Files
swift-mirror/test/Constraints/protocols.swift
Pavel Yaskevich c84a34677a [AST] Special handling for existentials with superclass and marker protocols
Even if protocol is not self-conforming it should be okay to produce
a conformance based on superclass if protocol bounds of the existential
are all marker protocols.

Superclass concrete conformance is wrapped into an inherited conformance
in such cases to reference the existential.
2024-03-07 13:05:40 -08:00

580 lines
16 KiB
Swift

// RUN: %target-typecheck-verify-swift
protocol Fooable { func foo() }
protocol Barable { func bar() }
extension Int : Fooable, Barable {
func foo() {}
func bar() {}
}
extension Float32 : Barable {
func bar() {}
}
func f0(_: Barable) {}
func f1(_ x: Fooable & Barable) {}
func f2(_: Float) {}
let nilFunc: Optional<(Barable) -> ()> = nil
func g(_: (Barable & Fooable) -> ()) {}
protocol Classable : AnyObject {}
class SomeArbitraryClass {}
func fc0(_: Classable) {}
func fc1(_: Fooable & Classable) {}
func fc2(_: AnyObject) {}
func fc3(_: SomeArbitraryClass) {}
func gc(_: (Classable & Fooable) -> ()) {}
var i : Int
var f : Float
var b : Barable
//===----------------------------------------------------------------------===//
// Conversion to and among existential types
//===----------------------------------------------------------------------===//
f0(i)
f0(f)
f0(b)
f1(i)
f1(f) // expected-error{{argument type 'Float' does not conform to expected type 'Fooable'}}
f1(b) // expected-error{{argument type 'any Barable' does not conform to expected type 'Fooable'}}
//===----------------------------------------------------------------------===//
// Subtyping
//===----------------------------------------------------------------------===//
g(f0) // okay (subtype)
g(f1) // okay (exact match)
g(f2) // expected-error{{cannot convert value of type '(Float) -> ()' to expected argument type '(any Barable & Fooable) -> ()'}}
g(nilFunc ?? f0)
gc(fc0) // okay
gc(fc1) // okay
gc(fc2) // okay
gc(fc3) // expected-error{{cannot convert value of type '(SomeArbitraryClass) -> ()' to expected argument type '(any Classable & Fooable) -> ()'}}
// rdar://problem/19600325
func getAnyObject() -> AnyObject? {
return SomeArbitraryClass()
}
func castToClass(_ object: Any) -> SomeArbitraryClass? {
return object as? SomeArbitraryClass
}
_ = getAnyObject().map(castToClass)
_ = { (_: Any) -> Void in
return
} as ((Int) -> Void)
let _: (Int) -> Void = {
(_: Any) -> Void in
return
}
let _: () -> Any = {
() -> Int in
return 0
}
let _: () -> Int = {
() -> String in // expected-error {{declared closure result 'String' is incompatible with contextual type 'Int'}}
return ""
}
//===----------------------------------------------------------------------===//
// Members of archetypes
//===----------------------------------------------------------------------===//
func id<T>(_ t: T) -> T { return t }
protocol Initable {
init()
}
protocol P : Initable {
func bar(_ x: Int)
mutating func mut(_ x: Int)
static func tum()
typealias E = Int
typealias F = Self.E
typealias G = Array
}
protocol ClassP : class {
func bas(_ x: Int)
func quux(_ x: Int)
}
class ClassC : ClassP {
func bas(_ x: Int) {}
}
extension ClassP {
func quux(_ x: Int) {}
func bing(_ x: Int) {}
}
func generic<T: P>(_ t: T) {
var t = t
// Instance member of archetype
let _: (Int) -> () = id(t.bar)
let _: () = id(t.bar(0))
// Static member of archetype metatype
let _: () -> () = id(T.tum)
// Instance member of archetype metatype
let _: (T) -> (Int) -> () = id(T.bar)
let _: (Int) -> () = id(T.bar(t))
_ = t.mut // expected-error{{cannot reference 'mutating' method as function value}}
_ = t.tum // expected-error{{static member 'tum' cannot be used on instance of type 'T'}}
}
func genericClassP<T: ClassP>(_ t: T) {
// Instance member of archetype)
let _: (Int) -> () = id(t.bas)
let _: () = id(t.bas(0))
// Instance member of archetype metatype)
let _: (T) -> (Int) -> () = id(T.bas)
let _: (Int) -> () = id(T.bas(t))
let _: () = id(T.bas(t)(1))
}
func genericClassC<C : ClassC>(_ c: C) {
// Make sure that we can find members of protocol extensions
// on a class-bound archetype
let _ = c.bas(123)
let _ = c.quux(123)
let _ = c.bing(123)
}
//===----------------------------------------------------------------------===//
