mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
`AvailabilityRange` is now being used as a currency type in more of the compiler, and some of those uses are in permanent `ASTContext` allocations. The class wraps the `VersionRange` utility, which is itself a wrapper around `llvm::VersionTuple` with some additional storage for representing sentinel values. Even though the two sentinel values can be be represented with just a single bit of additional storage on top of the 16 bytes required to represent `VersionTuple`, because of alignment requirements the sentinel values end up bloating the layout of `VersionRange` by many bytes. To make `AvailabilityRange` and `VersionRange` more efficient to store, we can instead reserve two unlikely `llvm::VersionTuple` bit patterns as the sentinel values instead. The values chosen are the same ones LLVM uses to represent version tuple tombstones and empty keys in a `DenseMap`.
334 lines
12 KiB
C++
334 lines
12 KiB
C++
//===--- AvailabilityRange.h - Swift Availability Range ---------*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2025 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the AvailabilityRange utility.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SWIFT_AST_AVAILABILITY_RANGE_H
|
|
#define SWIFT_AST_AVAILABILITY_RANGE_H
|
|
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/Basic/LLVM.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/Support/VersionTuple.h"
|
|
#include <optional>
|
|
|
|
namespace swift {
|
|
class ASTContext;
|
|
|
|
/// A lattice of version ranges of the form [x.y.z, +Inf).
|
|
class VersionRange {
|
|
// The lattice ordering is linear:
|
|
// Empty <= ... <= [10.10.0,+Inf) <= ... [10.1.0,+Inf) <= ... <= All
|
|
// and corresponds to set inclusion.
|
|
|
|
// The concretization of lattice elements is:
|
|
// Empty: empty
|
|
// All: all versions
|
|
// x.y.x: all versions greater than or equal to x.y.z
|
|
|
|
/// The sentinel version tuple representing a range containing all versions.
|
|
constexpr static llvm::VersionTuple getAllTuple() {
|
|
return llvm::VersionTuple(0x7FFFFFFE);
|
|
}
|
|
|
|
/// The sentinel version tuple representing an empty range.
|
|
constexpr static llvm::VersionTuple getEmptyTuple() {
|
|
return llvm::VersionTuple(0x7FFFFFFF);
|
|
}
|
|
|
|
// A version range is either an extremal value (Empty, All) or
|
|
// a single version tuple value representing the lower end point x.y.z of a
|
|
// range [x.y.z, +Inf).
|
|
llvm::VersionTuple LowerEndpoint;
|
|
|
|
public:
|
|
/// Returns true if the range of versions is empty, or false otherwise.
|
|
bool isEmpty() const {
|
|
return !hasLowerEndpoint() && LowerEndpoint == getEmptyTuple();
|
|
}
|
|
|
|
/// Returns true if the range includes all versions, or false otherwise.
|
|
bool isAll() const {
|
|
return !hasLowerEndpoint() && LowerEndpoint == getAllTuple();
|
|
}
|
|
|
|
/// Returns true if the range has a lower end point; that is, if it is of
|
|
/// the form [X, +Inf).
|
|
bool hasLowerEndpoint() const { return isValidVersion(LowerEndpoint); }
|
|
|
|
/// Returns the range's lower endpoint.
|
|
const llvm::VersionTuple &getLowerEndpoint() const {
|
|
assert(hasLowerEndpoint());
|
|
return LowerEndpoint;
|
|
}
|
|
|
|
/// Returns a representation of this range as a string for debugging purposes.
|
|
std::string getAsString() const {
|
|
if (isEmpty()) {
|
|
return "empty";
|
|
} else if (isAll()) {
|
|
return "all";
|
|
} else {
|
|
return "[" + getLowerEndpoint().getAsString() + ",+Inf)";
|
|
}
|
|
}
|
|
|
|
/// Returns true if all versions in this range are also in the Other range.
|
|
bool isContainedIn(const VersionRange &Other) const {
|
|
if (isEmpty() || Other.isAll())
|
|
return true;
|
|
|
|
if (isAll() || Other.isEmpty())
|
|
return false;
|
|
|
|
// [v1, +Inf) is contained in [v2, +Inf) if v1 >= v2
|
|
return getLowerEndpoint() >= Other.getLowerEndpoint();
|
|
}
|
|
|
|
// Returns true if all the versions in the Other range are versions in this
|
|
// range and the ranges are not equal.
|
|
bool isSupersetOf(const VersionRange &Other) const {
|
|
if (isEmpty() || Other.isAll())
|
|
return false;
|
|
|
|
if (isAll() || Other.isEmpty())
|
|
return true;
|
|
|
|
return getLowerEndpoint() < Other.getLowerEndpoint();
|
|
}
|
|
|
|
/// Mutates this range to be a best-effort underapproximation of
|
|
/// the intersection of itself and Other. This is the
|
|
/// meet operation (greatest lower bound) in the version range lattice.
