Files
swift-mirror/stdlib/public/core/Runtime.swift
2025-03-01 20:29:11 -08:00

706 lines
22 KiB
Swift

//===----------------------------------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This file contains Swift wrappers for functions defined in the C++ runtime.
///
//===----------------------------------------------------------------------===//
import SwiftShims
//===----------------------------------------------------------------------===//
// Atomics
//===----------------------------------------------------------------------===//
@_transparent
public // @testable
func _stdlib_atomicCompareExchangeStrongPtr(
object target: UnsafeMutablePointer<UnsafeRawPointer?>,
expected: UnsafeMutablePointer<UnsafeRawPointer?>,
desired: UnsafeRawPointer?
) -> Bool {
// We use Builtin.Word here because Builtin.RawPointer can't be nil.
let (oldValue, won) = unsafe Builtin.cmpxchg_seqcst_seqcst_Word(
target._rawValue,
UInt(bitPattern: expected.pointee)._builtinWordValue,
UInt(bitPattern: desired)._builtinWordValue)
unsafe expected.pointee = UnsafeRawPointer(bitPattern: Int(oldValue))
return Bool(won)
}
/// Atomic compare and exchange of `UnsafeMutablePointer<T>` with sequentially
/// consistent memory ordering. Precise semantics are defined in C++11 or C11.
///
/// - Warning: This operation is extremely tricky to use correctly because of
/// writeback semantics.
///
/// It is best to use it directly on an
/// `UnsafeMutablePointer<UnsafeMutablePointer<T>>` that is known to point
/// directly to the memory where the value is stored.
///
/// In a call like this:
///
/// _stdlib_atomicCompareExchangeStrongPtr(&foo.property1.property2, ...)
///
/// you need to manually make sure that:
///
/// - all properties in the chain are physical (to make sure that no writeback
/// happens; the compare-and-exchange instruction should operate on the
/// shared memory); and
///
/// - the shared memory that you are accessing is located inside a heap
/// allocation (a class instance property, a `_BridgingBuffer`, a pointer to
/// an `Array` element etc.)
///
/// If the conditions above are not met, the code will still compile, but the
/// compare-and-exchange instruction will operate on the writeback buffer, and
/// you will get a *race* while doing writeback into shared memory.
@_transparent
public // @testable
func _stdlib_atomicCompareExchangeStrongPtr<T>(
object target: UnsafeMutablePointer<UnsafeMutablePointer<T>>,
expected: UnsafeMutablePointer<UnsafeMutablePointer<T>>,
desired: UnsafeMutablePointer<T>
) -> Bool {
let rawTarget = unsafe UnsafeMutableRawPointer(target).assumingMemoryBound(
to: Optional<UnsafeRawPointer>.self)
let rawExpected = unsafe UnsafeMutableRawPointer(expected).assumingMemoryBound(
to: Optional<UnsafeRawPointer>.self)
return unsafe _stdlib_atomicCompareExchangeStrongPtr(
object: rawTarget,
expected: rawExpected,
desired: UnsafeRawPointer(desired))
}
/// Atomic compare and exchange of `UnsafeMutablePointer<T>` with sequentially
/// consistent memory ordering. Precise semantics are defined in C++11 or C11.
///
/// - Warning: This operation is extremely tricky to use correctly because of
/// writeback semantics.
///
/// It is best to use it directly on an
/// `UnsafeMutablePointer<UnsafeMutablePointer<T>>` that is known to point
/// directly to the memory where the value is stored.
///
/// In a call like this:
///
/// _stdlib_atomicCompareExchangeStrongPtr(&foo.property1.property2, ...)
///
/// you need to manually make sure that:
///
/// - all properties in the chain are physical (to make sure that no writeback
/// happens; the compare-and-exchange instruction should operate on the
/// shared memory); and
///
/// - the shared memory that you are accessing is located inside a heap
/// allocation (a class instance property, a `_BridgingBuffer`, a pointer to
/// an `Array` element etc.)
///
/// If the conditions above are not met, the code will still compile, but the
/// compare-and-exchange instruction will operate on the writeback buffer, and
/// you will get a *race* while doing writeback into shared memory.