// Members of existentials
//===----------------------------------------------------------------------===//
func existential(_ p: P) {
var p = p
// Fully applied mutating method
p.mut(1)
_ = p.mut // expected-error{{cannot reference 'mutating' method as function value}}
// Instance member of existential)
let _: (Int) -> () = id(p.bar)
let _: () = id(p.bar(0))
// Static member of existential metatype)
let _: () -> () = id(type(of: p).tum)
}
func staticExistential(_ p: P.Type, pp: P.Protocol) {
let _ = p() // expected-error{{initializing from a metatype value must reference 'init' explicitly}}
let _ = p().bar // expected-error{{initializing from a metatype value must reference 'init' explicitly}}
let _ = p().bar(1) // expected-error{{initializing from a metatype value must reference 'init' explicitly}}
let ppp: P = p.init()
_ = pp() // expected-error{{value of type '(any P).Type' is a protocol; it cannot be instantiated}}
_ = pp().bar // expected-error{{value of type '(any P).Type' is a protocol; it cannot be instantiated}}
_ = pp().bar(2) // expected-error{{value of type '(any P).Type' is a protocol; it cannot be instantiated}}
_ = pp.init() // expected-error{{type 'any P' cannot be instantiated}}
_ = pp.init().bar // expected-error{{type 'any P' cannot be instantiated}}
_ = pp.init().bar(3) // expected-error{{type 'any P' cannot be instantiated}}
_ = P() // expected-error{{type 'any P' cannot be instantiated}}
_ = P().bar // expected-error{{type 'any P' cannot be instantiated}}
_ = P().bar(4) // expected-error{{type 'any P' cannot be instantiated}}
// Instance member of metatype
let _: (P) -> (Int) -> () = P.bar
let _: (Int) -> () = P.bar(ppp)
P.bar(ppp)(5)
// Instance member of metatype value
let _: (P) -> (Int) -> () = pp.bar
let _: (Int) -> () = pp.bar(ppp)
pp.bar(ppp)(5)
// Static member of existential metatype value
let _: () -> () = p.tum
// Instance member of existential metatype -- not allowed
_ = p.bar // expected-error{{instance member 'bar' cannot be used on type 'P'}}
_ = p.mut // expected-error{{instance member 'mut' cannot be used on type 'P'}}
// expected-error@-1 {{cannot reference 'mutating' method as function value}}
// Static member of metatype -- not allowed
_ = pp.tum // expected-error{{static member 'tum' cannot be used on protocol metatype '(any P).Type'}}
_ = P.tum // expected-error{{static member 'tum' cannot be used on protocol metatype '(any P).Type'}}
// Access typealias through protocol and existential metatypes
_ = pp.E.self
_ = p.E.self
_ = pp.F.self
_ = p.F.self
// Make sure that we open generics
let _: [Int].Type = p.G.self
}
protocol StaticP {
static func foo(a: Int)
}
extension StaticP {
func bar() {
_ = StaticP.foo(a:) // expected-error{{static member 'foo(a:)' cannot be used on protocol metatype '(any StaticP).Type'}} {{9-16=Self}}
func nested() {
_ = StaticP.foo(a:) // expected-error{{static member 'foo(a:)' cannot be used on protocol metatype '(any StaticP).Type'}} {{11-18=Self}}
}
}
}
func existentialClassP(_ p: ClassP) {
// Instance member of existential)
let _: (Int) -> () = id(p.bas)
let _: () = id(p.bas(0))
// Instance member of existential metatype)
let _: (ClassP) -> (Int) -> () = id(ClassP.bas)
let _: (Int) -> () = id(ClassP.bas(p))
let _: () = id(ClassP.bas(p)(1))
}
// Partial application of curried protocol methods
protocol Scalar {}
protocol Vector {
func scale(_ c: Scalar) -> Self
}
protocol Functional {
func apply(_ v: Vector) -> Scalar
}
protocol Coalgebra {
func coproduct(_ f: Functional) -> (_ v1: Vector, _ v2: Vector) -> Scalar
}
// Make sure existential is closed early when we partially apply
func wrap<T>(_ t: T) -> T {
return t
}
func exercise(_ c: Coalgebra, f: Functional, v: Vector) {
let _: (Vector, Vector) -> Scalar = wrap(c.coproduct(f))
let _: (Scalar) -> Vector = v.scale
}
// Make sure existential isn't closed too late
protocol Copyable {
func copy() -> Self
}
func copyTwice(_ c: Copyable) -> Copyable {
return c.copy().copy()
}
//===----------------------------------------------------------------------===//
// Dynamic self
//===----------------------------------------------------------------------===//
protocol Clonable {
func maybeClone() -> Self?
func doubleMaybeClone() -> Self??
