Files
swift-mirror/include/swift/SIL/SILInstruction.h
Shubham Sandeep Rastogi 65a515b2d4 Merge pull request #80079 from rastogishubham/EnhanceDump
Add dump overloads to print debug info for SIL.
2025-03-31 11:41:55 -07:00

12025 lines
434 KiB
C++

//===--- SILInstruction.h - Instructions for SIL code -----------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the high-level SILInstruction class used for SIL code.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SIL_INSTRUCTION_H
#define SWIFT_SIL_INSTRUCTION_H
#include "swift/AST/ActorIsolation.h"
#include "swift/AST/AutoDiff.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/Decl.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/ProtocolConformanceRef.h"
#include "swift/AST/SILThunkKind.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/AST/TypeAlignments.h"
#include "swift/Basic/Compiler.h"
#include "swift/Basic/NullablePtr.h"
#include "swift/Basic/OptionSet.h"
#include "swift/Basic/ProfileCounter.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/TaggedUnion.h"
#include "swift/SIL/Consumption.h"
#include "swift/SIL/SILAllocated.h"
#include "swift/SIL/SILArgumentArrayRef.h"
#include "swift/SIL/SILDebugInfoExpression.h"
#include "swift/SIL/SILDebugVariable.h"
#include "swift/SIL/SILDeclRef.h"
#include "swift/SIL/SILFunctionConventions.h"
#include "swift/SIL/SILLocation.h"
#include "swift/SIL/SILSuccessor.h"
#include "swift/SIL/SILValue.h"
#include "swift/SIL/ValueUtils.h"
#include "swift/Strings.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/Support/TrailingObjects.h"
#include <array>
namespace llvm {
namespace ilist_detail {
/// The base class of the instruction list in SILBasicBlock.
///
/// We need a custom base class to not clear the prev/next pointers when
/// removing an instruction from the list.
class SILInstructionListBase : public ilist_base<false, void> {
public:
/// Remove an instruction from the list.
///
/// In contrast to the default implementation, it does not clear the prev/
/// next pointers in the node. This is needed to being able to remove
/// instructions from the list while iterating over the list.
/// For details see `DeletableInstructionsIterator`.
template <class T> static void remove(T &N) {
node_base_type *Prev = N.getPrev();
node_base_type *Next = N.getNext();
Next->setPrev(Prev);
Prev->setNext(Next);
}
template <class T> static void insertBefore(T &Next, T &N) {
insertBeforeImpl(Next, N);
}
template <class T> static void transferBefore(T &Next, T &First, T &Last) {
transferBeforeImpl(Next, First, Last);
}
};
// This template specialization is needed to replace the default instruction
// list base class with `SILInstructionListBase`.
template <> struct compute_node_options<::swift::SILInstruction> {
struct type {
typedef ::swift::SILInstruction value_type;
typedef value_type *pointer;
typedef value_type &reference;
typedef const value_type *const_pointer;
typedef const value_type &const_reference;
static const bool enable_sentinel_tracking = false;
static const bool is_sentinel_tracking_explicit = false;
static const bool has_iterator_bits = false;
typedef void tag;
typedef void parent_ty;
typedef ilist_node_base<enable_sentinel_tracking, void> node_base_type;
typedef SILInstructionListBase list_base_type;
};
};
} // end namespace ilist_detail
} // end llvm namespace
namespace swift {
class AllocationInst;
class DeclRefExpr;
class FloatLiteralExpr;
class FuncDecl;
class IntegerLiteralExpr;
class SingleValueInstruction;
class MultipleValueInstruction;
class MultipleValueInstructionResult;
class DestructureTupleInst;
class DestructureStructInst;
class NonValueInstruction;
class SILBasicBlock;
class SILBuilder;
class SILDebugLocation;
class SILDebugScope;
class SILDifferentiabilityWitness;
class SILFunction;
class SILGlobalVariable;
class SILInstructionResultArray;
class SILType;
class SILArgument;
class SILPhiArgument;
class SILUndef;
class Stmt;
class StringLiteralExpr;
class ValueDecl;
class VarDecl;
class FunctionRefBaseInst;
class SILPrintContext;
template <typename ImplClass> class SILClonerWithScopes;
enum class MemoryBehavior {
None,
/// The instruction may read memory.
MayRead,
/// The instruction may write to memory.
/// This includes destroying or taking from memory (e.g. destroy_addr,
/// copy_addr [take], load [take]).
/// Although, physically, destroying or taking does not modify the memory,
/// it is important to model it is a write. Optimizations must not assume
/// that the value stored in memory is still available for loading after
/// the memory is destroyed or taken.
MayWrite,
/// The instruction may read or write memory.
MayReadWrite,
/// The instruction may have side effects not captured
/// solely by its users. Specifically, it can return,
/// release memory, or store. Note, alloc is not considered
/// to have side effects because its result/users represent
/// its effect.
MayHaveSideEffects,
};
// An enum class for SILInstructions that enables exhaustive switches over
// instructions.
enum class SILInstructionKind : std::underlying_type<SILNodeKind>::type {
#define INST(ID, PARENT) \
ID = unsigned(SILNodeKind::ID),
#define INST_RANGE(ID, FIRST, LAST) \
First_##ID = unsigned(SILNodeKind::First_##ID), \
Last_##ID = unsigned(SILNodeKind::Last_##ID),
#include "SILNodes.def"
};
/// Return a range which can be used to easily iterate over all
/// SILInstructionKinds.
inline IntRange<SILInstructionKind> allSILInstructionKinds() {
return IntRange<SILInstructionKind>(
SILInstructionKind(SILNodeKind::First_SILInstruction),
SILInstructionKind(unsigned(SILNodeKind::Last_SILInstruction) + 1));
}
/// Map SILInstruction's mnemonic name to its SILInstructionKind.
SILInstructionKind getSILInstructionKind(StringRef InstName);
/// Map SILInstructionKind to a corresponding SILInstruction name.
StringRef getSILInstructionName(SILInstructionKind Kind);
/// A formal SIL reference to a list of values, suitable for use as the result
/// of a SILInstruction.
///
/// *NOTE* Most multiple value instructions will not have many results, so if we
/// want we can cache up to 3 bytes in the lower bits of the value.
///
/// *NOTE* Most of this defined out of line further down in the file to work
/// around forward declaration issues.
///
/// *NOTE* The reason why this does not store the size of the stored element is
/// that just from the number of elements we can infer the size of each element
/// due to the restricted problem space. Specifically:
///
/// 1. Size == 0 implies nothing is stored and thus element size is irrelevant.
/// 2. Size == 1 implies we either had a single value instruction or a multiple
/// value instruction, but no matter what instruction we had, we are going to
/// store the results at the same starting location so element size is
/// irrelevant.
/// 3. Size > 1 implies we must be storing multiple value instruction results
/// implying that the size of each stored element must be
/// sizeof(MultipleValueInstructionResult).
///
/// If we ever allow for subclasses of MultipleValueInstructionResult of
/// different sizes, we will need to store a stride into
/// SILInstructionResultArray. We always assume all results are the same
/// subclass of MultipleValueInstructionResult.
class SILInstructionResultArray {
friend class MultipleValueInstruction;
/// Byte pointer to our data. nullptr for empty arrays.
const uint8_t *Pointer;
/// The number of stored elements.
unsigned Size;
public:
SILInstructionResultArray() : Pointer(nullptr), Size(0) {}
SILInstructionResultArray(const SingleValueInstruction *SVI);
SILInstructionResultArray(ArrayRef<MultipleValueInstructionResult> results);
template <class Result>
SILInstructionResultArray(ArrayRef<Result> results);
SILInstructionResultArray(const SILInstructionResultArray &Other) = default;
SILInstructionResultArray &
operator=(const SILInstructionResultArray &Other) = default;
SILInstructionResultArray(SILInstructionResultArray &&Other) = default;
SILInstructionResultArray &
operator=(SILInstructionResultArray &&Other) = default;
SILValue operator[](size_t Index) const;
bool empty() const { return Size == 0; }
size_t size() const { return Size; }
class iterator;
friend bool operator==(iterator, iterator);
friend bool operator!=(iterator, iterator);
iterator begin() const;
iterator end() const;
using reverse_iterator = std::reverse_iterator<iterator>;
reverse_iterator rbegin() const;
reverse_iterator rend() const;
using range = iterator_range<iterator>;
range getValues() const;
using reverse_range = iterator_range<reverse_iterator>;
reverse_range getReversedValues() const;
using type_range = iterator_range<
llvm::mapped_iterator<iterator, SILType(*)(SILValue), SILType>>;
type_range getTypes() const;
bool operator==(const SILInstructionResultArray &rhs) const;
bool operator!=(const SILInstructionResultArray &other) const {
return !(*this == other);
}
/// Returns true if both this and \p rhs have the same result types.
///
/// *NOTE* This does not imply that the actual return SILValues are the
/// same. Just that the types are the same.
bool hasSameTypes(const SILInstructionResultArray &rhs);
private:
/// Return the first element of the array. Asserts if the array is empty.
///
/// Please do not use this outside of this class. It is only meant to speedup
/// MultipleValueInstruction::getIndexOfResult(SILValue).
const ValueBase *front() const;
/// Return the last element of the array. Asserts if the array is empty.
///
/// Please do not use this outside of this class. It is only meant to speedup
/// MultipleValueInstruction::getIndexOfResult(SILValue).
const ValueBase *back() const;
};
class SILInstructionResultArray::iterator {
/// Our "parent" array.
///
/// This is actually a value type reference into a SILInstruction of some
/// sort. So we can just have our own copy. This also allows us to not worry
/// about our underlying array having too short of a lifetime.
SILInstructionResultArray Parent;
/// The index into the parent array.
unsigned Index;
public:
using difference_type = int;
using value_type = SILValue;
using pointer = void;
using reference = SILValue;
using iterator_category = std::bidirectional_iterator_tag;
iterator() = default;
iterator(const SILInstructionResultArray &Parent, unsigned Index = 0)
: Parent(Parent), Index(Index) {}
SILValue operator*() const { return Parent[Index]; }
SILValue operator->() const { return operator*(); }
iterator &operator++() {
++Index;
return *this;
}
iterator operator++(int) {
iterator copy = *this;
++Index;
return copy;
}
iterator &operator--() {
--Index;
return *this;
}
iterator operator--(int) {
iterator copy = *this;
--Index;
return copy;
}
friend bool operator==(iterator lhs, iterator rhs) {
assert(lhs.Parent.Pointer == rhs.Parent.Pointer);
return lhs.Index == rhs.Index;
}
friend bool operator!=(iterator lhs, iterator rhs) { return !(lhs == rhs); }
};
inline SILInstructionResultArray::iterator
SILInstructionResultArray::begin() const {
return iterator(*this, 0);
}
inline SILInstructionResultArray::iterator
SILInstructionResultArray::end() const {
return iterator(*this, size());
}
inline SILInstructionResultArray::reverse_iterator
SILInstructionResultArray::rbegin() const {
return std::make_reverse_iterator(end());
}
inline SILInstructionResultArray::reverse_iterator
SILInstructionResultArray::rend() const {
return std::make_reverse_iterator(begin());
}
inline SILInstructionResultArray::range
SILInstructionResultArray::getValues() const {
return {begin(), end()};
}
inline SILInstructionResultArray::reverse_range
SILInstructionResultArray::getReversedValues() const {
return {rbegin(), rend()};
}
/// This is the root class for all instructions that can be used as the
/// contents of a Swift SILBasicBlock.
///
/// Most instructions are defined in terms of two basic kinds of
/// structure: a list of operand values upon which the instruction depends
/// and a list of result values upon which other instructions can depend.
///
/// The operands can be divided into two sets:
/// - the formal operands of the instruction, which reflect its
/// direct value dependencies, and
/// - the type-dependent operands, which reflect dependencies that are
/// not captured by the formal operands; currently, these dependencies
/// only arise due to certain instructions (e.g. open_existential_addr)
/// that bind new archetypes in the local context.
///
/// Conceptually, SILInstruction is a sub-class of SILNode. But implementation-
/// wise, only the two sub-classes of SILInstruction - SingleValueInstruction
/// and NonSingleValueInstruction - inherit from SILNode. Although the
/// SingleValueInstruction's SILNode is embedded into a ValueBase, its relative
/// offset in the class is the same as in NonSingleValueInstruction (see
/// SILNodeOffsetChecker). This makes it possible to cast from a SILInstruction
/// to a SILNode without knowing which SILInstruction sub-class it is.
/// Note that casting a SILInstruction to a SILNode cannot be done implicitly,
/// but only with an LLVM `cast` or with SILInstruction::asSILNode().
class SILInstruction : public llvm::ilist_node<SILInstruction> {
friend llvm::ilist_traits<SILInstruction>;
friend llvm::ilist_traits<SILBasicBlock>;
friend SILBasicBlock;
friend SILModule;
/// A backreference to the containing basic block. This is maintained by
/// ilist_traits<SILInstruction>.
SILBasicBlock *ParentBB = nullptr;
/// This instruction's containing lexical scope for debug info.
const SILDebugScope *debugScope = nullptr;
/// This instructions source location for diagnostics and debug info.
///
/// To reduce space, this is only the storage of the SILLocation. The
/// location's kindAndFlags is stored in `SILNode::locationKindAndFlags`.
SILLocation::Storage locationStorage;
void operator=(const SILInstruction &) = delete;
void operator delete(void *Ptr, size_t) = delete;
/// Check any special state of instructions that are not represented in the
/// instructions operands/type.
bool hasIdenticalState(const SILInstruction *RHS) const;
/// Update this instruction's SILDebugScope. This function should
/// never be called directly. Use SILBuilder, SILBuilderWithScope or
/// SILClonerWithScope instead.
void setDebugScope(const SILDebugScope *DS);
/// Total number of created and deleted SILInstructions.
///
/// Ideally, those counters would be inside SILModules to allow mutiple
/// SILModules (e.g. in different threads).
static int NumCreatedInstructions;
static int NumDeletedInstructions;
// Helper functions used by the ArrayRefViews below.
static SILValue projectValueBaseAsSILValue(const ValueBase &value) {
return &value;
}
static SILType projectValueBaseType(const ValueBase &value) {
return value.getType();
}
/// An internal method which retrieves the result values of the
/// instruction as an array of ValueBase objects.
SILInstructionResultArray getResultsImpl() const;
protected:
friend class SwiftPassInvocation;
SILInstruction() {
NumCreatedInstructions++;
}
~SILInstruction() {
NumDeletedInstructions++;
}
public:
/// Instructions should be allocated using a dedicated instruction allocation
/// function from the ContextTy.
template <typename ContextTy>
void *operator new(size_t Bytes, const ContextTy &C,
size_t Alignment = alignof(ValueBase)) {
return C.allocateInst(Bytes, Alignment);
}
/// Returns true if this instruction is removed from its function and
/// scheduled to be deleted.
bool isDeleted() const { return asSILNode()->isMarkedAsDeleted(); }
/// Enumeration representing whether the execution of an instruction can
/// result in memory being released.
enum class ReleasingBehavior {
DoesNotRelease,
MayRelease,
};
SILNode *asSILNode();
const SILNode *asSILNode() const;
LLVM_ATTRIBUTE_ALWAYS_INLINE
SILInstructionKind getKind() const;
SILBasicBlock *getParent() const { return ParentBB; }
SILFunction *getFunction() const;
/// Is this instruction part of a static initializer of a SILGlobalVariable?
bool isStaticInitializerInst() const { return getFunction() == nullptr; }
SILModule &getModule() const;
/// This instruction's source location (AST node).
SILLocation getLoc() const {
return SILLocation(locationStorage, asSILNode()->locationKindAndFlags);
}
const SILDebugScope *getDebugScope() const { return debugScope; }
SILDebugLocation getDebugLocation() const {
return SILDebugLocation(getLoc(), debugScope);
}
/// Sets the debug location.
/// Note: Usually it should not be needed to use this function as the location
/// is already set in when creating an instruction.
void setDebugLocation(SILDebugLocation debugLoc) {
debugScope = debugLoc.getScope();
SILLocation loc = debugLoc.getLocation();
asSILNode()->locationKindAndFlags = loc.kindAndFlags.packedKindAndFlags;
locationStorage = loc.storage;
}
/// Return the previous instruction, or nullptr if this is the first
/// instruction in its block.
SILInstruction *getPreviousInstruction();
/// Return the next instruction, or nullptr if this is the final
/// instruction in its block.
SILInstruction *getNextInstruction();
/// Calls \p visitor with each instruction that is immediately prior. Returns
/// false and stops visiting if \p visitor returns false.
///
/// If \p this is is the first instruction in a block, then \p visitor is
/// called with the back of each predecessor. In particular if \p this is
/// the first instruction of the entry block, \p visitor is never called.
bool
visitPriorInstructions(llvm::function_ref<bool(SILInstruction *)> visitor);
/// Calls \p visitor with each instruction that is immediately subsequent.
/// Returns false and stops visiting if \p visitor returns false.
///
/// If \p this is the last instruction in a block, then \p visitor is called
/// with the front of each successor. In particular if \p this is the last
/// instruction of a block without successors, \p visitor is never called.
bool visitSubsequentInstructions(
llvm::function_ref<bool(SILInstruction *)> visitor);
/// This method unlinks 'self' from the containing basic block and deletes it.
void eraseFromParent();
/// Unlink this instruction from its current basic block and insert the
/// instruction such that it is the first instruction of \p Block.
void moveFront(SILBasicBlock *Block);
/// Unlink this instruction from its current basic block and insert it into
/// the basic block that Later lives in, right before Later.
void moveBefore(SILInstruction *Later);
/// Unlink this instruction from its current basic block and insert it into
/// the basic block that Earlier lives in, right after Earlier.
void moveAfter(SILInstruction *Earlier);
/// Drops all uses that belong to this instruction.
void dropAllReferences();
/// Drops all references that aren't represented by operands.
void dropNonOperandReferences();
/// Replace all uses of all results of this instruction with undef.
void replaceAllUsesOfAllResultsWithUndef();
/// Replace all uses of all results of this instruction
/// with the parwise-corresponding results of the given instruction.
void replaceAllUsesPairwiseWith(SILInstruction *other);
/// Replace all uses of all results of this instruction with the
/// parwise-corresponding results of the passed in array.
void
replaceAllUsesPairwiseWith(const llvm::SmallVectorImpl<SILValue> &NewValues);
/// Are there uses of any of the results of this instruction?
bool hasUsesOfAnyResult() const {
for (auto result : getResults()) {
if (!result->use_empty())
return true;
}
return false;
}
/// Return the array of operands for this instruction.
ArrayRef<Operand> getAllOperands() const;
/// Return the array of type dependent operands for this instruction.
///
/// Type dependent operands are hidden operands, i.e. not part of the SIL
/// syntax (although they are printed as "type-defs" in comments).