@_transparent
public // @testable
func _stdlib_atomicCompareExchangeStrongPtr<T>(
object target: UnsafeMutablePointer<UnsafeMutablePointer<T>?>,
expected: UnsafeMutablePointer<UnsafeMutablePointer<T>?>,
desired: UnsafeMutablePointer<T>?
) -> Bool {
let rawTarget = unsafe UnsafeMutableRawPointer(target).assumingMemoryBound(
to: Optional<UnsafeRawPointer>.self)
let rawExpected = unsafe UnsafeMutableRawPointer(expected).assumingMemoryBound(
to: Optional<UnsafeRawPointer>.self)
return unsafe _stdlib_atomicCompareExchangeStrongPtr(
object: rawTarget,
expected: rawExpected,
desired: UnsafeRawPointer(desired))
}
@_transparent
@discardableResult
@_unavailableInEmbedded
public // @testable
func _stdlib_atomicInitializeARCRef(
object target: UnsafeMutablePointer<AnyObject?>,
desired: AnyObject
) -> Bool {
// Note: this assumes that AnyObject? is layout-compatible with a RawPointer
// that simply points to the same memory.
var expected: UnsafeRawPointer? = nil
let unmanaged = unsafe Unmanaged.passRetained(desired)
let desiredPtr = unsafe unmanaged.toOpaque()
let rawTarget = unsafe UnsafeMutableRawPointer(target).assumingMemoryBound(
to: Optional<UnsafeRawPointer>.self)
let wonRace = unsafe withUnsafeMutablePointer(to: &expected) {
unsafe _stdlib_atomicCompareExchangeStrongPtr(
object: rawTarget, expected: $0, desired: desiredPtr
)
}
if !wonRace {
// Some other thread initialized the value. Balance the retain that we
// performed on 'desired'.
unsafe unmanaged.release()
}
return wonRace
}
@_transparent
@_unavailableInEmbedded
public // @testable
func _stdlib_atomicLoadARCRef(
object target: UnsafeMutablePointer<AnyObject?>
) -> AnyObject? {
let value = Builtin.atomicload_seqcst_Word(target._rawValue)
if let unwrapped = unsafe UnsafeRawPointer(bitPattern: Int(value)) {
return unsafe Unmanaged<AnyObject>.fromOpaque(unwrapped).takeUnretainedValue()
}
return nil
}
@_transparent
@_alwaysEmitIntoClient
@discardableResult
public func _stdlib_atomicAcquiringInitializeARCRef<T: AnyObject>(
object target: UnsafeMutablePointer<T?>,
desired: __owned T
) -> Unmanaged<T> {
// Note: this assumes that AnyObject? is layout-compatible with a RawPointer
// that simply points to the same memory, and that `nil` is represented by an
// all-zero bit pattern.
let unmanaged = unsafe Unmanaged.passRetained(desired)
let desiredPtr = unsafe unmanaged.toOpaque()
let (value, won) = Builtin.cmpxchg_acqrel_acquire_Word(
target._rawValue,
0._builtinWordValue,
Builtin.ptrtoint_Word(desiredPtr._rawValue))
if Bool(won) { return unsafe unmanaged }
// Some other thread initialized the value before us. Balance the retain that
// we performed on 'desired', and return what we loaded.
unsafe unmanaged.release()
let ptr = UnsafeRawPointer(Builtin.inttoptr_Word(value))
return unsafe Unmanaged<T>.fromOpaque(ptr)
}
@_alwaysEmitIntoClient
@_transparent
public func _stdlib_atomicAcquiringLoadARCRef<T: AnyObject>(
object target: UnsafeMutablePointer<T?>
) -> Unmanaged<T>? {
let value = Builtin.atomicload_acquire_Word(target._rawValue)
if Int(value) == 0 { return nil }
let opaque = UnsafeRawPointer(Builtin.inttoptr_Word(value))
return unsafe Unmanaged<T>.fromOpaque(opaque)
}
//===----------------------------------------------------------------------===//
// Conversion of primitive types to `String`
//===----------------------------------------------------------------------===//
/// A 32 byte buffer.
