ContextRef,
swift_reflection_ptr_t JobPtr) {
return ContextRef->withContext([&](auto *Context) {
return Context->nextJob(JobPtr);
});
}