/// Their purpose is to establish a def-use relationship between
/// -) an instruction/argument which defines a type, e.g. open_existential
/// and
/// -) this instruction, which uses the type, but doesn't use the defining
/// instruction as value-operand, e.g. a type in the substitution list.
///
/// Currently there are two kinds of type dependent operands:
///
/// 1. for opened archetypes:
/// %o = open_existential_addr %0 : $*P to $*@opened("UUID") P
/// %w = witness_method $@opened("UUID") P, ... // type-defs: %o
///
/// 2. for the dynamic self argument:
/// sil @foo : $@convention(method) (@thick X.Type) {
/// bb0(%0 : $@thick X.Type):
/// %a = apply %f<@dynamic_self X>() ... // type-defs: %0
///
/// The type dependent operands are just there to let optimizations know that
/// there is a dependency between the instruction/argument which defines the
/// type and the instruction which uses the type.
ArrayRef<Operand> getTypeDependentOperands() const;
/// Return the array of mutable operands for this instruction.
MutableArrayRef<Operand> getAllOperands();
/// Return the array of mutable type dependent operands for this instruction.
MutableArrayRef<Operand> getTypeDependentOperands();
private:
struct FilterOperandToRealOperand;
public:
using RealOperandRange =
OptionalTransformRange<ArrayRef<Operand>, FilterOperandToRealOperand>;
/// The array of real (i.e. not type-dependent) operands.
RealOperandRange getRealOperands() const;
unsigned getNumOperands() const { return getAllOperands().size(); }
unsigned getNumTypeDependentOperands() const {
return getTypeDependentOperands().size();
}
unsigned getNumRealOperands() const {
return getAllOperands().size() - getNumTypeDependentOperands();
}
bool isTypeDependentOperand(unsigned i) const {
return i >= getNumOperands() - getNumTypeDependentOperands();
}
bool isTypeDependentOperand(const Operand &Op) const {
assert(Op.getUser() == this &&
"Operand does not belong to a SILInstruction");
return isTypeDependentOperand(Op.getOperandNumber());
}
/// Returns true if evaluation of this instruction may cause suspension of an
/// async task.
bool maySuspend() const;
private:
/// Functor for Operand::get()
struct OperandToValue;
/// Functor for Operand::get()
struct OperandRefToValue;
/// Predicate to filter NonTypeDependentOperandValueRange
struct NonTypeDependentOperandToValue;
/// Predicate to filter TransformedOperandValueRange.
struct OperandToTransformedValue;
public:
using OperandValueRange = TransformRange<ArrayRef<Operand*>, OperandToValue>;
using OperandRefValueRange =
TransformRange<ArrayRef<Operand>, OperandRefToValue>;
using NonTypeDependentOperandValueRange =
OptionalTransformRange<ArrayRef<Operand>, NonTypeDependentOperandToValue>;
using TransformedOperandValueRange =
OptionalTransformRange<ArrayRef<Operand>, OperandToTransformedValue>;
static OperandValueRange getOperandValues(ArrayRef<Operand*> operands);
OperandRefValueRange getOperandValues() const;
NonTypeDependentOperandValueRange getNonTypeDependentOperandValues() const;
TransformedOperandValueRange
getOperandValues(std::function<SILValue(const Operand *)> transformFn,
bool skipTypeDependentOperands) const;
SILValue getOperand(unsigned Num) const {
return getAllOperands()[Num].get();
}
/// Return the ith mutable operand of this instruction.
///
/// Equivalent to performing getAllOperands()[index];
Operand &getOperandRef(unsigned index) { return getAllOperands()[index]; }
/// Return the ith operand of this instruction.
///
/// Equivalent to performing getAllOperands()[index];
const Operand &getOperandRef(unsigned index) const {
return getAllOperands()[index];
}
void setOperand(unsigned Num, SILValue V) { getAllOperands()[Num].set(V); }
void swapOperands(unsigned Num1, unsigned Num2) {
getAllOperands()[Num1].swap(getAllOperands()[Num2]);
}
private:
/// Predicate used to filter OperandTypeRange.
struct OperandToType;
public:
using OperandTypeRange =
OptionalTransformRange<ArrayRef<Operand>, OperandToType>;
// NOTE: We always skip type dependent operands.
OperandTypeRange getOperandTypes() const;
/// Return the list of results produced by this instruction.
bool hasResults() const { return !getResults().empty(); }
SILInstructionResultArray getResults() const { return getResultsImpl(); }
unsigned getNumResults() const { return getResults().size(); }
SILValue getResult(unsigned index) const { return getResults()[index]; }
/// Return the types of the results produced by this instruction.
SILInstructionResultArray::type_range getResultTypes() const {
return getResultsImpl().getTypes();
}
/// Run the given function for each local archetype this instruction
/// defines, passing the value that should be used to record the
/// dependency.
void forEachDefinedLocalEnvironment(
llvm::function_ref<void(GenericEnvironment *genericEnv,
SILValue typeDependency)> function) const;
bool definesLocalArchetypes() const;
MemoryBehavior getMemoryBehavior() const;
ReleasingBehavior getReleasingBehavior() const;
/// Returns true if the instruction may release any object.
bool mayRelease() const;
/// Returns true if the instruction may release or may read the reference
/// count of any object.
bool mayReleaseOrReadRefCount() const;
/// Can this instruction abort the program in some manner?
bool mayTrap() const;
/// Returns true if the given instruction is completely identical to RHS.
bool isIdenticalTo(const SILInstruction *RHS) const {
return isIdenticalTo(RHS,
[](const SILValue &Op1, const SILValue &Op2) -> bool {
return Op1 == Op2; });
}
/// Returns true if the given instruction is completely identical to RHS,
/// using \p opEqual to compare operands.
///
bool
isIdenticalTo(const SILInstruction *RHS,
llvm::function_ref<bool(SILValue, SILValue)> opEqual) const {
// Quick check if both instructions have the same kind, number of operands,
// and types. This should filter out most cases.
if (getKind() != RHS->getKind() ||
getNumOperands() != RHS->getNumOperands()) {
return false;
}
if (!getResults().hasSameTypes(RHS->getResults()))
return false;
// Check operands.
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (!opEqual(getOperand(i), RHS->getOperand(i)))
return false;
// Check any special state of instructions that are not represented in the
// instructions operands/type.
return hasIdenticalState(RHS);
}
bool isIdenticalTo(const SILInstruction *RHS,
llvm::function_ref<bool(const Operand *, const Operand *)>
opEqual) const {
// Quick check if both instructions have the same kind, number of operands,
// and types. This should filter out most cases.
if (getKind() != RHS->getKind() ||
getNumOperands() != RHS->getNumOperands()) {
return false;
}
if (!getResults().hasSameTypes(RHS->getResults()))
return false;
// Check operands.
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (!opEqual(&getOperandRef(i), &RHS->getOperandRef(i)))
return false;
// Check any special state of instructions that are not represented in the
// instructions operands/type.
return hasIdenticalState(RHS);
}
/// Returns true if the instruction may have side effects.
///
/// Instructions that store into memory or change retain counts as well as
/// calls and deallocation instructions are considered to have side effects
/// that are not visible by merely examining their uses.
bool mayHaveSideEffects() const;
/// Returns true if the instruction may write to memory, deinitialize memory,
/// or have other unknown side effects.
///
/// For details see MemoryBehavior.
bool mayWriteToMemory() const {
MemoryBehavior B = getMemoryBehavior();
return B == MemoryBehavior::MayWrite ||
B == MemoryBehavior::MayReadWrite ||
B == MemoryBehavior::MayHaveSideEffects;
}
/// Returns true if the instruction may read from memory, or have other
/// unknown side effects.
///
/// For details see MemoryBehavior.
bool mayReadFromMemory() const {
MemoryBehavior B = getMemoryBehavior();
return B == MemoryBehavior::MayRead ||
B == MemoryBehavior::MayReadWrite ||
B == MemoryBehavior::MayHaveSideEffects;
}
/// Returns true if the instruction may read from memory, write to memory,
/// deinitialize memory, or have other unknown side effects.
///
/// For details see MemoryBehavior.
bool mayReadOrWriteMemory() const {
return getMemoryBehavior() != MemoryBehavior::None;
}
/// Return true if the instruction is "pure" in the sense that it may execute
/// multiple times without affecting behavior. This implies that it can be
/// trivially cloned at multiple use sites without preserving path
/// equivalence.
bool isPure() const {
return !mayReadOrWriteMemory() && !mayTrap() && !isa<AllocationInst>(this)
&& !isa<TermInst>(this);
}
/// Returns true if the result of this instruction is a pointer to stack
/// allocated memory. In this case there must be an adjacent deallocating
/// instruction.
bool isAllocatingStack() const;
/// The stack allocation produced by the instruction, if any.
SILValue getStackAllocation() const;
/// Returns true if this is the deallocation of a stack allocating instruction.
/// The first operand must be the allocating instruction.
bool isDeallocatingStack() const;
/// Whether IRGen lowering of this instruction may result in emitting packs of
/// metadata or witness tables.
bool mayRequirePackMetadata(SILFunction const &F) const;
/// Create a new copy of this instruction, which retains all of the operands
/// and other information of this one. If an insertion point is specified,
/// then the new instruction is inserted before the specified point, otherwise
/// the new instruction is returned without a parent.
SILInstruction *clone(SILInstruction *InsertPt = nullptr);
/// Invoke an Instruction's destructor. This dispatches to the appropriate
/// leaf class destructor for the type of the instruction. This does not
/// deallocate the instruction.
static void destroy(SILInstruction *I);
/// Returns true if the instruction can be duplicated without any special
/// additional handling. It is important to know this information when
/// you perform such optimizations like e.g. jump-threading.
bool isTriviallyDuplicatable() const;
/// Returns true if the instruction is only relevant for debug
/// informations and has no other impact on program semantics.
bool isDebugInstruction() const {
return getKind() == SILInstructionKind::DebugValueInst;
}
/// Returns true if the instruction is a meta instruction which is
/// relevant for debug information and does not get lowered to a real
/// instruction.
bool isMetaInstruction() const;
/// Verify that all operands of this instruction have compatible ownership
/// with this instruction.
void verifyOperandOwnership(SILModuleConventions *silConv = nullptr) const;
/// Verify that this instruction and its associated debug information follow
/// all SIL debug info invariants.
void verifyDebugInfo() const;
/// Get the number of created SILInstructions.
static int getNumCreatedInstructions() {
return NumCreatedInstructions;
}
/// Get the number of deleted SILInstructions.
static int getNumDeletedInstructions() {
return NumDeletedInstructions;
}
/// Pretty-print the value.
void dump() const;
void print(raw_ostream &OS) const;
/// Pretty-print the value with DebugInfo.
void dump(bool DebugInfo) const;
/// Pretty-print the value in context, preceded by its operands (if the
/// value represents the result of an instruction) and followed by its
/// users.
void dumpInContext() const;
void printInContext(raw_ostream &OS) const;
static bool classof(SILNodePointer node) {
return node->getKind() >= SILNodeKind::First_SILInstruction &&
node->getKind() <= SILNodeKind::Last_SILInstruction;
}
static bool classof(const SILInstruction *I) { return true; }
/// This is supportable but usually suggests a logic mistake.
static bool classof(const ValueBase *) = delete;
protected:
unsigned getCachedFieldIndex(NominalTypeDecl *decl, VarDecl *property);
unsigned getCachedCaseIndex(EnumElementDecl *enumElement);
};
inline SILNodePointer::SILNodePointer(const SILInstruction *inst) :
node(inst->asSILNode()) { }
/// The base class for all instructions, which are not SingleValueInstructions:
/// NonValueInstruction and MultipleValueInstruction.
class NonSingleValueInstruction : public SILInstruction, public SILNode {
friend struct SILNodeOffsetChecker;
public:
NonSingleValueInstruction(SILInstructionKind kind, SILDebugLocation loc)
: SILInstruction(), SILNode((SILNodeKind)kind) {
setDebugLocation(loc);
}
using SILInstruction::operator new;
using SILInstruction::dumpInContext;
using SILInstruction::print;
using SILInstruction::printInContext;
// Redeclare because lldb currently doesn't know about using-declarations
void dump() const;
SILFunction *getFunction() const { return SILInstruction::getFunction(); }
SILModule &getModule() const { return SILInstruction::getModule(); }
/// Doesn't produce any results.
SILType getType() const = delete;
LLVM_ATTRIBUTE_ALWAYS_INLINE
SILInstructionKind getKind() const {
return (SILInstructionKind)SILNode::getKind();
}
static bool classof(const ValueBase *value) = delete;
static bool classof(SILNodePointer node) {
return node->getKind() >= SILNodeKind::First_NonSingleValueInstruction &&
node->getKind() <= SILNodeKind::Last_NonSingleValueInstruction;
}
static bool classof(const NonSingleValueInstruction *) { return true; }
};
inline SILNode *SILInstruction::asSILNode() {
// Even if this instruction is not a NonSingleValueInstruction, but a
// SingleValueInstruction, the SILNode is at the same offset as in a
// NonSingleValueInstruction. See the top-level comment of SILInstruction.
SILNode *node = (NonSingleValueInstruction *)this;
assert(isa<SingleValueInstruction>(node) ||
isa<NonSingleValueInstruction>(node));
return node;
}
inline const SILNode *SILInstruction::asSILNode() const {
return (const_cast<SILInstruction *>(this))->asSILNode();
}
inline SILNodePointer::SILNodePointer(const NonSingleValueInstruction *nsvi) :
node(nsvi) { }
inline SILInstructionKind SILInstruction::getKind() const {
return SILInstructionKind(asSILNode()->getKind());
}
inline SILInstruction *SILNode::castToInstruction() {
assert(isa<SILInstruction>(this));
// We use the same trick here as in SILInstruction::asSILNode().
auto *nsvi = (NonSingleValueInstruction *)this;
assert((SILNodeKind)nsvi->getKind() == getKind());
return nsvi;
}
inline SILNode *SILNode::instAsNode(SILInstruction *inst) {
return inst->asSILNode();
}
inline const SILNode *SILNode::instAsNode(const SILInstruction *inst) {
return inst->asSILNode();
}
struct SILInstruction::OperandToValue {
SILValue operator()(const Operand *use) const {
return use->get();
}
};
struct SILInstruction::OperandRefToValue {
SILValue operator()(const Operand &use) const {
return use.get();
}
};
struct SILInstruction::FilterOperandToRealOperand {
const SILInstruction &i;
FilterOperandToRealOperand(const SILInstruction &i) : i(i) {}
std::optional<Operand *> operator()(const Operand &use) const {
if (i.isTypeDependentOperand(use))
return std::nullopt;
return {const_cast<Operand *>(&use)};
}
};
struct SILInstruction::NonTypeDependentOperandToValue {
const SILInstruction &i;
NonTypeDependentOperandToValue(const SILInstruction &i): i(i) {}
std::optional<SILValue> operator()(const Operand &use) const {
if (i.isTypeDependentOperand(use))
return std::nullopt;
return use.get();
}
};
struct SILInstruction::OperandToTransformedValue {
const SILInstruction &i;
std::function<SILValue(const Operand *)> transformFn;
bool skipTypeDependentOps;
OperandToTransformedValue(
const SILInstruction &i,
std::function<SILValue(const Operand *)> transformFn,
bool skipTypeDependentOps)
: i(i), transformFn(transformFn),
skipTypeDependentOps(skipTypeDependentOps) {}
std::optional<SILValue> operator()(const Operand &use) const {
if (skipTypeDependentOps && i.isTypeDependentOperand(use))
return std::nullopt;
return transformFn(&use);
}
};
inline SILInstruction::RealOperandRange
SILInstruction::getRealOperands() const {
return RealOperandRange(getAllOperands(), FilterOperandToRealOperand(*this));
}
inline SILInstruction::OperandValueRange
SILInstruction::getOperandValues(ArrayRef<Operand*> operands) {
return OperandValueRange(operands, OperandToValue());
}
inline auto
SILInstruction::getOperandValues() const -> OperandRefValueRange {
return OperandRefValueRange(getAllOperands(), OperandRefToValue());
}
inline auto
SILInstruction::getNonTypeDependentOperandValues() const
-> NonTypeDependentOperandValueRange {
return NonTypeDependentOperandValueRange(getAllOperands(),
NonTypeDependentOperandToValue(*this));
}
inline auto SILInstruction::getOperandValues(
std::function<SILValue(const Operand *)> transformFn,
bool skipTypeDependentOperands) const -> TransformedOperandValueRange {
return TransformedOperandValueRange(
getAllOperands(),
OperandToTransformedValue(*this, transformFn, skipTypeDependentOperands));
}
struct SILInstruction::OperandToType {
const SILInstruction &i;
OperandToType(const SILInstruction &i) : i(i) {}
std::optional<SILType> operator()(const Operand &use) const {
if (i.isTypeDependentOperand(use))
return std::nullopt;
return use.get()->getType();
}
};
inline auto SILInstruction::getOperandTypes() const -> OperandTypeRange {
return OperandTypeRange(getAllOperands(), OperandToType(*this));
}
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const SILInstruction &I) {
I.print(OS);
return OS;
}
/// Returns the combined behavior of \p B1 and \p B2.
inline MemoryBehavior
combineMemoryBehavior(MemoryBehavior B1,
MemoryBehavior B2) {
// Basically the combined behavior is the maximum of both operands.
auto Result = std::max(B1, B2);
// With one exception: MayRead, MayWrite -> MayReadWrite.
if (Result == MemoryBehavior::MayWrite &&
(B1 == MemoryBehavior::MayRead ||
B2 == MemoryBehavior::MayRead))
return MemoryBehavior::MayReadWrite;
return Result;
}
/// Pretty-print the MemoryBehavior.
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
MemoryBehavior B);
/// Pretty-print the ReleasingBehavior.
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
SILInstruction::ReleasingBehavior B);
/// An instruction which always produces a single value.
///
/// Because this instruction is both a SILInstruction and a ValueBase,
/// both of which inherit from SILNode, it introduces the need for
/// some care when working with SILNodes. See the comment on SILNode.
class SingleValueInstruction : public SILInstruction, public ValueBase {
friend class SILInstruction;
friend struct SILNodeOffsetChecker;
SILInstructionResultArray getResultsImpl() const {
return SILInstructionResultArray(this);
}
public:
SingleValueInstruction(SILInstructionKind kind, SILDebugLocation loc,
SILType type)
: SILInstruction(), ValueBase(ValueKind(kind), type) {
setDebugLocation(loc);
}
using SILInstruction::operator new;
using SILInstruction::dumpInContext;
using SILInstruction::print;
using SILInstruction::printInContext;
// Redeclare because lldb currently doesn't know about using-declarations
void dump() const;
SILFunction *getFunction() const { return SILInstruction::getFunction(); }
SILModule &getModule() const { return SILInstruction::getModule(); }
SILInstructionKind getKind() const {
return (SILInstructionKind)ValueBase::getKind();
}
void operator delete(void *Ptr, size_t) = delete;
ValueKind getValueKind() const {
return ValueBase::getKind();
}
SingleValueInstruction *clone(SILInstruction *insertPt = nullptr) {
return cast<SingleValueInstruction>(SILInstruction::clone(insertPt));
}
/// Override this to reflect the more efficient access pattern.