internal struct _Buffer32 {
internal var _x0: UInt8 = 0
internal var _x1: UInt8 = 0
internal var _x2: UInt8 = 0
internal var _x3: UInt8 = 0
internal var _x4: UInt8 = 0
internal var _x5: UInt8 = 0
internal var _x6: UInt8 = 0
internal var _x7: UInt8 = 0
internal var _x8: UInt8 = 0
internal var _x9: UInt8 = 0
internal var _x10: UInt8 = 0
internal var _x11: UInt8 = 0
internal var _x12: UInt8 = 0
internal var _x13: UInt8 = 0
internal var _x14: UInt8 = 0
internal var _x15: UInt8 = 0
internal var _x16: UInt8 = 0
internal var _x17: UInt8 = 0
internal var _x18: UInt8 = 0
internal var _x19: UInt8 = 0
internal var _x20: UInt8 = 0
internal var _x21: UInt8 = 0
internal var _x22: UInt8 = 0
internal var _x23: UInt8 = 0
internal var _x24: UInt8 = 0
internal var _x25: UInt8 = 0
internal var _x26: UInt8 = 0
internal var _x27: UInt8 = 0
internal var _x28: UInt8 = 0
internal var _x29: UInt8 = 0
internal var _x30: UInt8 = 0
internal var _x31: UInt8 = 0
internal init() {}
internal mutating func withBytes<Result>(
_ body: (UnsafeMutablePointer<UInt8>) throws -> Result
) rethrows -> Result {
return try unsafe withUnsafeMutablePointer(to: &self) {
try unsafe body(UnsafeMutableRawPointer($0).assumingMemoryBound(to: UInt8.self))
}
}
}
/// A 72 byte buffer.
internal struct _Buffer72 {
internal var _x0: UInt8 = 0
internal var _x1: UInt8 = 0
internal var _x2: UInt8 = 0
internal var _x3: UInt8 = 0
internal var _x4: UInt8 = 0
internal var _x5: UInt8 = 0
internal var _x6: UInt8 = 0
internal var _x7: UInt8 = 0
internal var _x8: UInt8 = 0
internal var _x9: UInt8 = 0
internal var _x10: UInt8 = 0
internal var _x11: UInt8 = 0
internal var _x12: UInt8 = 0
internal var _x13: UInt8 = 0
internal var _x14: UInt8 = 0
internal var _x15: UInt8 = 0
internal var _x16: UInt8 = 0
internal var _x17: UInt8 = 0
internal var _x18: UInt8 = 0
internal var _x19: UInt8 = 0
internal var _x20: UInt8 = 0
internal var _x21: UInt8 = 0
internal var _x22: UInt8 = 0
internal var _x23: UInt8 = 0
internal var _x24: UInt8 = 0
internal var _x25: UInt8 = 0
internal var _x26: UInt8 = 0
internal var _x27: UInt8 = 0
internal var _x28: UInt8 = 0
internal var _x29: UInt8 = 0
internal var _x30: UInt8 = 0
internal var _x31: UInt8 = 0
internal var _x32: UInt8 = 0
internal var _x33: UInt8 = 0
internal var _x34: UInt8 = 0
internal var _x35: UInt8 = 0
internal var _x36: UInt8 = 0
internal var _x37: UInt8 = 0
internal var _x38: UInt8 = 0
internal var _x39: UInt8 = 0
internal var _x40: UInt8 = 0
internal var _x41: UInt8 = 0
internal var _x42: UInt8 = 0
internal var _x43: UInt8 = 0
internal var _x44: UInt8 = 0
internal var _x45: UInt8 = 0
internal var _x46: UInt8 = 0
internal var _x47: UInt8 = 0
internal var _x48: UInt8 = 0
internal var _x49: UInt8 = 0
internal var _x50: UInt8 = 0
internal var _x51: UInt8 = 0
internal var _x52: UInt8 = 0
internal var _x53: UInt8 = 0
internal var _x54: UInt8 = 0
internal var _x55: UInt8 = 0
internal var _x56: UInt8 = 0
internal var _x57: UInt8 = 0
internal var _x58: UInt8 = 0
internal var _x59: UInt8 = 0
internal var _x60: UInt8 = 0
internal var _x61: UInt8 = 0
internal var _x62: UInt8 = 0
internal var _x63: UInt8 = 0
internal var _x64: UInt8 = 0
internal var _x65: UInt8 = 0
internal var _x66: UInt8 = 0
internal var _x67: UInt8 = 0
internal var _x68: UInt8 = 0
internal var _x69: UInt8 = 0
internal var _x70: UInt8 = 0
internal var _x71: UInt8 = 0
internal init() {}
internal mutating func withBytes<Result>(
_ body: (UnsafeMutablePointer<UInt8>) throws -> Result
) rethrows -> Result {
return try unsafe withUnsafeMutablePointer(to: &self) {
try unsafe body(UnsafeMutableRawPointer($0).assumingMemoryBound(to: UInt8.self))
}
}
}
#if !((os(macOS) || targetEnvironment(macCatalyst)) && arch(x86_64))
#if arch(wasm32)
// Note that this takes a Float32 argument instead of Float16, because clang
// doesn't have _Float16 on all platforms yet.