func subdivideClone() -> (Self, Self)
func metatypeOfClone() -> Self.Type
func goodClonerFn() -> (() -> Self)
}
extension Clonable {
func badClonerFn() -> ((Self) -> Self) { }
func veryBadClonerFn() -> ((inout Self) -> ()) { }
func extClone() -> Self { }
func extMaybeClone(_ b: Bool) -> Self? { }
func extProbablyClone(_ b: Bool) -> Self! { }
static func returnSelfStatic() -> Self { }
static func returnSelfOptionalStatic(_ b: Bool) -> Self? { }
static func returnSelfIUOStatic(_ b: Bool) -> Self! { }
}
func testClonableArchetype<T : Clonable>(_ t: T) {
// Instance member of extension returning Self)
let _: (T) -> () -> T = id(T.extClone)
let _: () -> T = id(T.extClone(t))
let _: T = id(T.extClone(t)())
let _: () -> T = id(t.extClone)
let _: T = id(t.extClone())
let _: (T) -> (Bool) -> T? = id(T.extMaybeClone)
let _: (Bool) -> T? = id(T.extMaybeClone(t))
let _: T? = id(T.extMaybeClone(t)(false))
let _: (Bool) -> T? = id(t.extMaybeClone)
let _: T? = id(t.extMaybeClone(true))
let _: (T) -> (Bool) -> T? = id(T.extProbablyClone as (T) -> (Bool) -> T?)
let _: (Bool) -> T? = id(T.extProbablyClone(t) as (Bool) -> T?)
let _: T! = id(T.extProbablyClone(t)(true))
let _: (Bool) -> T? = id(t.extProbablyClone as (Bool) -> T?)
let _: T! = id(t.extProbablyClone(true))
// Static member of extension returning Self)
let _: () -> T = id(T.returnSelfStatic)
let _: T = id(T.returnSelfStatic())
let _: (Bool) -> T? = id(T.returnSelfOptionalStatic)
let _: T? = id(T.returnSelfOptionalStatic(false))
let _: (Bool) -> T? = id(T.returnSelfIUOStatic as (Bool) -> T?)
let _: T! = id(T.returnSelfIUOStatic(true))
}
func testClonableExistential(_ v: Clonable, _ vv: Clonable.Type) {
let _: Clonable? = v.maybeClone()
let _: Clonable?? = v.doubleMaybeClone()
let _: (Clonable, Clonable) = v.subdivideClone()
let _: Clonable.Type = v.metatypeOfClone()
let _: () -> Clonable = v.goodClonerFn()
// Instance member of extension returning Self
let _: () -> Clonable = id(v.extClone)
let _: Clonable = id(v.extClone())
let _: Clonable? = id(v.extMaybeClone(true))
let _: Clonable! = id(v.extProbablyClone(true))
// Static member of extension returning Self)
let _: () -> Clonable = id(vv.returnSelfStatic)
let _: Clonable = id(vv.returnSelfStatic())
let _: (Bool) -> Clonable? = id(vv.returnSelfOptionalStatic)
let _: Clonable? = id(vv.returnSelfOptionalStatic(false))
let _: (Bool) -> Clonable? = id(vv.returnSelfIUOStatic as (Bool) -> Clonable?)
let _: Clonable! = id(vv.returnSelfIUOStatic(true))
let _ = v.badClonerFn() // expected-error {{member 'badClonerFn' cannot be used on value of type 'any Clonable'; consider using a generic constraint instead}}
let _ = v.veryBadClonerFn() // expected-error {{member 'veryBadClonerFn' cannot be used on value of type 'any Clonable'; consider using a generic constraint instead}}
}
// rdar://problem/50099849
protocol Trivial {
associatedtype T
}
func rdar_50099849() {
struct A : Trivial {
typealias T = A
}
struct B<C : Trivial> : Trivial { // expected-note {{'C' declared as parameter to type 'B'}}
typealias T = C.T
}
struct C<W: Trivial, Z: Trivial> : Trivial where W.T == Z.T {
typealias T = W.T
}
let _ = C<A, B>() // expected-error {{generic parameter 'C' could not be inferred}}
// expected-note@-1 {{explicitly specify the generic arguments to fix this issue}} {{17-17=<<#C: Trivial#>>}}
}
// rdar://problem/50512161 - improve diagnostic when generic parameter cannot be deduced
func rdar_50512161() {
struct Item {}
struct TrivialItem : Trivial {
typealias T = Item?