SILInstructionResultArray getResults() const { return getResultsImpl(); }
static bool classof(SILNodePointer node) {
return node->getKind() >= SILNodeKind::First_SingleValueInstruction &&
node->getKind() <= SILNodeKind::Last_SingleValueInstruction;
}
SILInstruction *getPreviousInstruction() {
return SILInstruction::getPreviousInstruction();
}
SILInstruction *getNextInstruction() {
return SILInstruction::getNextInstruction();
}
};
struct SILNodeOffsetChecker {
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winvalid-offsetof"
static_assert(offsetof(SingleValueInstruction, kind) ==
offsetof(NonSingleValueInstruction, kind),
"wrong SILNode layout in SILInstruction");
#pragma clang diagnostic pop
};
inline SILNodePointer::SILNodePointer(const SingleValueInstruction *svi) :
node(svi) { }
// Resolve SILInstruction vs SILNode ambiguities.
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const NonSingleValueInstruction &I) {
cast<SILInstruction>(&I)->print(OS);
return OS;
}
inline llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
const SingleValueInstruction &I) {
cast<SILInstruction>(&I)->print(OS);
return OS;
}
#define DEFINE_ABSTRACT_SINGLE_VALUE_INST_BOILERPLATE(ID) \
static bool classof(SILNodePointer node) { \
return node->getKind() >= SILNodeKind::First_##ID && \
node->getKind() <= SILNodeKind::Last_##ID; \
}
/// Abstract base class which defines the source and destination operand numbers
/// for copy-like instructions, like store, assign, copy_addr and cast
/// instructions.
class CopyLikeInstruction {
public:
enum {
/// The source operand index.
Src,
/// The destination operand index.
Dest
};
};
/// Abstract base class used for isa checks on instructions to determine if they
/// forward ownership and to verify that the set of ownership instructions and
/// the ownership utilities stay in sync via assertions.
///
/// NOTE: We assume that the constructor for the instruction subclass that
/// initializes the kind field on our object is run before our constructor runs.
class ForwardingInstruction {
ValueOwnershipKind ownershipKind;
bool preservesOwnershipFlag;
protected:
ForwardingInstruction(SILInstructionKind kind,
ValueOwnershipKind ownershipKind,
bool preservesOwnership = true)
: ownershipKind(ownershipKind),
preservesOwnershipFlag(preservesOwnership) {
assert(isa(kind) && "Invalid subclass?!");
assert(ownershipKind && "invalid forwarding ownership");
assert((preservesOwnershipFlag
|| ownershipKind != OwnershipKind::Guaranteed) &&
"Non directly forwarding instructions can not forward guaranteed "
"ownership");
}
public:
/// A forwarding instruction preserved ownership if it has a
/// dynamically non-trivial result in which all references are forwarded from
/// the operand.
///
/// A cast can only forward guaranteed values if it preserves ownership. Such
/// casts cannot release any references within their operand's value and
/// cannot retain any references owned by their result.
bool preservesOwnership() const { return preservesOwnershipFlag; }
/// Forwarding ownership is determined by the forwarding instruction's
/// constant ownership attribute. If forwarding ownership is owned, then the
/// instruction moves an owned operand to its result, ending its lifetime. If
/// forwarding ownership is guaranteed, then the instruction propagates the
/// lifetime of its borrows operand through its result.
///
/// The resulting forwarded value's ownership, returned by getOwnershipKind(),
/// is not identical to the forwarding ownership. It differs when the result
/// is trivial type. e.g. an owned or guaranteed value can be cast to a
/// trivial type using owned or guaranteed forwarding.
ValueOwnershipKind getForwardingOwnershipKind() const {
return ownershipKind;
}
void setForwardingOwnershipKind(ValueOwnershipKind newKind) {
assert((preservesOwnership() || newKind != OwnershipKind::Guaranteed) &&
"Non directly forwarding instructions can not forward guaranteed "
"ownership");
ownershipKind = newKind;
}
/// Defined inline below due to forward declaration issues.
static ForwardingInstruction *get(SILInstruction *inst);
static bool isa(SILInstructionKind kind);
static bool isa(const SILInstruction *inst) { return isa(inst->getKind()); }
static bool isa(SILNodePointer node) {
if (auto *i = dyn_cast<const SILInstruction>(node.get()))
return isa(i);
return false;
}
};
/// A single value inst that forwards a static ownership from its first operand.
///
/// The ownership kind is set on construction and afterwards must be changed
/// explicitly using setOwnershipKind().
///
/// TODO: This name is extremely misleading because it may apply to an
/// operation that has no operand at all, like `enum .None`.
class OwnershipForwardingSingleValueInstruction : public SingleValueInstruction,
public ForwardingInstruction {
protected:
OwnershipForwardingSingleValueInstruction(SILInstructionKind kind,
SILDebugLocation debugLoc,
SILType ty,
ValueOwnershipKind ownershipKind)
: SingleValueInstruction(kind, debugLoc, ty),
ForwardingInstruction(kind, ownershipKind) {
assert(classof(kind) && "classof missing new subclass?!");
}
public:
static bool classof(SILNodePointer node) {
if (auto *i = dyn_cast<SILInstruction>(node.get()))
return classof(i);
return false;
}
static bool classof(SILInstructionKind kind);
static bool classof(const SILInstruction *inst) {
return classof(inst->getKind());
}
};
/// A value base result of a multiple value instruction.
///
/// *NOTE* We want this to be a pure abstract class that does not add /any/ size
/// to subclasses.
class MultipleValueInstructionResult : public ValueBase {
USE_SHARED_UINT8;
USE_SHARED_UINT32;
/// Return the parent instruction of this result.
MultipleValueInstruction *getParentImpl() const;
/// Set the index of this result.
void setIndex(unsigned NewIndex);
public:
/// Create a new multiple value instruction result.
///
/// \arg subclassDeltaOffset This is the delta offset in our parent object's
/// layout in between the end of the MultipleValueInstruction object and the
/// end of the specific subclass object.
///
/// *NOTE* subclassDeltaOffset must be use only 5 bits. This gives us to
/// support subclasses up to 32 bytes in size. We can scavenge up to 6 more
/// bits from ValueBase if this is not large enough.
MultipleValueInstructionResult(unsigned index, SILType type,
ValueOwnershipKind ownershipKind);
template <class Inst = MultipleValueInstruction>
Inst *getParent() const { return cast<Inst>(getParentImpl()); }
unsigned getIndex() const {
return sharedUInt32().MultipleValueInstructionResult.index;
}
/// Get the ownership kind assigned to this result by its parent.
///
/// This is stored in the bottom 3 bits of ValueBase's subclass data.
ValueOwnershipKind getOwnershipKind() const;
/// Set the ownership kind assigned to this result.
///
/// This is stored in SILNode in the subclass data.
void setOwnershipKind(ValueOwnershipKind Kind);
/// Returns true if this is the token result of a begin_apply.
bool isBeginApplyToken() const;
static bool classof(const SILInstruction *) { return false; }
static bool classof(const SILUndef *) = delete;
static bool classof(const SILArgument *) = delete;
static bool classof(const MultipleValueInstructionResult *) { return true; }
static bool classof(SILNodePointer node) {
return node->getKind() == SILNodeKind::MultipleValueInstructionResult;
}
};
/// Returns \p val as MultipleValueInstructionResult if \p val is a result of
/// a MultipleValueInstruction \p Inst, or null if this is not the case.
template <class Inst>
MultipleValueInstructionResult *isaResultOf(SILValue val) {
if (auto *result = dyn_cast<MultipleValueInstructionResult>(val)) {
if (isa<Inst>(result->getParent()))
return result;
}
return nullptr;
}
/// Returns \p val as MultipleValueInstructionResult if \p val is a result of
/// a MultipleValueInstruction \p Inst.
template <class Inst>
MultipleValueInstructionResult *getAsResultOf(SILValue val) {
auto *result = cast<MultipleValueInstructionResult>(val);
assert(result->getParent<Inst>());
return result;
}
template <class Result>
SILInstructionResultArray::SILInstructionResultArray(ArrayRef<Result> results)
: SILInstructionResultArray(
ArrayRef<MultipleValueInstructionResult>(results.data(),
results.size())) {
static_assert(sizeof(Result) == sizeof(MultipleValueInstructionResult),
"MultipleValueInstructionResult subclass has wrong size");
}
/// An instruction that may produce an arbitrary number of values.
class MultipleValueInstruction : public NonSingleValueInstruction {
friend class SILInstruction;
friend class SILInstructionResultArray;
protected:
MultipleValueInstruction(SILInstructionKind kind, SILDebugLocation loc)
: NonSingleValueInstruction(kind, loc) {}
public:
void operator delete(void *Ptr, size_t) = delete;
MultipleValueInstruction *clone(SILInstruction *insertPt = nullptr) {
return cast<MultipleValueInstruction>(SILInstruction::clone(insertPt));
}
SILValue getResult(unsigned Index) const { return getResults()[Index]; }
/// Return the index of \p Target if it is a result in the given
/// MultipleValueInstructionResult. Otherwise, returns None.
std::optional<unsigned> getIndexOfResult(SILValue Target) const;
unsigned getNumResults() const { return getResults().size(); }
static bool classof(SILNodePointer node) {
SILNodeKind kind = node->getKind();
return kind >= SILNodeKind::First_MultipleValueInstruction &&
kind <= SILNodeKind::Last_MultipleValueInstruction;
}
};
template <typename...> class InitialTrailingObjects;
template <typename...> class FinalTrailingObjects;
/// A utility mixin class that must be used by /all/ subclasses of
/// MultipleValueInstruction to store their results.
///
/// The exact ordering of trailing types matters quite a lot because
/// it's vital that the fields used by preceding numTrailingObjects
/// implementations be initialized before this base class is (and
/// conversely that this base class be initialized before any of the
/// succeeding numTrailingObjects implementations are called).
template <typename Derived,
typename Init = InitialTrailingObjects<>,
typename Final = FinalTrailingObjects<>>
class MultipleValueInstructionTrailingObjects;
template <typename Derived,
typename... InitialOtherTrailingTypes,
typename... FinalOtherTrailingTypes>
class MultipleValueInstructionTrailingObjects<Derived,
InitialTrailingObjects<InitialOtherTrailingTypes...>,
FinalTrailingObjects<FinalOtherTrailingTypes...>>
: protected llvm::TrailingObjects<Derived,
InitialOtherTrailingTypes...,
MultipleValueInstruction *,
MultipleValueInstructionResult,
FinalOtherTrailingTypes...> {
protected:
using TrailingObjects =
llvm::TrailingObjects<Derived,
InitialOtherTrailingTypes...,
MultipleValueInstruction *,
MultipleValueInstructionResult,
FinalOtherTrailingTypes...>;
friend TrailingObjects;
using TrailingObjects::totalSizeToAlloc;
using TrailingObjects::getTrailingObjects;
unsigned NumResults;
size_t numTrailingObjects(typename TrailingObjects::template OverloadToken<
MultipleValueInstruction *>) const {
return 1;
}
size_t numTrailingObjects(typename TrailingObjects::template
OverloadToken<MultipleValueInstructionResult>) const {
return NumResults;
}
template <typename... Args>
MultipleValueInstructionTrailingObjects(
Derived *Parent, ArrayRef<SILType> Types,
ArrayRef<ValueOwnershipKind> OwnershipKinds, Args &&... OtherArgs)
: NumResults(Types.size()) {
// If we do not have any results, then we do not need to initialize even the
// parent pointer since we do not have any results that will attempt to get
// our parent pointer.
if (!NumResults)
return;
auto **ParentPtr = this->TrailingObjects::template
getTrailingObjects<MultipleValueInstruction *>();
*ParentPtr = static_cast<MultipleValueInstruction *>(Parent);
auto *DataPtr = this->TrailingObjects::template
getTrailingObjects<MultipleValueInstructionResult>();
for (unsigned i : range(NumResults)) {
::new (&DataPtr[i]) MultipleValueInstructionResult(i, Types[i],
OwnershipKinds[i], std::forward<Args>(OtherArgs)...);
assert(DataPtr[i].getParent() == Parent &&
"Failed to setup parent reference correctly?!");
}
}
// Destruct the Derived Results.
~MultipleValueInstructionTrailingObjects() {
if (!NumResults)
return;
auto *DataPtr = this->TrailingObjects::template
getTrailingObjects<MultipleValueInstructionResult>();
// We call the MultipleValueInstructionResult destructors to ensure that:
//
// 1. If our derived results have any stored data that need to be cleaned
// up, we clean them up. *NOTE* Today, no results have this property.
// 2. In ~ValueBase, we validate via an assert that a ValueBase no longer
// has any uses when it is being destroyed. Rather than re-implement that in
// result, we get that for free.
for (unsigned i : range(NumResults))
DataPtr[i].~MultipleValueInstructionResult();
}
public:
ArrayRef<MultipleValueInstructionResult> getAllResultsBuffer() const {
auto *ptr = this->TrailingObjects::template
getTrailingObjects<MultipleValueInstructionResult>();
return { ptr, NumResults };
}
MutableArrayRef<MultipleValueInstructionResult> getAllResultsBuffer() {
auto *ptr = this->TrailingObjects::template
getTrailingObjects<MultipleValueInstructionResult>();
return { ptr, NumResults };
}
SILInstructionResultArray getAllResults() const {
// Our results start at element 1 since we stash the pointer to our parent
// MultipleValueInstruction in the 0 elt slot. This allows all
// MultipleValueInstructionResult to find their parent
// MultipleValueInstruction by using pointer arithmetic.
return SILInstructionResultArray(getAllResultsBuffer());
};
};
/// A subclass of SILInstruction which does not produce any values.
class NonValueInstruction : public NonSingleValueInstruction {
public:
NonValueInstruction(SILInstructionKind kind, SILDebugLocation loc)
: NonSingleValueInstruction(kind, loc) {}
/// Doesn't produce any results.
SILType getType() const = delete;
SILInstructionResultArray getResults() const = delete;
static bool classof(const ValueBase *value) = delete;
static bool classof(SILNodePointer node) {
return node->getKind() >= SILNodeKind::First_NonValueInstruction &&
node->getKind() <= SILNodeKind::Last_NonValueInstruction;
}
static bool classof(const NonValueInstruction *) { return true; }
};
#define DEFINE_ABSTRACT_NON_VALUE_INST_BOILERPLATE(ID) \
static bool classof(const ValueBase *value) = delete; \
static bool classof(SILNodePointer node) { \
return node->getKind() >= SILNodeKind::First_##ID && \
node->getKind() <= SILNodeKind::Last_##ID; \
}
/// A helper class for defining some basic boilerplate.
template <SILInstructionKind Kind, typename InstBase,
bool IsSingleResult =
std::is_base_of<SingleValueInstruction, InstBase>::value>
class InstructionBase;
template <SILInstructionKind Kind, typename InstBase>
class InstructionBase<Kind, InstBase, /*HasResult*/ true> : public InstBase {
protected:
template <typename... As>
InstructionBase(As &&... args) : InstBase(Kind, std::forward<As>(args)...) {}
public:
/// Override to statically return the kind.
static constexpr SILInstructionKind getKind() {
return Kind;
}
static bool classof(SILNodePointer node) {
return node->getKind() == SILNodeKind(Kind);
}
};
template <SILInstructionKind Kind, typename InstBase>
class InstructionBase<Kind, InstBase, /*HasResult*/ false> : public InstBase {
protected:
template <typename... As>
InstructionBase(As &&... args) : InstBase(Kind, std::forward<As>(args)...) {}
public:
static constexpr SILInstructionKind getKind() {
return Kind;
}
/// Can never dynamically succeed.
static bool classof(const ValueBase *value) = delete;
static bool classof(SILNodePointer node) {
return node->getKind() == SILNodeKind(Kind);
}
};
/// A template base class for instructions that take a single SILValue operand.
template<SILInstructionKind Kind, typename Base>
class UnaryInstructionBase : public InstructionBase<Kind, Base> {
// Space for 1 operand.
FixedOperandList<1> Operands;
public:
template <typename... A>
UnaryInstructionBase(SILDebugLocation loc, SILValue op, A &&... args)
: InstructionBase<Kind, Base>(loc, std::forward<A>(args)...),
Operands(this, op) {}
SILValue getOperand() const { return Operands[0].get(); }
void setOperand(SILValue V) { Operands[0].set(V); }
Operand &getOperandRef() { return Operands[0]; }
const Operand &getOperandRef() const { return Operands[0]; }
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
ArrayRef<Operand> getTypeDependentOperands() const {
return {};
}
MutableArrayRef<Operand> getTypeDependentOperands() {
return {};
}
};
/// A template base class for instructions that a variable number of SILValue
/// operands, and has zero or one value results. The operands are tail allocated
/// after the instruction. Further trailing data can be allocated as well if
/// OtherTrailingTypes are provided.
template<SILInstructionKind Kind,
typename Derived,
typename Base,
typename... OtherTrailingTypes>
class InstructionBaseWithTrailingOperands
: public InstructionBase<Kind, Base>,
protected llvm::TrailingObjects<Derived, Operand, OtherTrailingTypes...> {
protected:
TEMPLATE_USE_SHARED_UINT32(Base);
friend llvm::TrailingObjects<Derived, Operand, OtherTrailingTypes...>;
using TrailingObjects =
llvm::TrailingObjects<Derived, Operand, OtherTrailingTypes...>;
using TrailingObjects::totalSizeToAlloc;
public:
template <typename... Args>
InstructionBaseWithTrailingOperands(ArrayRef<SILValue> Operands,
Args &&...args)
: InstructionBase<Kind, Base>(std::forward<Args>(args)...) {
sharedUInt32().InstructionBaseWithTrailingOperands.numOperands =
Operands.size();
TrailingOperandsList::InitOperandsList(getAllOperands().begin(), this,
Operands);
}
template <typename... Args>
InstructionBaseWithTrailingOperands(SILValue Operand0,
ArrayRef<SILValue> Operands,
Args &&...args)
: InstructionBase<Kind, Base>(std::forward<Args>(args)...) {
sharedUInt32().InstructionBaseWithTrailingOperands.numOperands =
Operands.size() + 1;
TrailingOperandsList::InitOperandsList(getAllOperands().begin(), this,
Operand0, Operands);
}
template <typename... Args>
InstructionBaseWithTrailingOperands(SILValue Operand0,
SILValue Operand1,
ArrayRef<SILValue> Operands,
Args &&...args)
: InstructionBase<Kind, Base>(std::forward<Args>(args)...) {
sharedUInt32().InstructionBaseWithTrailingOperands.numOperands =
Operands.size() + 2;
TrailingOperandsList::InitOperandsList(getAllOperands().begin(), this,
Operand0, Operand1, Operands);
}
// Destruct tail allocated objects.