@available(SwiftStdlib 5.3, *)
typealias _CFloat16Argument = Float32
#else
@available(SwiftStdlib 5.3, *)
typealias _CFloat16Argument = Float16
#endif
@available(SwiftStdlib 5.3, *)
@_silgen_name("swift_float16ToString")
internal func _float16ToStringImpl(
_ buffer: UnsafeMutablePointer<UTF8.CodeUnit>,
_ bufferLength: UInt,
_ value: _CFloat16Argument,
_ debug: Bool
) -> Int
@available(SwiftStdlib 5.3, *)
internal func _float16ToString(
_ value: Float16,
debug: Bool
) -> (buffer: _Buffer32, length: Int) {
_internalInvariant(MemoryLayout<_Buffer32>.size == 32)
var buffer = _Buffer32()
let length = unsafe buffer.withBytes { (bufferPtr) in
unsafe _float16ToStringImpl(bufferPtr, 32, _CFloat16Argument(value), debug)
}
return (buffer, length)
}
#endif
// Returns a UInt64, but that value is the length of the string, so it's
// guaranteed to fit into an Int. This is part of the ABI, so we can't
// trivially change it to Int. Callers can safely convert the result
// to any integer type without checks, however.
@_silgen_name("swift_float32ToString")
internal func _float32ToStringImpl(
_ buffer: UnsafeMutablePointer<UTF8.CodeUnit>,
_ bufferLength: UInt,
_ value: Float32,
_ debug: Bool
) -> UInt64
internal func _float32ToString(
_ value: Float32,
debug: Bool
) -> (buffer: _Buffer32, length: Int) {
_internalInvariant(MemoryLayout<_Buffer32>.size == 32)
var buffer = _Buffer32()
let length = unsafe buffer.withBytes { (bufferPtr) in unsafe Int(
truncatingIfNeeded: _float32ToStringImpl(bufferPtr, 32, value, debug)
)}
return (buffer, length)
}
// Returns a UInt64, but that value is the length of the string, so it's
// guaranteed to fit into an Int. This is part of the ABI, so we can't
// trivially change it to Int. Callers can safely convert the result
// to any integer type without checks, however.
@_silgen_name("swift_float64ToString")
internal func _float64ToStringImpl(
_ buffer: UnsafeMutablePointer<UTF8.CodeUnit>,
_ bufferLength: UInt,
_ value: Float64,
_ debug: Bool
) -> UInt64
internal func _float64ToString(
_ value: Float64,
debug: Bool
) -> (buffer: _Buffer32, length: Int) {
_internalInvariant(MemoryLayout<_Buffer32>.size == 32)
var buffer = _Buffer32()
let length = unsafe buffer.withBytes { (bufferPtr) in unsafe Int(
truncatingIfNeeded: _float64ToStringImpl(bufferPtr, 32, value, debug)
)}
return (buffer, length)
}
#if !(os(Windows) || os(Android) || ($Embedded && !os(Linux) && !(os(macOS) || os(iOS) || os(watchOS) || os(tvOS)))) && (arch(i386) || arch(x86_64))
// Returns a UInt64, but that value is the length of the string, so it's
// guaranteed to fit into an Int. This is part of the ABI, so we can't
// trivially change it to Int. Callers can safely convert the result
// to any integer type without checks, however.