}
func foo<I>(_: I.Type = I.self, item: I.T) where I : Trivial { // expected-note {{in call to function 'foo(_:item:)'}}
fatalError()
}
func bar(_ item: Item) {
foo(item: item) // expected-error {{generic parameter 'I' could not be inferred}}
}
}
// https://github.com/apple/swift/issues/54017
// Compiler crash on missing conformance for default param
do {
func foo<T : Initable>(_ x: T = .init()) -> T { x } // expected-note {{where 'T' = 'String'}}
let _: String = foo()
// expected-error@-1 {{local function 'foo' requires that 'String' conform to 'Initable'}}
}
// rdar://70814576 -- failed to produce a diagnostic when implicit value-to-optional conversion is involved.
func rdar70814576() {
struct S {}
func test(_: Fooable?) {
}
test(S()) // expected-error {{argument type 'S' does not conform to expected type 'Fooable'}}
}
extension Optional : Trivial {
typealias T = Wrapped
}
extension UnsafePointer : Trivial {
typealias T = Int
}
extension AnyHashable : Trivial {
typealias T = Int
}
extension UnsafeRawPointer : Trivial {
typealias T = Int
}
extension UnsafeMutableRawPointer : Trivial {
typealias T = Int
}
func test_inference_through_implicit_conversion() {
struct C : Hashable {}
func test<T: Trivial>(_: T) -> T {}
var arr: [C] = []
let ptr: UnsafeMutablePointer<C> = UnsafeMutablePointer(bitPattern: 0)!
let rawPtr: UnsafeMutableRawPointer = UnsafeMutableRawPointer(bitPattern: 0)!
let _: C? = test(C()) // Ok -> argument is implicitly promoted into an optional
let _: UnsafePointer<C> = test([C()]) // Ok - argument is implicitly converted to a pointer
let _: UnsafeRawPointer = test([C()]) // Ok - argument is implicitly converted to a raw pointer
let _: UnsafeMutableRawPointer = test(&arr) // Ok - inout Array<T> -> UnsafeMutableRawPointer
let _: UnsafePointer<C> = test(ptr) // Ok - UnsafeMutablePointer<T> -> UnsafePointer<T>
let _: UnsafeRawPointer = test(ptr) // Ok - UnsafeMutablePointer<T> -> UnsafeRawPointer
let _: UnsafeRawPointer = test(rawPtr) // Ok - UnsafeMutableRawPointer -> UnsafeRawPointer
let _: UnsafeMutableRawPointer = test(ptr) // Ok - UnsafeMutablePointer<T> -> UnsafeMutableRawPointer
let _: AnyHashable = test(C()) // Ok - argument is implicitly converted to `AnyHashable` because it's Hashable
}
// Make sure that conformances transitively checked through implicit conversions work with conditional requirements
protocol TestCond {}
extension Optional : TestCond where Wrapped == Int? {}
func simple<T : TestCond>(_ x: T) -> T { x }
func overloaded<T: TestCond>(_ x: T) -> T { x }
func overloaded<T: TestCond>(_ x: String) -> T { fatalError() }
func overloaded_result() -> Int { 42 }
func overloaded_result() -> String { "" }
func test_arg_conformance_with_conditional_reqs(i: Int) {
let _: Int?? = simple(i)
let _: Int?? = overloaded(i)
let _: Int?? = simple(overloaded_result())
let _: Int?? = overloaded(overloaded_result())
}
// rdar://77570994 - regression in type unification for literal collections
protocol Elt {
}
extension Int : Elt {}
extension Int64 : Elt {}
extension Dictionary : Elt where Key == String, Value: Elt {}
struct Object {}
extension Object : ExpressibleByDictionaryLiteral {
init(dictionaryLiteral elements: (String, Elt)...) {
}
}
enum E {
case test(cond: Bool, v: Int64)
var test_prop: Object {
switch self {
case let .test(cond, v):
return ["obj": ["a": v, "b": cond ? 0 : 42]] // Ok
}
}
}
// https://github.com/apple/swift/issues/58231
protocol P_58231 {}
struct S_58231 {}
func f1_58231(x: Int) -> P_58231 {
return S_58231() // expected-error{{return expression of type 'S_58231' does not conform to 'P_58231'}}
}
func f2_58231(x: Int) -> P_58231? {
return S_58231() // expected-error{{return expression of type 'S_58231' does not conform to 'P_58231'}}
}
// https://github.com/apple/swift/issues/61517
protocol P_61517 {
init()
init(_: Bool)
}
_ = P_61517() // expected-error{{type 'any P_61517' cannot be instantiated}}
_ = P_61517(false) // expected-error{{type 'any P_61517' cannot be instantiated}}
_ = P_61517.init() // expected-error{{type 'any P_61517' cannot be instantiated}}
_ = P_61517.init(false) // expected-error{{type 'any P_61517' cannot be instantiated}}
@_marker
protocol Marker {}
do {
class C : Fooable, Error {
func foo() {}
}
struct Other {}
func overloaded() -> C & Marker {
fatalError()
}
func overloaded() -> Other {
fatalError()
}
func isFooable<T: Fooable>(_: T) {}
isFooable(overloaded()) // Ok
func isError<T: Error>(_: T) {}
isError(overloaded()) // Ok
func isFooableError<T: Fooable & Error>(_: T) {}
isFooableError(overloaded()) // Ok
}