|
|
void intersectWith(const VersionRange &Other) {
|
|
// With the existing lattice this operation is precise. If the lattice
|
|
// is ever extended it is important that this operation be an
|
|
// underapproximation of intersection.
|
|
|
|
if (isEmpty() || Other.isAll())
|
|
return;
|
|
|
|
if (isAll() || Other.isEmpty()) {
|
|
*this = Other;
|
|
return;
|
|
}
|
|
|
|
// The g.l.b of [v1, +Inf), [v2, +Inf) is [max(v1,v2), +Inf)
|
|
const llvm::VersionTuple maxVersion =
|
|
std::max(this->getLowerEndpoint(), Other.getLowerEndpoint());
|
|
|
|
LowerEndpoint = maxVersion;
|
|
}
|
|
|
|
/// Mutates this range to be the union of itself and Other. This is the
|
|
/// join operator (least upper bound) in the version range lattice.
|
|
void unionWith(const VersionRange &Other) {
|
|
// With the existing lattice this operation is precise. If the lattice
|
|
// is ever extended it is important that this operation be an
|
|
// overapproximation of union.
|
|
if (isAll() || Other.isEmpty())
|
|
return;
|
|
|
|
if (isEmpty() || Other.isAll()) {
|
|
*this = Other;
|
|
return;
|
|
}
|
|
|
|
// The l.u.b of [v1, +Inf), [v2, +Inf) is [min(v1,v2), +Inf)
|
|
const llvm::VersionTuple minVersion =
|
|
std::min(this->getLowerEndpoint(), Other.getLowerEndpoint());
|
|
|
|
LowerEndpoint = minVersion;
|
|
}
|
|
|
|
/// Mutates this range to be a best effort over-approximation of the
|
|
/// intersection of the concretizations of this version range and Other.
|
|
void constrainWith(const VersionRange &Other) {
|
|
// We can use intersection for this because the lattice is multiplicative
|
|
// with respect to concretization--that is, the concretization
|
|
// of Range1 meet Range2 is equal to the intersection of the
|
|
// concretization of Range1 and the concretization of Range2.
|
|
// This will change if we add (-Inf, v) to our version range lattice.
|
|
intersectWith(Other);
|
|
}
|
|
|
|
/// Returns a version range representing all versions.
|
|
static VersionRange all() { return VersionRange(getAllTuple()); }
|
|
|
|
/// Returns a version range representing no versions.
|
|
static VersionRange empty() { return VersionRange(getEmptyTuple()); }
|
|
|
|
/// Returns false if the given version tuple cannot be used as a lower
|
|
/// endpoint for `VersionRange`.
|
|
static bool isValidVersion(const llvm::VersionTuple &EndPoint) {
|
|
return EndPoint != getAllTuple() && EndPoint != getEmptyTuple();
|
|
}
|
|
|
|
/// Returns a version range representing all versions greater than or equal
|
|
/// to the passed-in version.
|
|
static VersionRange allGTE(const llvm::VersionTuple &EndPoint) {
|
|
ASSERT(isValidVersion(EndPoint));
|
|
return VersionRange(EndPoint);
|
|
}
|
|
|
|
void Profile(llvm::FoldingSetNodeID &ID) const;
|
|
|
|
private:
|
|
VersionRange(const llvm::VersionTuple &LowerEndpoint)
|
|
: LowerEndpoint(LowerEndpoint) {}
|
|
};
|
|
|
|
/// Represents a version range in which something is available.
|
|
///
|
|
/// The AvailabilityRange structure forms a [lattice][], which allows it to
|
|
/// have meaningful union and intersection operations ("join" and "meet"),
|
|
/// which use conservative approximations to prevent availability violations.
|
|
/// See #unionWith, #intersectWith, and #constrainWith.
|
|
///
|
|
/// [lattice]: http://mathworld.wolfram.com/Lattice.html
|
|
///
|
|
/// NOTE: Generally you should use the utilities on \c AvailabilityInference
|
|
/// to create an \c AvailabilityRange, rather than creating one directly.
|
|
class AvailabilityRange {
|
|
VersionRange Range;
|
|
|
|
public:
|
|
explicit AvailabilityRange(llvm::VersionTuple LowerEndpoint)
|
|
: Range(VersionRange::allGTE(LowerEndpoint)) {}
|
|
explicit AvailabilityRange(VersionRange Range) : Range(Range) {}
|
|
|
|
/// Creates a context that imposes the constraints of the ASTContext's
|
|
/// deployment target.
|
|
static AvailabilityRange forDeploymentTarget(const ASTContext &Ctx);
|
|
|
|
/// Creates a context that imposes the constraints of the ASTContext's
|
|
/// inlining target (i.e. minimum inlining version).