@_silgen_name("swift_float80ToString")
internal func _float80ToStringImpl(
_ buffer: UnsafeMutablePointer<UTF8.CodeUnit>,
_ bufferLength: UInt,
_ value: Float80,
_ debug: Bool
) -> UInt64
internal func _float80ToString(
_ value: Float80,
debug: Bool
) -> (buffer: _Buffer32, length: Int) {
_internalInvariant(MemoryLayout<_Buffer32>.size == 32)
var buffer = _Buffer32()
let length = unsafe buffer.withBytes { (bufferPtr) in Int(
truncatingIfNeeded: unsafe _float80ToStringImpl(bufferPtr, 32, value, debug)
)}
return (buffer, length)
}
#endif
#if !$Embedded
// Returns a UInt64, but that value is the length of the string, so it's
// guaranteed to fit into an Int. This is part of the ABI, so we can't
// trivially change it to Int. Callers can safely convert the result
// to any integer type without checks, however.
@_silgen_name("swift_int64ToString")
internal func _int64ToStringImpl(
_ buffer: UnsafeMutablePointer<UTF8.CodeUnit>,
_ bufferLength: UInt,
_ value: Int64,
_ radix: Int64,
_ uppercase: Bool
) -> UInt64
#else
internal func _int64ToStringImpl(
_ buffer: UnsafeMutablePointer<UTF8.CodeUnit>,
_ bufferLength: UInt,
_ value: Int64,
_ radix: Int64,
_ uppercase: Bool
) -> UInt64 {
return UInt64(unsafe value._toStringImpl(buffer, bufferLength, Int(radix), uppercase))
}
#endif
internal func _int64ToString(
_ value: Int64,
radix: Int64 = 10,
uppercase: Bool = false
) -> String {
if radix >= 10 {
var buffer = _Buffer32()
return unsafe buffer.withBytes { (bufferPtr) in
let actualLength = unsafe _int64ToStringImpl(bufferPtr, 32, value, radix, uppercase)
return unsafe String._fromASCII(UnsafeBufferPointer(
start: bufferPtr, count: Int(truncatingIfNeeded: actualLength)
))
}
} else {
var buffer = _Buffer72()
return unsafe buffer.withBytes { (bufferPtr) in
let actualLength = unsafe _int64ToStringImpl(bufferPtr, 72, value, radix, uppercase)
return unsafe String._fromASCII(UnsafeBufferPointer(
start: bufferPtr, count: Int(truncatingIfNeeded: actualLength)
))
}
}
}
#if !$Embedded
// Returns a UInt64, but that value is the length of the string, so it's
// guaranteed to fit into an Int. This is part of the ABI, so we can't
// trivially change it to Int. Callers can safely convert the result
// to any integer type without checks, however.
@_silgen_name("swift_uint64ToString")
internal func _uint64ToStringImpl(
_ buffer: UnsafeMutablePointer<UTF8.CodeUnit>,
_ bufferLength: UInt,
_ value: UInt64,
_ radix: Int64,
_ uppercase: Bool
) -> UInt64
#else
internal func _uint64ToStringImpl(
_ buffer: UnsafeMutablePointer<UTF8.CodeUnit>,
_ bufferLength: UInt,
_ value: UInt64,
_ radix: Int64,
_ uppercase: Bool
) -> UInt64 {
return unsafe UInt64(value._toStringImpl(buffer, bufferLength, Int(radix), uppercase))
}
#endif
public // @testable
func _uint64ToString(
_ value: UInt64,
radix: Int64 = 10,
uppercase: Bool = false
) -> String {
if radix >= 10 {
var buffer = _Buffer32()
return unsafe buffer.withBytes { (bufferPtr) in
let actualLength = unsafe _uint64ToStringImpl(bufferPtr, 32, value, radix, uppercase)
return unsafe String._fromASCII(UnsafeBufferPointer(
start: bufferPtr, count: Int(truncatingIfNeeded: actualLength)
))
}
} else {
var buffer = _Buffer72()
return unsafe buffer.withBytes { (bufferPtr) in
let actualLength = unsafe _uint64ToStringImpl(bufferPtr, 72, value, radix, uppercase)
return unsafe String._fromASCII(UnsafeBufferPointer(
start: bufferPtr, count: Int(truncatingIfNeeded: actualLength)
))
}
}
}
@inlinable
internal func _rawPointerToString(_ value: Builtin.RawPointer) -> String {
var result = _uint64ToString(
UInt64(UInt(bitPattern: UnsafeRawPointer(value))),
radix: 16,
uppercase: false
)
for _ in unsafe 0..<(2 * MemoryLayout<UnsafeRawPointer>.size - result.utf16.count) {
result = "0" + result
}
return "0x" + result
}
#if _runtime(_ObjC)
// At runtime, these classes are derived from `__SwiftNativeNSXXXBase`,
// which are derived from `NSXXX`.