~InstructionBaseWithTrailingOperands() {
Operand *Operands = TrailingObjects::template getTrailingObjects<Operand>();
auto end = sharedUInt32().InstructionBaseWithTrailingOperands.numOperands;
for (unsigned i = 0; i < end; ++i) {
Operands[i].~Operand();
}
}
size_t numTrailingObjects(typename TrailingObjects::template
OverloadToken<Operand>) const {
return sharedUInt32().InstructionBaseWithTrailingOperands.numOperands;
}
ArrayRef<Operand> getAllOperands() const {
return {TrailingObjects::template getTrailingObjects<Operand>(),
sharedUInt32().InstructionBaseWithTrailingOperands.numOperands};
}
MutableArrayRef<Operand> getAllOperands() {
return {TrailingObjects::template getTrailingObjects<Operand>(),
sharedUInt32().InstructionBaseWithTrailingOperands.numOperands};
}
};
/// A template base class for instructions that take no operands except
/// for type-dependent operands. The operands are tail allocated after the
/// instruction. Further trailing data can be allocated as well if
/// TRAILING_TYPES are provided.
template<SILInstructionKind Kind,
typename Derived,
typename Base,
typename... OtherTrailingTypes>
class NullaryInstructionWithTypeDependentOperandsBase
: public InstructionBaseWithTrailingOperands<Kind, Derived, Base,
OtherTrailingTypes...> {
protected:
friend InstructionBaseWithTrailingOperands<Kind, Derived, Operand,
OtherTrailingTypes...>;
using TrailingObjects =
InstructionBaseWithTrailingOperands<Kind, Derived, Operand,
OtherTrailingTypes...>;
template <typename... Args>
NullaryInstructionWithTypeDependentOperandsBase(SILDebugLocation debugLoc,
ArrayRef<SILValue> typeDependentOperands,
Args &&...args)
: InstructionBaseWithTrailingOperands<Kind, Derived, Base,
OtherTrailingTypes...>(
typeDependentOperands,
debugLoc,
std::forward<Args>(args)...) {}
public:
unsigned getNumTypeDependentOperands() const {
return this->getAllOperands().size();
}
ArrayRef<Operand> getTypeDependentOperands() const {
return this->getAllOperands();
}
MutableArrayRef<Operand> getTypeDependentOperands() {
return this->getAllOperands();
}
};
/// A template base class for instructions that take a single regular SILValue
/// operand, a set of type dependent operands and has no result
/// or a single value result. The operands are tail allocated after the
/// instruction. Further trailing data can be allocated as well if
/// TRAILING_TYPES are provided.
template<SILInstructionKind Kind,
typename Derived,
typename Base,
typename... OtherTrailingTypes>
class UnaryInstructionWithTypeDependentOperandsBase
: public InstructionBaseWithTrailingOperands<Kind, Derived, Base,
OtherTrailingTypes...> {
protected:
friend InstructionBaseWithTrailingOperands<Kind, Derived, Operand,
OtherTrailingTypes...>;
using TrailingObjects =
InstructionBaseWithTrailingOperands<Kind, Derived, Operand,
OtherTrailingTypes...>;
public:
template <typename... Args>
UnaryInstructionWithTypeDependentOperandsBase(SILDebugLocation debugLoc,
SILValue operand,
ArrayRef<SILValue> typeDependentOperands,
Args &&...args)
: InstructionBaseWithTrailingOperands<Kind, Derived, Base,
OtherTrailingTypes...>(
operand, typeDependentOperands,
debugLoc,
std::forward<Args>(args)...) {}
unsigned getNumTypeDependentOperands() const {
return this->getAllOperands().size() - 1;
}
SILValue getOperand() const {
return this->getAllOperands()[0].get();
}
void setOperand(SILValue V) {
this->getAllOperands()[0].set(V);
}
Operand &getOperandRef() {
return this->getAllOperands()[0];
}
const Operand &getOperandRef() const {
return this->getAllOperands()[0];
}
ArrayRef<Operand> getTypeDependentOperands() const {
return this->getAllOperands().slice(1);
}
MutableArrayRef<Operand> getTypeDependentOperands() {
return this->getAllOperands().slice(1);
}
};
/// A DebugVariable where storage for the strings has been
/// tail-allocated following the parent SILInstruction.
class TailAllocatedDebugVariable {
using int_type = uint32_t;
union {
int_type RawValue;
struct {
/// Whether this is a debug variable at all.
int_type HasValue : 1;
/// True if this is a let-binding.
int_type Constant : 1;
/// When this is nonzero there is a tail-allocated string storing
/// variable name present. This typically only happens for
/// instructions that were created from parsing SIL assembler.
int_type NameLength : 14;
/// The source function argument position from left to right
/// starting with 1 or 0 if this is a local variable.
int_type ArgNo : 16;
} Data;
} Bits;
public:
TailAllocatedDebugVariable(std::optional<SILDebugVariable>, char *buf,
SILType *AuxVarType = nullptr,
SILLocation *DeclLoc = nullptr,
const SILDebugScope **DeclScope = nullptr,
SILDIExprElement *DIExprOps = nullptr);
TailAllocatedDebugVariable(int_type RawValue) { Bits.RawValue = RawValue; }
int_type getRawValue() const { return Bits.RawValue; }
unsigned getArgNo() const { return Bits.Data.ArgNo; }
void setArgNo(unsigned N) { Bits.Data.ArgNo = N; }
/// Returns the name of the source variable, if it is stored in the
/// instruction.
StringRef getName(const char *buf) const;
bool isLet() const { return Bits.Data.Constant; }
std::optional<SILDebugVariable>
get(VarDecl *VD, const char *buf, std::optional<SILType> AuxVarType,
std::optional<SILLocation> DeclLoc,
const SILDebugScope *DeclScope,
llvm::ArrayRef<SILDIExprElement> DIExprElements = {}) const {
if (!Bits.Data.HasValue)
return std::nullopt;
StringRef name = getName(buf);
if (VD && name.empty())
name = VD->getName().str();
return SILDebugVariable(name, isLet(), getArgNo(), AuxVarType, DeclLoc,
DeclScope, DIExprElements);
}
};
static_assert(sizeof(TailAllocatedDebugVariable) == 4,
"SILNode inline bitfield needs updating");
/// Used for keeping track of advanced / supplement debug variable info
/// stored in trailing objects space inside debug instructions (e.g.
/// debug_value)
class SILDebugVariableSupplement {
protected:
enum SourceLocKind : unsigned { SLK_Loc = 0b01, SLK_Scope = 0b10 };
unsigned NumDIExprOperands : 8;
unsigned HasAuxDebugVariableType : 1;
unsigned AuxVariableSourceLoc : 2;
SILDebugVariableSupplement(unsigned NumDIExprOps, bool AuxType, bool AuxLoc,
bool AuxScope)
: NumDIExprOperands(NumDIExprOps), HasAuxDebugVariableType(AuxType),
AuxVariableSourceLoc((AuxLoc ? SLK_Loc : 0) |
(AuxScope ? SLK_Scope : 0)) {}
};
#define SIL_DEBUG_VAR_SUPPLEMENT_TRAILING_OBJS_IMPL() \
inline bool hasAuxDebugLocation() const { \
return AuxVariableSourceLoc & SLK_Loc; \
} \
inline bool hasAuxDebugScope() const { \
return AuxVariableSourceLoc & SLK_Scope; \
} \
\
size_t numTrailingObjects(OverloadToken<SILType>) const { \
return HasAuxDebugVariableType ? 1 : 0; \
} \
\
size_t numTrailingObjects(OverloadToken<SILLocation>) const { \
return hasAuxDebugLocation() ? 1 : 0; \
} \
\
size_t numTrailingObjects(OverloadToken<const SILDebugScope *>) const { \
return hasAuxDebugScope() ? 1 : 0; \
} \
\
size_t numTrailingObjects(OverloadToken<SILDIExprElement>) const { \
return NumDIExprOperands; \
}
//===----------------------------------------------------------------------===//
// Allocation Instructions
//===----------------------------------------------------------------------===//
/// Abstract base class for allocation instructions, like alloc_stack, alloc_box
/// and alloc_ref, etc.
class AllocationInst : public SingleValueInstruction {
protected:
AllocationInst(SILInstructionKind Kind, SILDebugLocation DebugLoc, SILType Ty)
: SingleValueInstruction(Kind, DebugLoc, Ty) {}
public:
DEFINE_ABSTRACT_SINGLE_VALUE_INST_BOILERPLATE(AllocationInst)
/// Return the underlying variable declaration associated with this
/// allocation, or null if this allocation inst is associated with a temporary
/// allocation.
VarDecl *getDecl() const;
};
class DeallocStackInst;
enum UsesMoveableValueDebugInfo_t : bool {
DoesNotUseMoveableValueDebugInfo = false,
UsesMoveableValueDebugInfo = true,
};
enum HasDynamicLifetime_t : bool {
DoesNotHaveDynamicLifetime = false,
HasDynamicLifetime = true,
};
enum IsLexical_t : bool {
IsNotLexical = false,
IsLexical = true,
};
enum HasPointerEscape_t : bool {
DoesNotHavePointerEscape = false,
HasPointerEscape = true,
};
// See SILValue::isFromVarDecl()
enum IsFromVarDecl_t : bool {
IsNotFromVarDecl = false,
IsFromVarDecl = true,
};
/// AllocStackInst - This represents the allocation of an unboxed (i.e., no
/// reference count) stack memory. The memory is provided uninitialized.
class AllocStackInst final
: public InstructionBase<SILInstructionKind::AllocStackInst,
AllocationInst>,
private SILDebugVariableSupplement,
private llvm::TrailingObjects<AllocStackInst, SILType, SILLocation,
const SILDebugScope *, SILDIExprElement,
Operand, char> {
friend TrailingObjects;
friend SILBuilder;
TailAllocatedDebugVariable VarInfo;
USE_SHARED_UINT8;
USE_SHARED_UINT32;
AllocStackInst(SILDebugLocation Loc, SILType elementType,
ArrayRef<SILValue> TypeDependentOperands, SILFunction &F,
std::optional<SILDebugVariable> Var,
HasDynamicLifetime_t hasDynamicLifetime, IsLexical_t isLexical,
IsFromVarDecl_t isFromVarDecl,
UsesMoveableValueDebugInfo_t usesMoveableValueDebugInfo);
static AllocStackInst *
create(SILDebugLocation Loc, SILType elementType, SILFunction &F,
std::optional<SILDebugVariable> Var,
HasDynamicLifetime_t hasDynamicLifetime, IsLexical_t isLexical,
IsFromVarDecl_t isFromVarDecl, UsesMoveableValueDebugInfo_t wasMoved);
SIL_DEBUG_VAR_SUPPLEMENT_TRAILING_OBJS_IMPL()
size_t numTrailingObjects(OverloadToken<Operand>) const {
return sharedUInt32().AllocStackInst.numOperands;
}
public:
~AllocStackInst() {
Operand *Operands = getTrailingObjects<Operand>();
size_t end = sharedUInt32().AllocStackInst.numOperands;
for (unsigned i = 0; i < end; ++i) {
Operands[i].~Operand();
}
}
void markUsesMoveableValueDebugInfo() {
sharedUInt8().AllocStackInst.usesMoveableValueDebugInfo =
(bool)UsesMoveableValueDebugInfo;
}
/// Set to true if this alloc_stack's memory location was passed to _move at
/// any point of the program.
UsesMoveableValueDebugInfo_t usesMoveableValueDebugInfo() const {
return UsesMoveableValueDebugInfo_t(
sharedUInt8().AllocStackInst.usesMoveableValueDebugInfo);
}
/// Set to true that this alloc_stack contains a value whose lifetime can not
/// be ascertained from uses.
///
/// As an example if an alloc_stack is known to be only conditionally
/// initialized.
void setDynamicLifetime() {
sharedUInt8().AllocStackInst.dynamicLifetime = (bool)HasDynamicLifetime;
}
/// Returns true if the alloc_stack's initialization can not be ascertained
/// from uses directly (so should be treated conservatively).
///
/// An example of an alloc_stack with dynamic lifetime is an alloc_stack that
/// is conditionally initialized.
HasDynamicLifetime_t hasDynamicLifetime() const {
return HasDynamicLifetime_t(sharedUInt8().AllocStackInst.dynamicLifetime);
}
/// Whether the alloc_stack instruction has a lexical lifetime.
IsLexical_t isLexical() const {
return IsLexical_t(sharedUInt8().AllocStackInst.lexical);
}
/// If this is a lexical alloc_stack, eliminate the lexical bit. If this
/// alloc_stack doesn't have a lexical bit, do not do anything.
void removeIsLexical() {
sharedUInt8().AllocStackInst.lexical = (bool)IsNotLexical;
}
/// If this is not a lexical alloc_stack, set the lexical bit. If this
/// alloc_stack is already lexical, this does nothing.
void setIsLexical() {
sharedUInt8().AllocStackInst.lexical = (bool)IsLexical;
}
/// Whether the alloc_stack instruction corresponds to a source-level VarDecl.
IsFromVarDecl_t isFromVarDecl() const {
return IsFromVarDecl_t(sharedUInt8().AllocStackInst.fromVarDecl);
}
/// Set that the alloc_stack instruction corresponds to a source-level
/// VarDecl.
void setIsFromVarDecl() { sharedUInt8().AllocStackInst.fromVarDecl = true; }
/// Return the SILLocation for the debug variable.
SILLocation getVarLoc() const {
if (hasAuxDebugLocation())
return *getTrailingObjects<SILLocation>();
return getLoc().strippedForDebugVariable();
}
/// Return the debug variable information attached to this instruction.
///
/// \param complete If true, always retrieve the complete variable with
/// location, scope, and element type. If false, only return the
/// values if they are stored (if they are different from the instruction's
/// location, scope, and type). This should only be set to false in
/// SILPrinter. Incomplete var info is unpredictable, as it will sometimes
/// have location and scope and sometimes not.
std::optional<SILDebugVariable> getVarInfo(bool complete = true) const {
// If we used to have debug info attached but our debug info is now
// invalidated, just bail.
if (sharedUInt8().AllocStackInst.hasInvalidatedVarInfo) {
return std::nullopt;
}
std::optional<SILType> AuxVarType;
std::optional<SILLocation> VarDeclLoc;
const SILDebugScope *VarDeclScope = nullptr;
if (HasAuxDebugVariableType)
AuxVarType = *getTrailingObjects<SILType>();
else if (complete)
AuxVarType = getElementType();
if (hasAuxDebugLocation())
VarDeclLoc = *getTrailingObjects<SILLocation>();
else if (complete)
VarDeclLoc = getLoc().strippedForDebugVariable();
if (hasAuxDebugScope())
VarDeclScope = *getTrailingObjects<const SILDebugScope *>();
else if (complete)
VarDeclScope = getDebugScope();
llvm::ArrayRef<SILDIExprElement> DIExprElements(
getTrailingObjects<SILDIExprElement>(), NumDIExprOperands);
return VarInfo.get(getDecl(), getTrailingObjects<char>(), AuxVarType,
VarDeclLoc, VarDeclScope, DIExprElements);
}
/// True if this AllocStack has var info that a pass purposely invalidated.
///
/// NOTE:
///
/// 1. We don't print this state. It is just a way to invalidate the debug
/// info. When we parse back in whatever we printed, we will parse it without
/// debug var info since none will be printed.
///
/// 2. Since we do not serialize debug info today, we do not need to serialize
/// this state.
///
/// TODO: If we begin serializing debug info, we will need to begin
/// serializing this!
bool isVarInfoInvalidated() const {
return sharedUInt8().AllocStackInst.hasInvalidatedVarInfo;
}
/// Invalidate the debug info in an alloc_stack. This is useful in cases where
/// we one is merging alloc_stack and wants to split the debug info on an
/// alloc_stack into a separate debug_value instruction from the merged
/// alloc_stack.
void invalidateVarInfo() {
sharedUInt8().AllocStackInst.hasInvalidatedVarInfo = true;
}
bool isLet() const {
if (auto varInfo = getVarInfo())
return varInfo->isLet();
return false;
}
bool isVar() const {
if (auto varInfo = getVarInfo())
return varInfo->isVar();
return false;
}
void setArgNo(unsigned N) { VarInfo.setArgNo(N); }
void setDebugVarScope(const SILDebugScope *NewDS) {
if (hasAuxDebugScope())
*getTrailingObjects<const SILDebugScope *>() = NewDS;
}
/// getElementType - Get the type of the allocated memory (as opposed to the
/// type of the instruction itself, which will be an address type).
SILType getElementType() const {
return getType().getObjectType();
}
ArrayRef<Operand> getAllOperands() const {
return { getTrailingObjects<Operand>(),
static_cast<size_t>(sharedUInt32().AllocStackInst.numOperands) };
}
MutableArrayRef<Operand> getAllOperands() {
return { getTrailingObjects<Operand>(),
static_cast<size_t>(sharedUInt32().AllocStackInst.numOperands) };
}
ArrayRef<Operand> getTypeDependentOperands() const {
return getAllOperands();
}
MutableArrayRef<Operand> getTypeDependentOperands() {
return getAllOperands();
}
/// Return a single dealloc_stack user or null.
DeallocStackInst *getSingleDeallocStack() const;
};
/// AllocPackInst - This represents the allocation of a value pack
/// in stack memory. The memory is provided uninitialized.
class AllocPackInst final
: public NullaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::AllocPackInst,
AllocPackInst,
AllocationInst> {
friend TrailingObjects;
friend SILBuilder;
AllocPackInst(SILDebugLocation loc, SILType resultType,
ArrayRef<SILValue> typeDependentOperands)
: NullaryInstructionWithTypeDependentOperandsBase(loc,
typeDependentOperands,
resultType) {}
static AllocPackInst *create(SILDebugLocation loc, SILType packType,
SILFunction &F);
public:
/// Return the allocated pack type. The result type of the instruction
/// is an address of this type.
CanSILPackType getPackType() const {
return getType().castTo<SILPackType>();
}
};
/// AllocPackMetadataInst - Marker instruction indicating that the next
/// instruction might allocate on-stack pack metadata
/// during IRGen.
///
/// Only valid in lowered SIL.
class AllocPackMetadataInst final
: public NullaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::AllocPackMetadataInst, AllocPackMetadataInst,
AllocationInst> {
friend SILBuilder;
AllocPackMetadataInst(SILDebugLocation loc, SILType elementType)
: NullaryInstructionWithTypeDependentOperandsBase(
loc, {}, elementType.getAddressType()) {}
public:
/// The instruction which may trigger on-stack pack metadata when IRGen
/// lowering.
SILInstruction *getIntroducer() { return getNextInstruction(); }
};
/// The base class for AllocRefInst and AllocRefDynamicInst.