|
|
static AvailabilityRange forInliningTarget(const ASTContext &Ctx);
|
|
|
|
/// Creates a context that imposes the constraints of the ASTContext's
|
|
/// minimum runtime version.
|
|
static AvailabilityRange forRuntimeTarget(const ASTContext &Ctx);
|
|
|
|
/// Creates a context that imposes no constraints.
|
|
///
|
|
/// \see isAlwaysAvailable
|
|
static AvailabilityRange alwaysAvailable() {
|
|
return AvailabilityRange(VersionRange::all());
|
|
}
|
|
|
|
/// Creates a context that can never actually occur.
|
|
///
|
|
/// \see isKnownUnreachable
|
|
static AvailabilityRange neverAvailable() {
|
|
return AvailabilityRange(VersionRange::empty());
|
|
}
|
|
|
|
/// Returns the range of possible versions required by this context.
|
|
VersionRange getRawVersionRange() const { return Range; }
|
|
|
|
/// Returns true if there is a version tuple for this context.
|
|
bool hasMinimumVersion() const { return Range.hasLowerEndpoint(); }
|
|
|
|
/// Returns the minimum version required by this context. This convenience
|
|
/// is meant for debugging, diagnostics, serialization, etc. Use of the set
|
|
/// algebra operations on `AvailabilityRange` should be preferred over
|
|
/// direct comparison of raw versions.
|
|
///
|
|
/// Only call when `hasMinimumVersion()` returns true.
|
|
llvm::VersionTuple getRawMinimumVersion() const {
|
|
return Range.getLowerEndpoint();
|
|
}
|
|
|
|
/// Returns true if \p other makes stronger guarantees than this context.
|
|
///
|
|
/// That is, `a.isContainedIn(b)` implies `a.union(b) == b`.
|
|
bool isContainedIn(const AvailabilityRange &other) const {
|
|
return Range.isContainedIn(other.Range);
|
|
}
|
|
|
|
/// Returns true if \p other is a strict subset of this context.
|
|
///
|
|
/// That is, `a.isSupersetOf(b)` implies `a != b` and `a.union(b) == a`.
|
|
bool isSupersetOf(const AvailabilityRange &other) const {
|
|
return Range.isSupersetOf(other.Range);
|
|
}
|
|
|
|
/// Returns true if this context has constraints that make it impossible to
|
|
/// actually occur.
|
|
///
|
|
/// For example, the else branch of a `#available` check for iOS 8.0 when the
|
|
/// containing function already requires iOS 9.
|
|
bool isKnownUnreachable() const {
|
|
return Range.isEmpty();
|
|
}
|
|
|
|
/// Returns true if there are no constraints on this context; that is,
|
|
/// nothing can be assumed.
|
|
bool isAlwaysAvailable() const {
|
|
return Range.isAll();
|
|
}
|
|
|
|
/// Produces an under-approximation of the intersection of the two
|
|
/// availability contexts.
|
|
///
|
|
/// That is, if the intersection can't be represented exactly, prefer
|
|
/// treating some valid deployment environments as unavailable. This is the
|
|
/// "meet" operation of the lattice.
|
|
///
|
|
/// As an example, this is used when figuring out the required availability
|
|
/// for a type that references multiple nominal decls.
|
|
void intersectWith(const AvailabilityRange &other) {
|
|
Range.intersectWith(other.Range);
|
|
}
|
|
|
|
/// Produces an over-approximation of the intersection of the two
|
|
/// availability contexts.
|
|
///
|
|
/// That is, if the intersection can't be represented exactly, prefer
|
|
/// treating some invalid deployment environments as available.
|
|
///
|
|
/// As an example, this is used for the true branch of `#available`.
|
|
void constrainWith(const AvailabilityRange &other) {
|
|
Range.constrainWith(other.Range);
|
|
}
|
|
|
|
/// Produces an over-approximation of the union of two availability contexts.
|
|
///
|
|
/// That is, if the union can't be represented exactly, prefer treating
|
|
/// some invalid deployment environments as available. This is the "join"
|
|
/// operation of the lattice.
|
|
///
|
|
/// As an example, this is used for the else branch of a conditional with
|
|
/// multiple `#available` checks.
|
|
void unionWith(const AvailabilityRange &other) {
|
|
Range.unionWith(other.Range);
|
|
}
|
|
|
|
/// Returns a representation of this range as a string for debugging purposes.
|
|
std::string getAsString() const {
|
|
return "AvailabilityRange(" + getVersionString() + ")";
|
|
}
|
|
|
|
/// Returns a representation of the raw version range as a string for
|
|
/// debugging purposes.
|
|
std::string getVersionString() const {
|
|
ASSERT(Range.hasLowerEndpoint());
|
|
return Range.getLowerEndpoint().getAsString();
|
|
}
|
|
};
|
|
|
|
} // end namespace swift
|
|
|
|
#endif
|