//
// The @swift_native_objc_runtime_base attribute
// allows us to subclass an Objective-C class and still use the fast Swift
// memory allocator.
//
// NOTE: older runtimes called these _SwiftNativeNSXXX. The two must
// coexist, so they were renamed. The old names must not be used in the
// new runtime.
@_fixed_layout
@usableFromInline
@objc @_swift_native_objc_runtime_base(__SwiftNativeNSArrayBase)
internal class __SwiftNativeNSArray {
@inlinable
@nonobjc
internal init() {}
// @objc public init(coder: AnyObject) {}
@inlinable
deinit {}
}
@available(*, unavailable)
extension __SwiftNativeNSArray: Sendable {}
@_fixed_layout
@usableFromInline
@objc @_swift_native_objc_runtime_base(__SwiftNativeNSMutableArrayBase)
internal class _SwiftNativeNSMutableArray {
@inlinable
@nonobjc
internal init() {}
// @objc public init(coder: AnyObject) {}
@inlinable
deinit {}
}
@available(*, unavailable)
extension _SwiftNativeNSMutableArray: Sendable {}
@_fixed_layout
@usableFromInline
@objc @_swift_native_objc_runtime_base(__SwiftNativeNSDictionaryBase)
internal class __SwiftNativeNSDictionary {
@nonobjc
internal init() {}
@objc public init(coder: AnyObject) {}
deinit {}
}
@available(*, unavailable)
extension __SwiftNativeNSDictionary: Sendable {}
@_fixed_layout
@usableFromInline
@objc @_swift_native_objc_runtime_base(__SwiftNativeNSSetBase)
internal class __SwiftNativeNSSet {
@nonobjc
internal init() {}
@objc public init(coder: AnyObject) {}
deinit {}
}
@available(*, unavailable)
extension __SwiftNativeNSSet: Sendable {}
@objc
@_swift_native_objc_runtime_base(__SwiftNativeNSEnumeratorBase)
internal class __SwiftNativeNSEnumerator {
@nonobjc
internal init() {}
@objc public init(coder: AnyObject) {}
deinit {}
}
//===----------------------------------------------------------------------===//
// Support for reliable testing of the return-autoreleased optimization
//===----------------------------------------------------------------------===//
@objc
internal class __stdlib_ReturnAutoreleasedDummy {
@objc
internal init() {}
// Use 'dynamic' to force Objective-C dispatch, which uses the
// return-autoreleased call sequence.
@objc
internal dynamic func returnsAutoreleased(_ x: AnyObject) -> AnyObject {
return x
}
}
/// This function ensures that the return-autoreleased optimization works.
///
/// On some platforms (for example, x86_64), the first call to
/// `objc_autoreleaseReturnValue` will always autorelease because it would fail
/// to verify the instruction sequence in the caller. On x86_64 certain PLT
/// entries would be still pointing to the resolver function, and sniffing
/// the call sequence would fail.
///
/// This code should live in the core stdlib dylib because PLT tables are
/// separate for each dylib.
///
/// Call this function in a fresh autorelease pool.
public func _stdlib_initializeReturnAutoreleased() {
#if arch(x86_64)
// On x86_64 it is sufficient to perform one cycle of return-autoreleased
// call sequence in order to initialize all required PLT entries.
let dummy = __stdlib_ReturnAutoreleasedDummy()
_ = dummy.returnsAutoreleased(dummy)
#endif
}
#else
@_fixed_layout
@usableFromInline
internal class __SwiftNativeNSArray {
@inlinable
internal init() {}
@inlinable
deinit {}
}
@_fixed_layout
@usableFromInline
internal class __SwiftNativeNSDictionary {
@inlinable
internal init() {}
@inlinable
deinit {}
}
@_fixed_layout
@usableFromInline
internal class __SwiftNativeNSSet {
@inlinable
internal init() {}
@inlinable
deinit {}
}
#endif