///
/// The first NumTailTypes operands are counts for the tail allocated
/// elements, the remaining operands are opened archetype operands.
class AllocRefInstBase : public AllocationInst {
protected:
USE_SHARED_UINT8;
AllocRefInstBase(SILInstructionKind Kind,
SILDebugLocation DebugLoc,
SILType ObjectType,
bool objc, bool canBeOnStack, bool isBare,
ArrayRef<SILType> ElementTypes);
SILType *getTypeStorage();
const SILType *getTypeStorage() const {
return const_cast<AllocRefInstBase*>(this)->getTypeStorage();
}
bool isBare() const {
return sharedUInt8().AllocRefInstBase.isBare;
}
void setBare(bool isBare = true) {
sharedUInt8().AllocRefInstBase.isBare = isBare;
}
public:
unsigned getNumTailTypes() const {
return sharedUInt8().AllocRefInstBase.numTailTypes;
}
bool canAllocOnStack() const {
return sharedUInt8().AllocRefInstBase.onStack;
}
void setStackAllocatable(bool OnStack = true) {
sharedUInt8().AllocRefInstBase.onStack = OnStack;
}
ArrayRef<SILType> getTailAllocatedTypes() const {
return {getTypeStorage(), getNumTailTypes()};
}
MutableArrayRef<SILType> getTailAllocatedTypes() {
return {getTypeStorage(), getNumTailTypes()};
}
ArrayRef<Operand> getTailAllocatedCounts() const {
return getAllOperands().slice(0, getNumTailTypes());
}
MutableArrayRef<Operand> getTailAllocatedCounts() {
return getAllOperands().slice(0, getNumTailTypes());
}
ArrayRef<Operand> getAllOperands() const;
MutableArrayRef<Operand> getAllOperands();
/// Whether to use Objective-C's allocation mechanism (+allocWithZone:).
bool isObjC() const { return sharedUInt8().AllocRefInstBase.objC; }
static bool classof(SILNodePointer node) {
if (auto *i = dyn_cast<SILInstruction>(node.get()))
return classof(i);
return false;
}
static bool classof(const SILInstruction *inst) {
return classof(inst->getKind());
}
static bool classof(SILInstructionKind kind) {
switch (kind) {
case SILInstructionKind::AllocRefInst:
case SILInstructionKind::AllocRefDynamicInst:
return true;
default:
return false;
}
}
};
/// AllocRefInst - This represents the primitive allocation of an instance
/// of a reference type. Aside from the reference count, the instance is
/// returned uninitialized.
/// Optionally, the allocated instance contains space for one or more tail-
/// allocated arrays.
class AllocRefInst final
: public InstructionBaseWithTrailingOperands<
SILInstructionKind::AllocRefInst,
AllocRefInst,
AllocRefInstBase, SILType> {
friend AllocRefInstBase;
friend SILBuilder;
AllocRefInst(SILDebugLocation DebugLoc, SILFunction &F,
SILType ObjectType,
bool objc, bool canBeOnStack, bool isBare,
ArrayRef<SILType> ElementTypes,
ArrayRef<SILValue> AllOperands)
: InstructionBaseWithTrailingOperands(AllOperands, DebugLoc, ObjectType,
objc, canBeOnStack, isBare, ElementTypes) {
assert(AllOperands.size() >= ElementTypes.size());
std::uninitialized_copy(ElementTypes.begin(), ElementTypes.end(),
getTrailingObjects<SILType>());
}
static AllocRefInst *create(SILDebugLocation DebugLoc, SILFunction &F,
SILType ObjectType,
bool objc, bool canBeOnStack, bool isBare,
ArrayRef<SILType> ElementTypes,
ArrayRef<SILValue> ElementCountOperands);
public:
bool isBare() const {
return AllocRefInstBase::isBare();
}
void setBare(bool isBare = true) {
AllocRefInstBase::setBare(isBare);
}
ArrayRef<Operand> getTypeDependentOperands() const {
return getAllOperands().slice(getNumTailTypes());
}
MutableArrayRef<Operand> getTypeDependentOperands() {
return getAllOperands().slice(getNumTailTypes());
}
};
/// AllocRefDynamicInst - This represents the primitive allocation of
/// an instance of a reference type whose runtime type is provided by
/// the given metatype value. Aside from the reference count, the
/// instance is returned uninitialized.
/// Optionally, the allocated instance contains space for one or more tail-
/// allocated arrays.
class AllocRefDynamicInst final
: public InstructionBaseWithTrailingOperands<
SILInstructionKind::AllocRefDynamicInst,
AllocRefDynamicInst,
AllocRefInstBase, SILType> {
friend AllocRefInstBase;
friend SILBuilder;
AllocRefDynamicInst(SILDebugLocation DebugLoc,
SILType ty,
bool objc,
bool canBeOnStack,
ArrayRef<SILType> ElementTypes,
ArrayRef<SILValue> AllOperands)
: InstructionBaseWithTrailingOperands(AllOperands, DebugLoc, ty, objc,
canBeOnStack, /*isBare=*/ false, ElementTypes) {
assert(AllOperands.size() >= ElementTypes.size() + 1);
std::uninitialized_copy(ElementTypes.begin(), ElementTypes.end(),
getTrailingObjects<SILType>());
}
static AllocRefDynamicInst *
create(SILDebugLocation DebugLoc, SILFunction &F,
SILValue metatypeOperand, SILType ty, bool objc,
bool canBeOnStack,
ArrayRef<SILType> ElementTypes,
ArrayRef<SILValue> ElementCountOperands);
public:
SILValue getMetatypeOperand() const {
return getAllOperands()[getNumTailTypes()].get();
}
ArrayRef<Operand> getTypeDependentOperands() const {
return getAllOperands().slice(getNumTailTypes() + 1);
}
MutableArrayRef<Operand> getTypeDependentOperands() {
return getAllOperands().slice(getNumTailTypes() + 1);
}
// Is the deinit and the size of the dynamic type known to be equivalent to
// the base type (i.e `this->getType()`).
bool isDynamicTypeDeinitAndSizeKnownEquivalentToBaseType() const;
};
/// This represents the allocation of a heap box for a Swift value of some type.
/// The instruction returns two values. The first return value is the object
/// pointer with Builtin.NativeObject type. The second return value
/// is an address pointing to the contained element. The contained
/// element is uninitialized.
class AllocBoxInst final
: public NullaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::AllocBoxInst,
AllocBoxInst, AllocationInst, char>
{
friend SILBuilder;
TailAllocatedDebugVariable VarInfo;
USE_SHARED_UINT8;
AllocBoxInst(SILDebugLocation DebugLoc, CanSILBoxType BoxType,
ArrayRef<SILValue> TypeDependentOperands, SILFunction &F,
std::optional<SILDebugVariable> Var,
HasDynamicLifetime_t hasDynamicLifetime, bool reflection = false,
UsesMoveableValueDebugInfo_t usesMoveableValueDebugInfo =
DoesNotUseMoveableValueDebugInfo,
HasPointerEscape_t hasPointerEscape = DoesNotHavePointerEscape);
static AllocBoxInst *create(
SILDebugLocation Loc, CanSILBoxType boxType, SILFunction &F,
std::optional<SILDebugVariable> Var,
HasDynamicLifetime_t hasDynamicLifetime, bool reflection = false,
UsesMoveableValueDebugInfo_t wasMoved = DoesNotUseMoveableValueDebugInfo,
HasPointerEscape_t hasPointerEscape = DoesNotHavePointerEscape);
public:
CanSILBoxType getBoxType() const {
return getType().castTo<SILBoxType>();
}
void setDynamicLifetime() {
sharedUInt8().AllocBoxInst.dynamicLifetime = (bool)HasDynamicLifetime;
}
HasDynamicLifetime_t hasDynamicLifetime() const {
return HasDynamicLifetime_t(sharedUInt8().AllocBoxInst.dynamicLifetime);
}
void setHasPointerEscape(bool pointerEscape) {
sharedUInt8().AllocBoxInst.pointerEscape = pointerEscape;
}
HasPointerEscape_t hasPointerEscape() const {
return HasPointerEscape_t(sharedUInt8().AllocBoxInst.pointerEscape);
}
/// True if the box should be emitted with reflection metadata for its
/// contents.
bool emitReflectionMetadata() const {
return sharedUInt8().AllocBoxInst.reflection;
}
// Return the type of the memory stored in the alloc_box.
SILType getAddressType() const;
/// Return the debug variable information attached to this instruction.
std::optional<SILDebugVariable> getVarInfo(bool complete = true) const {
if (complete)
return VarInfo.get(getDecl(), getTrailingObjects<char>(),
getAddressType().getObjectType(),
getLoc().strippedForDebugVariable(),
getDebugScope());
return VarInfo.get(getDecl(), getTrailingObjects<char>(), {}, {}, nullptr);
};
void setUsesMoveableValueDebugInfo() {
sharedUInt8().AllocBoxInst.usesMoveableValueDebugInfo =
(bool)UsesMoveableValueDebugInfo;
}
UsesMoveableValueDebugInfo_t usesMoveableValueDebugInfo() const {
return UsesMoveableValueDebugInfo_t(
sharedUInt8().AllocBoxInst.usesMoveableValueDebugInfo);
}
};
/// This represents the allocation of a heap box for an existential container.
/// The instruction returns two values. The first return value is the owner
/// pointer, which has the existential type. The second return value
/// is an address pointing to the contained element. The contained
/// value is uninitialized.
class AllocExistentialBoxInst final
: public NullaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::AllocExistentialBoxInst,
AllocExistentialBoxInst, AllocationInst> {
friend SILBuilder;
CanType ConcreteType;
ArrayRef<ProtocolConformanceRef> Conformances;
AllocExistentialBoxInst(SILDebugLocation DebugLoc, SILType ExistentialType,
CanType ConcreteType,
ArrayRef<ProtocolConformanceRef> Conformances,
ArrayRef<SILValue> TypeDependentOperands,
SILFunction *Parent)
: NullaryInstructionWithTypeDependentOperandsBase(DebugLoc,
TypeDependentOperands,
ExistentialType.getObjectType()),
ConcreteType(ConcreteType), Conformances(Conformances) {}
static AllocExistentialBoxInst *
create(SILDebugLocation DebugLoc, SILType ExistentialType,
CanType ConcreteType, ArrayRef<ProtocolConformanceRef> Conformances,
SILFunction *Parent);
public:
CanType getFormalConcreteType() const { return ConcreteType; }
SILType getExistentialType() const { return getType(); }
ArrayRef<ProtocolConformanceRef> getConformances() const {
return Conformances;
}
};
/// GenericSpecializationInformation - provides information about a generic
/// specialization. This meta-information is created for each generic
/// specialization, which allows for tracking of dependencies between
/// specialized generic functions and can be used to detect specialization loops
/// during generic specialization.
class GenericSpecializationInformation {
/// The caller function that triggered this specialization.
SILFunction *Caller;
/// The original function that was specialized.
SILFunction *Parent;
/// Substitutions used to produce this specialization.
SubstitutionMap Subs;
GenericSpecializationInformation(SILFunction *Caller, SILFunction *Parent,
SubstitutionMap Subs);
public:
static const GenericSpecializationInformation *create(SILFunction *Caller,
SILFunction *Parent,
SubstitutionMap Subs);
static const GenericSpecializationInformation *create(SILInstruction *Inst,
SILBuilder &B);
const SILFunction *getCaller() const { return Caller; }
const SILFunction *getParent() const { return Parent; }
SubstitutionMap getSubstitutions() const { return Subs; }
};
class PartialApplyInst;
// There's no good reason for the OverloadToken type to be internal
// or protected, and it makes it very difficult to write our CRTP classes
// if it is, so pull it out. TODO: just fix LLVM.
struct TerribleOverloadTokenHack :
llvm::trailing_objects_internal::TrailingObjectsBase {
template <class T>
using Hack = OverloadToken<T>;
};
template <class T>
using OverloadToken = TerribleOverloadTokenHack::Hack<T>;
enum class ApplyFlags : uint8_t {
/// This is a call to a 'rethrows' function that is known not to throw.
DoesNotThrow = 0x1,
/// This is a call to a 'reasync' function that is known not to 'await'.
DoesNotAwait = 0x2
};
using ApplyOptions = OptionSet<ApplyFlags>;
/// ApplyInstBase - An abstract class for different kinds of function
/// application.
template <class Impl, class Base,
bool IsFullApply = !std::is_same<Impl, PartialApplyInst>::value>
class ApplyInstBase;
// The partial specialization for non-full applies. Note that the
// partial specialization for full applies inherits from this.
template <class Impl, class Base>
class ApplyInstBase<Impl, Base, false> : public Base {
enum { Callee, NumStaticOperands };
/// The type of the callee with our substitutions applied.
SILType SubstCalleeType;
/// Information about specialization and inlining of this apply.
/// This is only != nullptr if the apply was inlined. And in this case it
/// points to the specialization info of the inlined function.
const GenericSpecializationInformation *SpecializationInfo;
/// Stores an ApplyOptions.
unsigned Options: 2;
/// The number of call arguments as required by the callee.
unsigned NumCallArguments : 30;
/// The total number of type-dependent operands.
unsigned NumTypeDependentOperands;
/// The substitutions being applied to the callee.
SubstitutionMap Substitutions;
Impl &asImpl() { return static_cast<Impl &>(*this); }
const Impl &asImpl() const { return static_cast<const Impl &>(*this); }
protected:
template <class... BaseArgTys>
ApplyInstBase(SILInstructionKind kind, SILDebugLocation DebugLoc,
SILValue callee, SILType substCalleeType, SubstitutionMap subs,
ArrayRef<SILValue> args,
ArrayRef<SILValue> typeDependentOperands,
const GenericSpecializationInformation *specializationInfo,
BaseArgTys... baseArgs)
: Base(kind, DebugLoc, baseArgs...), SubstCalleeType(substCalleeType),
SpecializationInfo(specializationInfo), NumCallArguments(args.size()),
NumTypeDependentOperands(typeDependentOperands.size()),
Substitutions(subs) {
assert(!!subs == !!callee->getType().castTo<SILFunctionType>()
->getInvocationGenericSignature());
// Initialize the operands.
auto allOperands = getAllOperands();
new (&allOperands[Callee]) Operand(this, callee);
for (size_t i : indices(args)) {
new (&allOperands[NumStaticOperands + i]) Operand(this, args[i]);
}
for (size_t i : indices(typeDependentOperands)) {
new (&allOperands[NumStaticOperands + args.size() + i])
Operand(this, typeDependentOperands[i]);
}
}
~ApplyInstBase() {
for (auto &operand : getAllOperands())
operand.~Operand();
}
template <class, class...>
friend class llvm::TrailingObjects;
unsigned numTrailingObjects(OverloadToken<Operand>) const {
return getNumAllOperands();
}
static size_t getNumAllOperands(ArrayRef<SILValue> args,
ArrayRef<SILValue> typeDependentOperands) {
return NumStaticOperands + args.size() + typeDependentOperands.size();
}
public:
void setApplyOptions(ApplyOptions options) {
Options = unsigned(options.toRaw());
}
ApplyOptions getApplyOptions() const {
return ApplyOptions(ApplyFlags(Options));
}
bool isNonThrowing() const {
return getApplyOptions().contains(ApplyFlags::DoesNotThrow);
}
bool isNonAsync() const {
return getApplyOptions().contains(ApplyFlags::DoesNotAwait);
}
/// The operand number of the first argument.
static unsigned getArgumentOperandNumber() { return NumStaticOperands; }
Operand *getCalleeOperand() { return &getAllOperands()[Callee]; }
const Operand *getCalleeOperand() const { return &getAllOperands()[Callee]; }
SILValue getCallee() const { return getCalleeOperand()->get(); }
/// Gets the origin of the callee by looking through function type conversions
/// until we find a function_ref, partial_apply, or unrecognized value.
///
/// This is defined out of line to work around incomplete definition
/// issues. It is at the bottom of the file.
SILValue getCalleeOrigin() const;
/// Gets the referenced function by looking through partial apply,
/// convert_function, and thin to thick function until we find a function_ref.
///
/// This is defined out of line to work around incomplete definition
/// issues. It is at the bottom of the file.
SILFunction *getCalleeFunction() const;
bool isCalleeDynamicallyReplaceable() const;
/// Gets the referenced function if the callee is a function_ref instruction.
/// Returns null if the callee is dynamic or a (prev_)dynamic_function_ref
/// instruction.
SILFunction *getReferencedFunctionOrNull() const {
if (auto *FRI = dyn_cast<FunctionRefBaseInst>(getCallee()))
return FRI->getReferencedFunctionOrNull();
return nullptr;
}
/// Return the referenced function if the callee is a function_ref like
/// instruction.
///
/// WARNING: This not necessarily the function that will be called at runtime.
/// If the callee is a (prev_)dynamic_function_ref the actual function called
/// might be different because it could be dynamically replaced at runtime.
///
/// If the client of this API wants to look at the content of the returned SIL
/// function it should call getReferencedFunctionOrNull() instead.
SILFunction *getInitiallyReferencedFunction() const {
if (auto *FRI = dyn_cast<FunctionRefBaseInst>(getCallee()))
return FRI->getInitiallyReferencedFunction();
return nullptr;
}
/// Get the type of the callee without the applied substitutions.
CanSILFunctionType getOrigCalleeType() const {
return getCallee()->getType().template castTo<SILFunctionType>();
}
SILFunctionConventions getOrigCalleeConv() const {
return SILFunctionConventions(getOrigCalleeType(), this->getModule());
}
/// Get the type of the callee with the applied substitutions.
CanSILFunctionType getSubstCalleeType() const {
return SubstCalleeType.castTo<SILFunctionType>();
}
SILType getSubstCalleeSILType() const {
return SubstCalleeType;
}
void setSubstCalleeType(CanSILFunctionType t) {
SubstCalleeType = SILType::getPrimitiveObjectType(t);
}
SILFunctionConventions getSubstCalleeConv() const {
return SILFunctionConventions(getSubstCalleeType(), this->getModule());
}
bool isCalleeNoReturn() const {
return getSubstCalleeSILType().isNoReturnFunction(
this->getModule(), TypeExpansionContext(*this->getFunction()));
}
bool isCalleeThin() const {
auto Rep = getSubstCalleeType()->getRepresentation();
return Rep == FunctionType::Representation::Thin;
}
/// Returns true if the callee function is annotated with
/// @_semantics("programtermination_point")
bool isCalleeKnownProgramTerminationPoint() const {
auto calleeFn = getCalleeFunction();
if (!calleeFn) return false;
return calleeFn->hasSemanticsAttr(SEMANTICS_PROGRAMTERMINATION_POINT);
}
/// Returns true if the callee function is annotated with
/// @_semantics("unavailable_code_reached")
bool isCalleeUnavailableCodeReached() const {
auto calleeFn = getCalleeFunction();
if (!calleeFn) return false;
return calleeFn->hasSemanticsAttr(SEMANTICS_UNAVAILABLE_CODE_REACHED);
}
/// True if this application has generic substitutions.
bool hasSubstitutions() const {
return Substitutions.hasAnySubstitutableParams();
}
/// The substitutions used to bind the generic arguments of this function.
SubstitutionMap getSubstitutionMap() const { return Substitutions; }
/// Return the total number of operands of this instruction.
unsigned getNumAllOperands() const {
return NumStaticOperands + NumCallArguments + NumTypeDependentOperands;
}
/// Return all the operands of this instruction, which are (in order):
/// - the callee
/// - the formal arguments
/// - the type-dependency arguments
MutableArrayRef<Operand> getAllOperands() {
return { asImpl().template getTrailingObjects<Operand>(),
getNumAllOperands() };
}
ArrayRef<Operand> getAllOperands() const {
return { asImpl().template getTrailingObjects<Operand>(),
getNumAllOperands() };
}
/// Check whether the given operand index is a call-argument index
/// and, if so, return that index.
std::optional<unsigned> getArgumentIndexForOperandIndex(unsigned index) {
assert(index < getNumAllOperands());
if (index < NumStaticOperands)
return std::nullopt;
index -= NumStaticOperands;
if (index >= NumCallArguments)
return std::nullopt;
return index;
}
/// The arguments passed to this instruction.
MutableArrayRef<Operand> getArgumentOperands() {
return getAllOperands().slice(NumStaticOperands, NumCallArguments);
}
ArrayRef<Operand> getArgumentOperands() const {
return getAllOperands().slice(NumStaticOperands, NumCallArguments);
}
/// The arguments passed to this instruction.
OperandValueArrayRef getArguments() const {
return OperandValueArrayRef(getArgumentOperands());
}
/// Returns the number of arguments being passed by this apply.
/// If this is a partial_apply, it can be less than the number of
/// parameters.
unsigned getNumArguments() const { return NumCallArguments; }
Operand &getArgumentRef(unsigned i) {
return getArgumentOperands()[i];
}
/// Return the ith argument passed to this instruction.
SILValue getArgument(unsigned i) const { return getArguments()[i]; }
/// Set the ith argument of this instruction.
void setArgument(unsigned i, SILValue V) {
return getArgumentOperands()[i].set(V);
}
ArrayRef<Operand> getTypeDependentOperands() const {
return getAllOperands().slice(NumStaticOperands + NumCallArguments);
}
MutableArrayRef<Operand> getTypeDependentOperands() {
return getAllOperands().slice(NumStaticOperands + NumCallArguments);
}
const GenericSpecializationInformation *getSpecializationInfo() const {
return SpecializationInfo;
}
};
/// Given the callee operand of an apply or try_apply instruction,
/// does it have the given semantics?
bool doesApplyCalleeHaveSemantics(SILValue callee, StringRef semantics);
/// Predicate used to filter InoutArgumentRange.
struct OperandToInoutArgument {
ArrayRef<SILParameterInfo> paramInfos;
OperandValueArrayRef arguments;
OperandToInoutArgument(ArrayRef<SILParameterInfo> paramInfos,
OperandValueArrayRef arguments)
: paramInfos(paramInfos), arguments(arguments) {
assert(paramInfos.size() == arguments.size());
}
std::optional<SILValue> operator()(size_t i) const {
if (paramInfos[i].isIndirectMutating())
return arguments[i];
return std::nullopt;
}
};
using InoutArgumentRange =
OptionalTransformRange<IntRange<size_t>, OperandToInoutArgument>;
/// Predicate used to filter AutoDiffSemanticResultArgumentRange.
struct OperandToAutoDiffSemanticResultArgument {
ArrayRef<SILParameterInfo> paramInfos;
OperandValueArrayRef arguments;
OperandToAutoDiffSemanticResultArgument(ArrayRef<SILParameterInfo> paramInfos,
OperandValueArrayRef arguments)
: paramInfos(paramInfos), arguments(arguments) {
assert(paramInfos.size() == arguments.size());
}
std::optional<SILValue> operator()(size_t i) const {
if (paramInfos[i].isAutoDiffSemanticResult())
return arguments[i];
return std::nullopt;
}
};
using AutoDiffSemanticResultArgumentRange =
OptionalTransformRange<IntRange<size_t>, OperandToAutoDiffSemanticResultArgument>;
/// The partial specialization of ApplyInstBase for full applications. Adds
/// some state, methods relating to 'self', and to result types that don't make
/// sense for partial applications.
template <class Impl, class Base>
class ApplyInstBase<Impl, Base, true>
: public ApplyInstBase<Impl, Base, false> {
using super = ApplyInstBase<Impl, Base, false>;
protected:
std::optional<ApplyIsolationCrossing> IsolationCrossing;
// Unfortunately parameter packs only match at the end of a function... so we
// have to put isolation crossing at the beginning. Luckily, we can hide it in
// the constructors of our callers so callers of our child class constructors
// will not see isolation crossing at the beginning.
template <class... As>
ApplyInstBase(SILInstructionKind kind,
std::optional<ApplyIsolationCrossing> isolationCrossing,
As &&...args)
: ApplyInstBase<Impl, Base, false>(kind, std::forward<As>(args)...),
IsolationCrossing(isolationCrossing) {}
private:
const Impl &asImpl() const { return static_cast<const Impl &>(*this); }
public:
using super::getArgument;
using super::getArgumentOperands;
using super::getArguments;
using super::getCallee;
using super::getCalleeOperand;
using super::getNumArguments;
using super::getSubstCalleeConv;
using super::getSubstCalleeType;
using super::hasSubstitutions;
/// The collection of following routines wrap the representation difference in
/// between the self substitution being first, but the self parameter of a
/// function being last.
///
/// The hope is that this will prevent any future bugs from coming up related
/// to this.
///
/// Self is always the last parameter, but self substitutions are always
/// first. The reason to add this method is to wrap that dichotomy to reduce
/// errors.
///
/// FIXME: Could this be standardized? It has and will lead to bugs. IMHO.
SILValue getSelfArgument() const {
assert(hasSelfArgument() && "Must have a self argument");
assert(getNumArguments() && "Should only be called when Callee has "
"arguments.");
return getArgument(getNumArguments()-1);
}
Operand &getSelfArgumentOperand() {
assert(hasSelfArgument() && "Must have a self argument");
assert(getNumArguments() && "Should only be called when Callee has "
"arguments.");
return getArgumentOperands()[getNumArguments()-1];
}
void setSelfArgument(SILValue V) {
assert(hasSelfArgument() && "Must have a self argument");
assert(getNumArguments() && "Should only be called when Callee has "
"arguments.");
getArgumentOperands()[getNumArguments() - 1].set(V);
}
OperandValueArrayRef getArgumentsWithoutSelf() const {
assert(getNumArguments() && "Should only be called when Callee has "
"at least a self parameter.");
ArrayRef<Operand> ops = this->getArgumentOperands();
if (!hasSelfArgument())
return ops;
auto opsWithoutSelf = ArrayRef<Operand>(&ops[0], ops.size() - 1);
return OperandValueArrayRef(opsWithoutSelf);
}
ArrayRef<Operand> getOperandsWithoutSelf() const {
assert(getNumArguments() && "Should only be called when Callee has "
"at least a self parameter.");
ArrayRef<Operand> ops = this->getArgumentOperands();
if (!hasSelfArgument())
return ops;
auto opsWithoutSelf = ArrayRef<Operand>(&ops[0], ops.size() - 1);
return opsWithoutSelf;
}
MutableArrayRef<Operand> getOperandsWithoutSelf() {
assert(getNumArguments() && "Should only be called when Callee has "
"at least a self parameter.");
MutableArrayRef<Operand> ops = this->getArgumentOperands();
if (!hasSelfArgument())
return ops;
auto opsWithoutSelf = ops.drop_back();
return opsWithoutSelf;
}
std::optional<SILResultInfo> getSingleResult() const {
auto SubstCallee = getSubstCalleeType();
if (SubstCallee->getNumResults() != 1)
return std::nullopt;
return SubstCallee->getSingleResult();
}
bool hasIndirectResults() const {
return getSubstCalleeConv().hasIndirectSILResults();
}
unsigned getNumIndirectResults() const {
auto fnConv = getSubstCalleeConv();
return fnConv.getNumIndirectSILResults() +
fnConv.getNumIndirectSILErrorResults();
}
bool hasSelfArgument() const {
return getSubstCalleeType()->hasSelfParam();
}
Operand *getIsolatedArgumentOperandOrNullPtr() {
SILFunctionConventions conv = getSubstCalleeConv();
for (Operand &argOp : getOperandsWithoutIndirectResults()) {
// Skip the callee.
if (getCalleeOperand() == &argOp)
continue;
auto opNum = argOp.getOperandNumber() - 1;
auto paramInfo = conv.getParamInfoForSILArg(opNum);
if (paramInfo.getOptions().contains(SILParameterInfo::Isolated))
return &argOp;
}
return nullptr;
}
bool hasGuaranteedSelfArgument() const {
auto C = getSubstCalleeType()->getSelfParameter().getConvention();
return C == ParameterConvention::Direct_Guaranteed;
}
OperandValueArrayRef getIndirectSILResults() const {
return getArguments().slice(0, getNumIndirectResults());
}
OperandValueArrayRef getArgumentsWithoutIndirectResults() const {
return getArguments().slice(getNumIndirectResults());
}
MutableArrayRef<Operand> getOperandsWithoutIndirectResults() {
return getArgumentOperands().slice(getNumIndirectResults());
}
/// Returns all `@inout` and `@inout_aliasable` arguments passed to the
/// instruction.
InoutArgumentRange getInoutArguments() const {
auto &impl = asImpl();
return InoutArgumentRange(
indices(getArgumentsWithoutIndirectResults()),
OperandToInoutArgument(impl.getSubstCalleeConv().getParameters(),
impl.getArgumentsWithoutIndirectResults()));
}
/// Returns all autodiff semantic result (`@inout`, `@inout_aliasable`)
/// arguments passed to the instruction.
AutoDiffSemanticResultArgumentRange getAutoDiffSemanticResultArguments() const {
auto &impl = asImpl();
return AutoDiffSemanticResultArgumentRange(
indices(getArgumentsWithoutIndirectResults()),
OperandToAutoDiffSemanticResultArgument(impl.getSubstCalleeConv().getParameters(),
impl.getArgumentsWithoutIndirectResults()));
}
bool hasSemantics(StringRef semanticsString) const {
return doesApplyCalleeHaveSemantics(getCallee(), semanticsString);
}
std::optional<ApplyIsolationCrossing> getIsolationCrossing() const {
return IsolationCrossing;
}
};
/// ApplyInst - Represents the full application of a function value.
class ApplyInst final
: public InstructionBase<SILInstructionKind::ApplyInst,
ApplyInstBase<ApplyInst, SingleValueInstruction>>,
public llvm::TrailingObjects<ApplyInst, Operand> {
friend SILBuilder;
ApplyInst(SILDebugLocation debugLoc, SILValue callee, SILType substCalleeType,
SILType returnType, SubstitutionMap substitutions,
ArrayRef<SILValue> args, ArrayRef<SILValue> typeDependentOperands,
ApplyOptions options,
const GenericSpecializationInformation *sSpecializationInfo,
std::optional<ApplyIsolationCrossing> isolationCrossing);
static ApplyInst *
create(SILDebugLocation debugLoc, SILValue callee,
SubstitutionMap substitutions, ArrayRef<SILValue> args,
ApplyOptions options,
std::optional<SILModuleConventions> moduleConventions,
SILFunction &parentFunction,
const GenericSpecializationInformation *specializationInfo,
std::optional<ApplyIsolationCrossing> isolationCrossing);
};
/// PartialApplyInst - Represents the creation of a closure object by partial
/// application of a function value.
class PartialApplyInst final
: public InstructionBase<SILInstructionKind::PartialApplyInst,
ApplyInstBase<PartialApplyInst,
SingleValueInstruction>>,
public llvm::TrailingObjects<PartialApplyInst, Operand> {
friend SILBuilder;
public:
enum OnStackKind {
NotOnStack, OnStack
};
private:
PartialApplyInst(SILDebugLocation DebugLoc, SILValue Callee,
SILType SubstCalleeType,
SubstitutionMap Substitutions,
ArrayRef<SILValue> Args,
ArrayRef<SILValue> TypeDependentOperands,
SILType ClosureType,
const GenericSpecializationInformation *SpecializationInfo);
static PartialApplyInst *
create(SILDebugLocation DebugLoc, SILValue Callee, ArrayRef<SILValue> Args,
SubstitutionMap Substitutions, ParameterConvention CalleeConvention,
SILFunctionTypeIsolation ResultIsolation, SILFunction &F,
const GenericSpecializationInformation *SpecializationInfo,
OnStackKind onStack);
public:
/// Return the result function type of this partial apply.
CanSILFunctionType getFunctionType() const {
return getType().castTo<SILFunctionType>();
}
ParameterConvention getCalleeConvention() const {
return getFunctionType()->getCalleeConvention();
}
bool hasCalleeGuaranteedContext() const {
return getFunctionType()->isCalleeGuaranteed();
}
SILFunctionTypeIsolation getResultIsolation() {
return getFunctionType()->getIsolation();
}
OnStackKind isOnStack() const {
return getFunctionType()->isNoEscape() ? OnStack : NotOnStack;
}
/// Visit the instructions that end the lifetime of an OSSA on-stack closure.
bool visitOnStackLifetimeEnds(llvm::function_ref<bool (Operand*)> func) const;
};
class EndApplyInst;
class AbortApplyInst;
class EndBorrowInst;
struct EndApplyFilter {
std::optional<Operand*> operator()(Operand *use) const;
};
using EndApplyRange = OptionalTransformRange<ValueBase::use_range,
EndApplyFilter>;
/// BeginApplyInst - Represents the beginning of the full application of
/// a yield_once coroutine (up until the coroutine yields a value back).
class BeginApplyInst final
: public InstructionBase<SILInstructionKind::BeginApplyInst,
ApplyInstBase<BeginApplyInst,
MultipleValueInstruction>>,
public MultipleValueInstructionTrailingObjects<
BeginApplyInst,
// These must be earlier trailing objects because their
// count fields are initialized by an earlier base class.
InitialTrailingObjects<Operand>> {
friend SILBuilder;
template <class, class...>
friend class llvm::TrailingObjects;
using InstructionBase::numTrailingObjects;
using MultipleValueInstructionTrailingObjects::numTrailingObjects;
friend class ApplyInstBase<BeginApplyInst, MultipleValueInstruction, false>;
using MultipleValueInstructionTrailingObjects::getTrailingObjects;
BeginApplyInst(SILDebugLocation debugLoc, SILValue callee,
SILType substCalleeType, ArrayRef<SILType> allResultTypes,
ArrayRef<ValueOwnershipKind> allResultOwnerships,
SubstitutionMap substitutions, ArrayRef<SILValue> args,
ArrayRef<SILValue> typeDependentOperands, ApplyOptions options,
const GenericSpecializationInformation *specializationInfo,
std::optional<ApplyIsolationCrossing> isolationCrossing);
static BeginApplyInst *
create(SILDebugLocation debugLoc, SILValue callee,
SubstitutionMap substitutions, ArrayRef<SILValue> args,
ApplyOptions options,
std::optional<SILModuleConventions> moduleConventions,
SILFunction &parentFunction,
const GenericSpecializationInformation *specializationInfo,
std::optional<ApplyIsolationCrossing> isolationCrossing);
public:
using MultipleValueInstructionTrailingObjects::totalSizeToAlloc;
bool isCalleeAllocated() const {
return getSubstCalleeType()->isCalleeAllocatedCoroutine();
}
MultipleValueInstructionResult *getTokenResult() const {
return const_cast<MultipleValueInstructionResult *>(
&getAllResultsBuffer().drop_back(isCalleeAllocated() ? 1 : 0).back());
}
EndApplyRange getEndApplyUses() const;
MultipleValueInstructionResult *getCalleeAllocationResult() const {
if (!isCalleeAllocated()) {
return nullptr;
}
return const_cast<MultipleValueInstructionResult *>(
&getAllResultsBuffer().back());
}
SILInstructionResultArray getYieldedValues() const {
return getAllResultsBuffer().drop_back(isCalleeAllocated() ? 2 : 1);
}
void getCoroutineEndPoints(
SmallVectorImpl<EndApplyInst *> &endApplyInsts,
SmallVectorImpl<AbortApplyInst *> &abortApplyInsts,
SmallVectorImpl<EndBorrowInst *> *endBorrowInsts = nullptr) const;
void getCoroutineEndPoints(
SmallVectorImpl<Operand *> &endApplyInsts,
SmallVectorImpl<Operand *> &abortApplyInsts,
SmallVectorImpl<Operand *> *endBorrowInsts = nullptr) const;
};
/// AbortApplyInst - Unwind the full application of a yield_once coroutine.
class AbortApplyInst
: public UnaryInstructionBase<SILInstructionKind::AbortApplyInst,
NonValueInstruction> {
friend SILBuilder;
AbortApplyInst(SILDebugLocation debugLoc, SILValue beginApplyToken)
: UnaryInstructionBase(debugLoc, beginApplyToken) {
assert(isaResultOf<BeginApplyInst>(beginApplyToken) &&
isaResultOf<BeginApplyInst>(beginApplyToken)->isBeginApplyToken());
}
public:
MultipleValueInstructionResult *getToken() const {
return getAsResultOf<BeginApplyInst>(getOperand());
}
BeginApplyInst *getBeginApply() const {
return getToken()->getParent<BeginApplyInst>();
}
};
/// EndApplyInst - Resume the full application of a yield_once coroutine
/// normally.
class EndApplyInst
: public UnaryInstructionBase<SILInstructionKind::EndApplyInst,
SingleValueInstruction> {
friend SILBuilder;
EndApplyInst(SILDebugLocation debugLoc, SILValue beginApplyToken,
SILType Ty)
: UnaryInstructionBase(debugLoc, beginApplyToken, Ty) {
assert(isaResultOf<BeginApplyInst>(beginApplyToken) &&
isaResultOf<BeginApplyInst>(beginApplyToken)->isBeginApplyToken());
}
public:
MultipleValueInstructionResult *getToken() const {
return getAsResultOf<BeginApplyInst>(getOperand());
}
BeginApplyInst *getBeginApply() const {
return getToken()->getParent<BeginApplyInst>();
}
};
inline std::optional<Operand*>
EndApplyFilter::operator()(Operand *use) const {
// An end_borrow ends the coroutine scope at a dead-end block without
// terminating the coroutine.
switch (use->getUser()->getKind()) {
case SILInstructionKind::EndApplyInst:
case SILInstructionKind::AbortApplyInst:
case SILInstructionKind::EndBorrowInst:
return use;
default:
return std::nullopt;
}
}
inline EndApplyRange BeginApplyInst::getEndApplyUses() const {
return makeOptionalTransformRange(
getTokenResult()->getUses(), EndApplyFilter());
}
//===----------------------------------------------------------------------===//
// Literal instructions.
//===----------------------------------------------------------------------===//
/// Abstract base class for literal instructions.
class LiteralInst : public SingleValueInstruction {
protected:
LiteralInst(SILInstructionKind Kind, SILDebugLocation DebugLoc, SILType Ty)
: SingleValueInstruction(Kind, DebugLoc, Ty) {}
public:
DEFINE_ABSTRACT_SINGLE_VALUE_INST_BOILERPLATE(LiteralInst)
};
class FunctionRefBaseInst : public LiteralInst {
protected:
SILFunction *f;
FunctionRefBaseInst(SILInstructionKind Kind, SILDebugLocation DebugLoc,
SILFunction *F, TypeExpansionContext context);
public:
~FunctionRefBaseInst();
/// Return the referenced function if this is a function_ref instruction and
/// therefore a client can rely on the dynamically called function being equal
/// to the returned value and null otherwise.
SILFunction *getReferencedFunctionOrNull() const {
auto kind = getKind();
if (kind == SILInstructionKind::FunctionRefInst)
return f;
assert(kind == SILInstructionKind::DynamicFunctionRefInst ||
kind == SILInstructionKind::PreviousDynamicFunctionRefInst);
return nullptr;
}
/// Return the initially referenced function.
///
/// WARNING: This not necessarily the function that will be called at runtime.
/// If the callee is a (prev_)dynamic_function_ref the actual function called
/// might be different because it could be dynamically replaced at runtime.
///
/// If the client of this API wants to look at the content of the returned SIL
/// function it should call getReferencedFunctionOrNull() instead.
SILFunction *getInitiallyReferencedFunction() const { return f; }
void dropReferencedFunction();
CanSILFunctionType getFunctionType() const {
return getType().castTo<SILFunctionType>();
}
SILFunctionConventions getConventions() const {
return SILFunctionConventions(getFunctionType(), getModule());
}
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
static bool classof(SILNodePointer node) {
return (node->getKind() == SILNodeKind::FunctionRefInst ||
node->getKind() == SILNodeKind::DynamicFunctionRefInst ||
node->getKind() == SILNodeKind::PreviousDynamicFunctionRefInst);
}
};
/// FunctionRefInst - Represents a reference to a SIL function.
class FunctionRefInst : public FunctionRefBaseInst {
friend SILBuilder;
/// Construct a FunctionRefInst.
///
/// \param DebugLoc The location of the reference.
/// \param F The function being referenced.
/// \param context The type expansion context of the function reference.
FunctionRefInst(SILDebugLocation DebugLoc, SILFunction *F,
TypeExpansionContext context);
public:
/// Return the referenced function.
SILFunction *getReferencedFunction() const { return f; }
static bool classof(SILNodePointer node) {
return node->getKind() == SILNodeKind::FunctionRefInst;
}
};
class DynamicFunctionRefInst : public FunctionRefBaseInst {
friend SILBuilder;
/// Construct a DynamicFunctionRefInst.
///
/// \param DebugLoc The location of the reference.
/// \param F The function being referenced.
/// \param context The type expansion context of the function reference.
DynamicFunctionRefInst(SILDebugLocation DebugLoc, SILFunction *F,
TypeExpansionContext context);
public:
static bool classof(SILNodePointer node) {
return node->getKind() == SILNodeKind::DynamicFunctionRefInst;
}
};
class PreviousDynamicFunctionRefInst : public FunctionRefBaseInst {
friend SILBuilder;
/// Construct a PreviousDynamicFunctionRefInst.
///
/// \param DebugLoc The location of the reference.
/// \param F The function being referenced.
/// \param context The type expansion context of the function reference.
PreviousDynamicFunctionRefInst(SILDebugLocation DebugLoc, SILFunction *F,
TypeExpansionContext context);
public:
static bool classof(SILNodePointer node) {
return node->getKind() == SILNodeKind::PreviousDynamicFunctionRefInst;
}
};
/// Component of a KeyPathInst.
class KeyPathPatternComponent {
public:
/// Computed property components require an identifier so they can be stably
/// identified at runtime. This has to correspond to the ABI of the property--
/// whether a reabstracted stored property, a property dispatched through a
/// vtable or witness table, or a computed property.
class ComputedPropertyId {
friend KeyPathPatternComponent;
public:
enum KindType {
Property, Function, DeclRef,
};
private:
union ValueType {
AbstractStorageDecl *Property;
SILFunction *Function;
SILDeclRef DeclRef;
ValueType() : Property(nullptr) {}
ValueType(AbstractStorageDecl *p) : Property(p) {}
ValueType(SILFunction *f) : Function(f) {}
ValueType(SILDeclRef d) : DeclRef(d) {}
} Value;
KindType Kind;
explicit ComputedPropertyId(ValueType Value, KindType Kind)
: Value(Value), Kind(Kind)
{}
public:
ComputedPropertyId() : Value(), Kind(Property) {}
/*implicit*/ ComputedPropertyId(VarDecl *property)
: Value{property}, Kind{Property}
{
}
/*implicit*/ ComputedPropertyId(SILFunction *function)
: Value{function}, Kind{Function}
{}
/*implicit*/ ComputedPropertyId(SILDeclRef declRef)
: Value{declRef}, Kind{DeclRef}
{}
KindType getKind() const { return Kind; }
VarDecl *getProperty() const {
assert(getKind() == Property);
return cast<VarDecl>(Value.Property);
}
SILFunction *getFunction() const {
assert(getKind() == Function);
return Value.Function;
}
SILDeclRef getDeclRef() const {
assert(getKind() == DeclRef);
return Value.DeclRef;
}
};
enum class Kind : unsigned {
StoredProperty,
GettableProperty,
SettableProperty,
Method,
TupleElement,
OptionalChain,
OptionalForce,
OptionalWrap,
};
// Description of a captured index value and its Hashable conformance for a
// subscript keypath.
struct Index {
unsigned Operand;
CanType FormalType;
SILType LoweredType;
ProtocolConformanceRef Hashable;
};
private:
enum PackedKind: unsigned {
PackedStored,
PackedComputed,
Unpacked,
};
static const unsigned KindPackingBits = 2;
static unsigned getPackedKind(Kind k) {
switch (k) {
case Kind::StoredProperty:
case Kind::TupleElement:
return PackedStored;
case Kind::GettableProperty:
case Kind::SettableProperty:
case Kind::Method:
return PackedComputed;
case Kind::OptionalChain:
case Kind::OptionalForce:
case Kind::OptionalWrap:
return Unpacked;
}
}
// Value is the VarDecl* for StoredProperty, the SILFunction* of the
// Getter for computed properties, or the Kind for other kinds
llvm::PointerIntPair<void *, KindPackingBits, unsigned> ValueAndKind;
llvm::PointerIntPair<SILFunction *, 2,
ComputedPropertyId::KindType> SetterAndIdKind;
// If this component refers to a tuple element then TupleIndex is the
// 1-based index of the element in the tuple, in order to allow the
// discrimination of the TupleElement Kind from the StoredProperty Kind
union {
unsigned TupleIndex = 0;
ComputedPropertyId::ValueType IdValue;
};
ArrayRef<Index> Indices;
struct {
SILFunction *Equal;
SILFunction *Hash;
} IndexEquality;
CanType ComponentType;
ValueDecl *ExternalStorage;
SubstitutionMap ExternalSubstitutions;
/// Constructor for stored components
KeyPathPatternComponent(VarDecl *storedProp,
CanType ComponentType)
: ValueAndKind(storedProp, PackedStored),
ComponentType(ComponentType) {}
/// Constructor for computed components
KeyPathPatternComponent(ComputedPropertyId id, SILFunction *getter,
SILFunction *setter, ArrayRef<Index> indices,
SILFunction *indicesEqual, SILFunction *indicesHash,
ValueDecl *externalStorage,
SubstitutionMap externalSubstitutions,
CanType ComponentType)
: ValueAndKind(getter, PackedComputed),
SetterAndIdKind{setter, id.Kind}, IdValue{id.Value},
Indices(indices), IndexEquality{indicesEqual, indicesHash},
ComponentType(ComponentType), ExternalStorage(externalStorage),
ExternalSubstitutions(externalSubstitutions) {}
/// Constructor for optional components.
KeyPathPatternComponent(Kind kind, CanType componentType)
: ValueAndKind((void*)((uintptr_t)kind << KindPackingBits), Unpacked),
ComponentType(componentType) {
assert((unsigned)kind >= (unsigned)Kind::OptionalChain
&& "not an optional component");
}
/// Constructor for tuple element.
KeyPathPatternComponent(unsigned tupleIndex, CanType componentType)
: ValueAndKind((void*)((uintptr_t)Kind::TupleElement << KindPackingBits), PackedStored),
TupleIndex(tupleIndex + 1),
ComponentType(componentType)
{
}
public:
KeyPathPatternComponent() : ValueAndKind(nullptr, 0) {}
bool isNull() const {
return ValueAndKind.getPointer() == nullptr;
}
Kind getKind() const {
auto packedKind = ValueAndKind.getInt();
switch ((PackedKind)packedKind) {
case PackedStored:
return TupleIndex
? Kind::TupleElement : Kind::StoredProperty;
case PackedComputed: {
if (SetterAndIdKind.getPointer()) {
return Kind::SettableProperty;
}
// Filter out AccessorDecls like subscript getter/setter to only handle
// methods.
auto computedId = ComputedPropertyId(IdValue, SetterAndIdKind.getInt());
if (computedId.getKind() == ComputedPropertyId::DeclRef) {
auto decl = computedId.getDeclRef().getDecl();
if (dyn_cast<AbstractFunctionDecl>(decl) && !isa<AccessorDecl>(decl)) {
return Kind::Method;
}
}
return Kind::GettableProperty;
}
case Unpacked:
return (Kind)((uintptr_t)ValueAndKind.getPointer() >> KindPackingBits);
}
llvm_unreachable("unhandled kind");
}
CanType getComponentType() const {
return ComponentType;
}
VarDecl *getStoredPropertyDecl() const {
switch (getKind()) {
case Kind::StoredProperty:
return static_cast<VarDecl*>(ValueAndKind.getPointer());
case Kind::GettableProperty:
case Kind::SettableProperty:
case Kind::Method:
case Kind::OptionalChain:
case Kind::OptionalForce:
case Kind::OptionalWrap:
case Kind::TupleElement:
llvm_unreachable("not a stored property");
}
llvm_unreachable("unhandled kind");
}
ComputedPropertyId getComputedPropertyId() const {
switch (getKind()) {
case Kind::StoredProperty:
case Kind::OptionalChain:
case Kind::OptionalForce:
case Kind::OptionalWrap:
case Kind::TupleElement:
llvm_unreachable("not a computed property");
case Kind::GettableProperty:
case Kind::SettableProperty:
case Kind::Method:
return ComputedPropertyId(IdValue,
SetterAndIdKind.getInt());
}
llvm_unreachable("unhandled kind");
}
SILFunction *getComputedPropertyForGettable() const {
switch (getKind()) {
case Kind::StoredProperty:
case Kind::OptionalChain:
case Kind::OptionalForce:
case Kind::OptionalWrap:
case Kind::TupleElement:
llvm_unreachable("not a computed property");
case Kind::GettableProperty:
case Kind::SettableProperty:
case Kind::Method:
return static_cast<SILFunction*>(ValueAndKind.getPointer());
}
llvm_unreachable("unhandled kind");
}
SILFunction *getComputedPropertyForSettable() const {
switch (getKind()) {
case Kind::StoredProperty:
case Kind::GettableProperty:
case Kind::Method:
case Kind::OptionalChain:
case Kind::OptionalForce:
case Kind::OptionalWrap:
case Kind::TupleElement:
llvm_unreachable("not a settable computed property");
case Kind::SettableProperty:
return SetterAndIdKind.getPointer();
}
llvm_unreachable("unhandled kind");
}
ArrayRef<Index> getArguments() const {
switch (getKind()) {
case Kind::StoredProperty:
case Kind::OptionalChain:
case Kind::OptionalForce:
case Kind::OptionalWrap:
case Kind::TupleElement:
return {};
case Kind::GettableProperty:
case Kind::SettableProperty:
case Kind::Method:
return Indices;
}
llvm_unreachable("unhandled kind");
}
SILFunction *getIndexEquals() const {
switch (getKind()) {
case Kind::StoredProperty:
case Kind::OptionalChain:
case Kind::OptionalForce:
case Kind::OptionalWrap:
case Kind::TupleElement:
llvm_unreachable("not a computed property");
case Kind::GettableProperty:
case Kind::SettableProperty:
case Kind::Method:
return IndexEquality.Equal;
}
llvm_unreachable("unhandled kind");
}
SILFunction *getIndexHash() const {
switch (getKind()) {
case Kind::StoredProperty:
case Kind::OptionalChain:
case Kind::OptionalForce:
case Kind::OptionalWrap:
case Kind::TupleElement:
llvm_unreachable("not a computed property");
case Kind::GettableProperty:
case Kind::SettableProperty:
case Kind::Method:
return IndexEquality.Hash;
}
llvm_unreachable("unhandled kind");
}
bool isComputedSettablePropertyMutating() const;
static KeyPathPatternComponent forStoredProperty(VarDecl *property,
CanType ty) {
return KeyPathPatternComponent(property, ty);
}
ValueDecl *getExternalDecl() const {
switch (getKind()) {
case Kind::StoredProperty:
case Kind::OptionalChain:
case Kind::OptionalForce:
case Kind::OptionalWrap:
case Kind::TupleElement:
llvm_unreachable("not a computed property");
case Kind::GettableProperty:
case Kind::SettableProperty:
case Kind::Method:
return ExternalStorage;
}
llvm_unreachable("unhandled kind");
}
SubstitutionMap getExternalSubstitutions() const {
switch (getKind()) {
case Kind::StoredProperty:
case Kind::OptionalChain:
case Kind::OptionalForce:
case Kind::OptionalWrap:
case Kind::TupleElement:
llvm_unreachable("not a computed property");
case Kind::GettableProperty:
case Kind::SettableProperty:
case Kind::Method:
return ExternalSubstitutions;
}
llvm_unreachable("unhandled kind");
}
unsigned getTupleIndex() const {
switch (getKind()) {
case Kind::StoredProperty:
case Kind::OptionalChain:
case Kind::OptionalForce:
case Kind::OptionalWrap:
case Kind::GettableProperty:
case Kind::SettableProperty:
case Kind::Method:
llvm_unreachable("not a tuple element");
case Kind::TupleElement:
return TupleIndex - 1;
}
llvm_unreachable("unhandled kind");
}
static KeyPathPatternComponent
forMethod(ComputedPropertyId identifier, SILFunction *method,
ArrayRef<Index> args, SILFunction *argsEquals,
SILFunction *argsHash, AbstractFunctionDecl *externalDecl,
SubstitutionMap externalSubs, CanType ty) {
return KeyPathPatternComponent(identifier, method, nullptr, args,
argsEquals, argsHash, externalDecl,
externalSubs, ty);
}
static KeyPathPatternComponent
forComputedGettableProperty(ComputedPropertyId identifier,
SILFunction *getter,
ArrayRef<Index> indices,
SILFunction *indicesEquals,
SILFunction *indicesHash,
AbstractStorageDecl *externalDecl,
SubstitutionMap externalSubs,
CanType ty) {
return KeyPathPatternComponent(identifier,
getter, nullptr, indices,
indicesEquals, indicesHash,
externalDecl, externalSubs,
ty);
}
static KeyPathPatternComponent
forComputedSettableProperty(ComputedPropertyId identifier,
SILFunction *getter,
SILFunction *setter,
ArrayRef<Index> indices,
SILFunction *indicesEquals,
SILFunction *indicesHash,
AbstractStorageDecl *externalDecl,
SubstitutionMap externalSubs,
CanType ty) {
return KeyPathPatternComponent(identifier,
getter, setter, indices,
indicesEquals, indicesHash,
externalDecl, externalSubs,
ty);
}
static KeyPathPatternComponent
forOptional(Kind kind, CanType ty) {
switch (kind) {
case Kind::OptionalChain:
case Kind::OptionalForce:
break;
case Kind::OptionalWrap:
assert(ty->getOptionalObjectType() &&
"optional wrap didn't form optional?!");
break;
case Kind::StoredProperty:
case Kind::GettableProperty:
case Kind::SettableProperty:
case Kind::Method:
case Kind::TupleElement:
llvm_unreachable("not an optional kind");
}
return KeyPathPatternComponent(kind, ty);
}
static KeyPathPatternComponent forTupleElement(unsigned tupleIndex,
CanType ty) {
return KeyPathPatternComponent(tupleIndex, ty);
}
void visitReferencedFunctionsAndMethods(
std::function<void (SILFunction *)> functionCallBack,
std::function<void (SILDeclRef)> methodCallBack) const;
void incrementRefCounts() const;
void decrementRefCounts() const;
void print(SILPrintContext &ctxt) const;
void Profile(llvm::FoldingSetNodeID &ID);
};
/// An abstract description of a key path pattern.
class KeyPathPattern final
: public llvm::FoldingSetNode,
private llvm::TrailingObjects<KeyPathPattern,
KeyPathPatternComponent>
{
friend TrailingObjects;
unsigned NumOperands, NumComponents;
CanGenericSignature Signature;
CanType RootType, ValueType;
StringRef ObjCString;
KeyPathPattern(CanGenericSignature signature,
CanType rootType,
CanType valueType,
ArrayRef<KeyPathPatternComponent> components,
StringRef ObjCString,
unsigned numOperands);
static KeyPathPattern *create(SILModule &M,
CanGenericSignature signature,
CanType rootType,
CanType valueType,
ArrayRef<KeyPathPatternComponent> components,
StringRef ObjCString,
unsigned numOperands);
public:
CanGenericSignature getGenericSignature() const {
return Signature;
}
CanType getRootType() const {
return RootType;
}
CanType getValueType() const {
return ValueType;
}
unsigned getNumOperands() const {
return NumOperands;
}
StringRef getObjCString() const {
return ObjCString;
}
ArrayRef<KeyPathPatternComponent> getComponents() const;
void visitReferencedFunctionsAndMethods(
std::function<void (SILFunction *)> functionCallBack,
std::function<void (SILDeclRef)> methodCallBack) {
for (auto &component : getComponents()) {
component.visitReferencedFunctionsAndMethods(functionCallBack,
methodCallBack);
}
}
static KeyPathPattern *get(SILModule &M,
CanGenericSignature signature,
CanType rootType,
CanType valueType,
ArrayRef<KeyPathPatternComponent> components,
StringRef ObjCString);
static void Profile(llvm::FoldingSetNodeID &ID,
CanGenericSignature signature,
CanType rootType,
CanType valueType,
ArrayRef<KeyPathPatternComponent> components,
StringRef ObjCString);
void Profile(llvm::FoldingSetNodeID &ID) {
Profile(ID, getGenericSignature(), getRootType(), getValueType(),
getComponents(), getObjCString());
}
};
/// Base class for instructions that access the continuation of an async task,
/// in order to set up a suspension.
/// The continuation must be consumed by an AwaitAsyncContinuation instruction locally,
/// and must dynamically be resumed exactly once during the program's ensuing execution.
class GetAsyncContinuationInstBase
: public SingleValueInstruction
{
protected:
CanType ResumeType;
bool Throws;
GetAsyncContinuationInstBase(SILInstructionKind Kind, SILDebugLocation Loc,
SILType ContinuationType, CanType ResumeType,
bool Throws)
: SingleValueInstruction(Kind, Loc, ContinuationType),
ResumeType(ResumeType), Throws(Throws) {}
public:
/// Get the type of the value the async task receives on a resume.
CanType getFormalResumeType() const { return ResumeType; }
SILType getLoweredResumeType() const;
/// True if the continuation can be used to resume the task by throwing an error.
bool throws() const { return Throws; }
static bool classof(SILNodePointer node) {
return node->getKind() >= SILNodeKind::First_GetAsyncContinuationInstBase &&
node->getKind() <= SILNodeKind::Last_GetAsyncContinuationInstBase;
}
};
/// Accesses the continuation for an async task, to prepare a primitive suspend operation.
class GetAsyncContinuationInst final
: public InstructionBase<SILInstructionKind::GetAsyncContinuationInst,
GetAsyncContinuationInstBase>
{
friend SILBuilder;
GetAsyncContinuationInst(SILDebugLocation Loc,
SILType ContinuationType, CanType ResumeType,
bool Throws)
: InstructionBase(Loc, ContinuationType, ResumeType, Throws)
{}
public:
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
};
/// Accesses the continuation for an async task, to prepare a primitive suspend operation.
/// The continuation must be consumed by an AwaitAsyncContinuation instruction locally,
/// and must dynamically be resumed exactly once during the program's ensuing execution.
///
/// This variation of the instruction additionally takes an operand for the address of the
/// buffer that receives the incoming value when the continuation is resumed.
class GetAsyncContinuationAddrInst final
: public UnaryInstructionBase<SILInstructionKind::GetAsyncContinuationAddrInst,
GetAsyncContinuationInstBase>
{
friend SILBuilder;
GetAsyncContinuationAddrInst(SILDebugLocation Loc,
SILValue ResumeBuf,
SILType ContinuationType, CanType ResumeType,
bool Throws)
: UnaryInstructionBase(Loc, ResumeBuf, ContinuationType, ResumeType, Throws)
{}
};
/// Begins a suspension point and enqueues the continuation to the executor
/// which is bound to the operand actor.
class HopToExecutorInst
: public UnaryInstructionBase<SILInstructionKind::HopToExecutorInst,
NonValueInstruction>
{
friend SILBuilder;
USE_SHARED_UINT8;
HopToExecutorInst(SILDebugLocation debugLoc, SILValue executor,
bool hasOwnership, bool isMandatory)
: UnaryInstructionBase(debugLoc, executor) {
sharedUInt8().HopToExecutorInst.mandatory = isMandatory;
}
public:
SILValue getTargetExecutor() const { return getOperand(); }
bool isMandatory() const { return sharedUInt8().HopToExecutorInst.mandatory; }
};
/// Extract the ex that the code is executing on the operand executor already.
class ExtractExecutorInst
: public UnaryInstructionBase<SILInstructionKind::ExtractExecutorInst,
SingleValueInstruction>
{
friend SILBuilder;
ExtractExecutorInst(SILDebugLocation debugLoc, SILValue executor,
bool hasOwnership, SILType Ty)
: UnaryInstructionBase(debugLoc, executor, Ty) { }
public:
SILValue getExpectedExecutor() const { return getOperand(); }
};
/// Extract the isolation of an @isolated(any) function value.
///
/// The operand and result must always have guaranteed ownership.
class FunctionExtractIsolationInst
: public UnaryInstructionBase<SILInstructionKind::FunctionExtractIsolationInst,
OwnershipForwardingSingleValueInstruction>
{
friend SILBuilder;
FunctionExtractIsolationInst(SILDebugLocation debugLoc, SILValue fnValue,
SILType type)
: UnaryInstructionBase(debugLoc, fnValue, type,
OwnershipKind::Guaranteed) { }
public:
SILValue getFunction() const { return getOperand(); }
};
/// Instantiates a key path object.
class KeyPathInst final
: public InstructionBase<SILInstructionKind::KeyPathInst,
SingleValueInstruction>,
private llvm::TrailingObjects<KeyPathInst, Operand> {
friend SILBuilder;
friend TrailingObjects;
KeyPathPattern *Pattern;
unsigned numPatternOperands;
unsigned numTypeDependentOperands;
SubstitutionMap Substitutions;
static KeyPathInst *create(SILDebugLocation Loc,
KeyPathPattern *Pattern,
SubstitutionMap Subs,
ArrayRef<SILValue> Args,
SILType Ty,
SILFunction &F);
KeyPathInst(SILDebugLocation Loc,
KeyPathPattern *Pattern,
SubstitutionMap Subs,
ArrayRef<SILValue> allOperands,
unsigned numPatternOperands,
SILType Ty);
size_t numTrailingObjects(OverloadToken<Operand>) const {
return numPatternOperands + numTypeDependentOperands;
}
public:
BoundGenericType *getKeyPathType() const;
KeyPathPattern *getPattern() const;
bool hasPattern() const { return (bool)Pattern; }
ArrayRef<Operand> getAllOperands() const {
return const_cast<KeyPathInst*>(this)->getAllOperands();
}
MutableArrayRef<Operand> getAllOperands();
ArrayRef<Operand> getPatternOperands() const {
return getAllOperands().slice(0, numPatternOperands);
}
MutableArrayRef<Operand> getPatternOperands() {
return getAllOperands().slice(0, numPatternOperands);
}
ArrayRef<Operand> getTypeDependentOperands() const {
return getAllOperands().slice(numPatternOperands);
}
MutableArrayRef<Operand> getTypeDependentOperands() {
return getAllOperands().slice(numPatternOperands);
}
SubstitutionMap getSubstitutions() const { return Substitutions; }
void dropReferencedPattern();
~KeyPathInst();
};
struct SILInstructionContext {
using Storage = TaggedUnion<SILModule *, SILFunction *>;
Storage storage;
static SILInstructionContext forModule(SILModule &M) { return {Storage(&M)}; }
static SILInstructionContext forFunction(SILFunction &F) {
return {Storage(&F)};
}
static SILInstructionContext forFunctionInModule(SILFunction *F,
SILModule &M);
SILFunction *getFunction();
SILModule &getModule();
};
/// Represents an invocation of builtin functionality provided by the code
/// generator.
class BuiltinInst final
: public InstructionBaseWithTrailingOperands<
SILInstructionKind::BuiltinInst, BuiltinInst,
SingleValueInstruction> {
friend SILBuilder;
/// The name of the builtin to invoke.
Identifier Name;
/// The substitutions.
SubstitutionMap Substitutions;
unsigned numNormalOperands;
BuiltinInst(SILDebugLocation DebugLoc, Identifier Name, SILType ReturnType,
SubstitutionMap Substitutions, ArrayRef<SILValue> Args,
unsigned numNormalOperands);
static BuiltinInst *create(SILDebugLocation DebugLoc, Identifier Name,
SILType ReturnType, SubstitutionMap Substitutions,
ArrayRef<SILValue> Args,
SILInstructionContext context);
public:
/// Return the name of the builtin operation.
Identifier getName() const { return Name; }
void setName(Identifier I) { Name = I; }
/// Looks up the llvm intrinsic ID and type for the builtin function.
///
/// \returns Returns llvm::Intrinsic::not_intrinsic if the function is not an
/// intrinsic. The particular intrinsic functions which correspond to the
/// returned value are defined in llvm/Intrinsics.h.
const IntrinsicInfo &getIntrinsicInfo() const;
/// Looks up the lazily cached identification for the builtin function.
const BuiltinInfo &getBuiltinInfo() const;
/// Looks up the llvm intrinsic ID of this builtin. Returns None if
/// this is not an intrinsic.
std::optional<llvm::Intrinsic::ID> getIntrinsicID() const {
auto I = getIntrinsicInfo();
if (I.ID == llvm::Intrinsic::not_intrinsic)
return std::nullopt;
return I.ID;
}
/// Looks up the BuiltinKind of this builtin. Returns None if this is
/// not a builtin.
std::optional<BuiltinValueKind> getBuiltinKind() const {
auto I = getBuiltinInfo();
if (I.ID == BuiltinValueKind::None)
return std::nullopt;
return I.ID;
}
/// True if this builtin application has substitutions, which represent type
/// parameters to the builtin.
bool hasSubstitutions() const {
return Substitutions.hasAnySubstitutableParams();
}
/// Return the type parameters to the builtin.
SubstitutionMap getSubstitutions() const { return Substitutions; }
/// The arguments to the builtin.
OperandValueArrayRef getArguments() const {
return OperandValueArrayRef(getArgumentOperands());
}
ArrayRef<Operand> getArgumentOperands() const {
return getAllOperands().slice(0, numNormalOperands);
}
MutableArrayRef<Operand> getArgumentOperands() {
return getAllOperands().slice(0, numNormalOperands);
}
ArrayRef<Operand> getTypeDependentOperands() const {
return getAllOperands().drop_front(numNormalOperands);
}
MutableArrayRef<Operand> getTypeDependentOperands() {
return getAllOperands().drop_front(numNormalOperands);
}
};
/// Increments a given profiler counter for a given PGO function name. This is
/// lowered to the \c llvm.instrprof.increment LLVM intrinsic.
class IncrementProfilerCounterInst final
: public InstructionBase<SILInstructionKind::IncrementProfilerCounterInst,
NonValueInstruction>,
private llvm::TrailingObjects<IncrementProfilerCounterInst, char> {
friend TrailingObjects;
friend SILBuilder;
unsigned CounterIdx;
unsigned PGOFuncNameLength;
unsigned NumCounters;
uint64_t PGOFuncHash;
IncrementProfilerCounterInst(SILDebugLocation Loc, unsigned CounterIdx,
unsigned PGOFuncNameLength, unsigned NumCounters,
uint64_t PGOFuncHash)
: InstructionBase(Loc), CounterIdx(CounterIdx),
PGOFuncNameLength(PGOFuncNameLength), NumCounters(NumCounters),
PGOFuncHash(PGOFuncHash) {}
static IncrementProfilerCounterInst *
create(SILDebugLocation Loc, unsigned CounterIdx, StringRef PGOFuncName,
unsigned NumCounters, uint64_t PGOFuncHash, SILModule &M);
public:
/// The index of the counter to be incremented.
unsigned getCounterIndex() const { return CounterIdx; }
/// The PGO function name for the function in which the counter resides.
StringRef getPGOFuncName() const {
return StringRef(getTrailingObjects<char>(), PGOFuncNameLength);
}
/// The total number of counters within the function.
unsigned getNumCounters() const { return NumCounters; }
/// A hash value for the function used to determine whether the profile is
/// outdated.
/// FIXME: This is currently always 0.
uint64_t getPGOFuncHash() const { return PGOFuncHash; }
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
};
/// Initializes a SIL global variable. Only valid once, before any
/// usages of the global via GlobalAddrInst.
class AllocGlobalInst
: public InstructionBase<SILInstructionKind::AllocGlobalInst,
NonValueInstruction> {
friend SILBuilder;
SILGlobalVariable *Global;
AllocGlobalInst(SILDebugLocation DebugLoc, SILGlobalVariable *Global);
public:
/// Return the referenced global variable.
SILGlobalVariable *getReferencedGlobal() const { return Global; }
void setReferencedGlobal(SILGlobalVariable *v) { Global = v; }
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
};
/// The base class for global_addr and global_value.
class GlobalAccessInst : public LiteralInst {
SILGlobalVariable *Global;
protected:
GlobalAccessInst(SILInstructionKind kind, SILDebugLocation loc,
SILType ty, SILGlobalVariable *global)
: LiteralInst(kind, loc, ty), Global(global) { }
public:
/// Return the referenced global variable.
SILGlobalVariable *getReferencedGlobal() const { return Global; }
void setReferencedGlobal(SILGlobalVariable *v) { Global = v; }
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
};
/// Gives the address of a SIL global variable. Only valid after an
/// AllocGlobalInst.
class GlobalAddrInst
: public InstructionBase<SILInstructionKind::GlobalAddrInst,
GlobalAccessInst> {
friend SILBuilder;
GlobalAddrInst(SILDebugLocation DebugLoc, SILGlobalVariable *Global,
SILValue dependencyToken,
TypeExpansionContext context);
std::optional<FixedOperandList<1>> dependencyToken;
public:
// FIXME: This constructor should be private but is currently used
// in the SILParser.
/// Create a placeholder instruction with an unset global reference.
GlobalAddrInst(SILDebugLocation DebugLoc, SILType Ty)
: InstructionBase(DebugLoc, Ty, nullptr) {}
SILValue getDependencyToken() const {
if (hasOperand())
return getOperand();
return SILValue();
}
void clearToken() { dependencyToken = std::nullopt; }
bool hasOperand() const { return dependencyToken.has_value(); }
SILValue getOperand() const { return dependencyToken->asValueArray()[0]; }
Operand &getOperandRef() { return dependencyToken->asArray()[0]; }
const Operand &getOperandRef() const { return dependencyToken->asArray()[0]; }
ArrayRef<Operand> getAllOperands() const {
return dependencyToken ? dependencyToken->asArray() : ArrayRef<Operand>{};
}
MutableArrayRef<Operand> getAllOperands() {
return dependencyToken
? dependencyToken->asArray() : MutableArrayRef<Operand>{};
}
};
/// Creates a base address for offset calculations.
class BaseAddrForOffsetInst
: public InstructionBase<SILInstructionKind::BaseAddrForOffsetInst,
LiteralInst> {
friend SILBuilder;
BaseAddrForOffsetInst(SILDebugLocation DebugLoc, SILType Ty)
: InstructionBase(DebugLoc, Ty) {}
public:
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
};
/// Gives the value of a global variable.
///
/// The referenced global variable must be a statically initialized object.
/// TODO: in future we might support global variables in general.
class GlobalValueInst
: public InstructionBase<SILInstructionKind::GlobalValueInst,
GlobalAccessInst> {
friend SILBuilder;
USE_SHARED_UINT8;
GlobalValueInst(SILDebugLocation DebugLoc, SILGlobalVariable *Global,
TypeExpansionContext context, bool isBare);
public:
bool isBare() const {
return sharedUInt8().GlobalValueInst.isBare;
}
void setBare(bool isBare = true) {
sharedUInt8().GlobalValueInst.isBare = isBare;
}
};
/// IntegerLiteralInst - Encapsulates an integer constant, as defined originally
/// by an IntegerLiteralExpr.
class IntegerLiteralInst final
: public InstructionBase<SILInstructionKind::IntegerLiteralInst,
LiteralInst>,
private llvm::TrailingObjects<IntegerLiteralInst, llvm::APInt::WordType> {
friend TrailingObjects;
friend SILBuilder;
USE_SHARED_UINT32;
IntegerLiteralInst(SILDebugLocation Loc, SILType Ty, const APInt &Value);
static IntegerLiteralInst *create(IntegerLiteralExpr *E,
SILDebugLocation Loc, SILModule &M);
static IntegerLiteralInst *create(SILDebugLocation Loc, SILType Ty,
intmax_t Value, SILModule &M);
static IntegerLiteralInst *create(SILDebugLocation Loc, SILType Ty,
const APInt &Value, SILModule &M);
public:
/// getValue - Return the APInt for the underlying integer literal.
APInt getValue() const;
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
};
/// FloatLiteralInst - Encapsulates a floating point constant, as defined
/// originally by a FloatLiteralExpr.
class FloatLiteralInst final
: public InstructionBase<SILInstructionKind::FloatLiteralInst,
LiteralInst>,
private llvm::TrailingObjects<FloatLiteralInst, llvm::APInt::WordType> {
friend TrailingObjects;
friend SILBuilder;
USE_SHARED_UINT32;
FloatLiteralInst(SILDebugLocation Loc, SILType Ty, const APInt &Bits);
static FloatLiteralInst *create(FloatLiteralExpr *E, SILDebugLocation Loc,
SILModule &M);
static FloatLiteralInst *create(SILDebugLocation Loc, SILType Ty,
const APFloat &Value, SILModule &M);
public:
/// Return the APFloat for the underlying FP literal.
APFloat getValue() const;
/// Return the bitcast representation of the FP literal as an APInt.
APInt getBits() const;
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
};
/// StringLiteralInst - Encapsulates a string constant, as defined originally by
/// a StringLiteralExpr. This produces the address of the string data as a
/// Builtin.RawPointer.
class StringLiteralInst final
: public InstructionBase<SILInstructionKind::StringLiteralInst,
LiteralInst>,
private llvm::TrailingObjects<StringLiteralInst, char> {
friend TrailingObjects;
friend SILBuilder;
USE_SHARED_UINT8;
USE_SHARED_UINT32;
public:
enum class Encoding {
Bytes = 0,
UTF8 = 1,
/// UTF-8 encoding of an Objective-C selector.
ObjCSelector = 2,
UTF8_OSLOG = 3,
};
private:
StringLiteralInst(SILDebugLocation DebugLoc, StringRef text,
Encoding encoding, SILType ty);
static StringLiteralInst *create(SILDebugLocation DebugLoc, StringRef Text,
Encoding encoding, SILModule &M);
public:
/// getValue - Return the string data for the literal, in UTF-8.
StringRef getValue() const {
return {getTrailingObjects<char>(), sharedUInt32().StringLiteralInst.length};
}
/// getEncoding - Return the desired encoding of the text.
Encoding getEncoding() const {
return Encoding(sharedUInt8().StringLiteralInst.encoding);
}
/// getCodeUnitCount - Return encoding-based length of the string
/// literal in code units.
uint64_t getCodeUnitCount();
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
};
/// HasSymbolInst - Determines whether a weakly-imported declaration is
/// available at runtime. Produces true if each of the underlying symbol
/// addresses associated with a given declaration are non-null, false otherwise.
class HasSymbolInst final : public LiteralInst {
private:
friend SILBuilder;
ValueDecl *Decl;
public:
HasSymbolInst(SILModule &M, SILDebugLocation Loc, ValueDecl *Decl)
: LiteralInst(SILInstructionKind::HasSymbolInst, Loc,
SILType::getBuiltinIntegerType(1, Decl->getASTContext())),
Decl{Decl} {}
ValueDecl *getDecl() const { return Decl; }
void getReferencedFunctions(llvm::SmallVector<SILFunction *, 4> &fns) const;
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
static bool classof(SILNodePointer node) {
return node->getKind() == SILNodeKind::HasSymbolInst;
}
};
//===----------------------------------------------------------------------===//
// Memory instructions.
//===----------------------------------------------------------------------===//
/// StringLiteralInst::Encoding hashes to its underlying integer representation.
static inline llvm::hash_code hash_value(StringLiteralInst::Encoding E) {
return llvm::hash_value(size_t(E));
}
// *NOTE* When serializing, we can only represent up to 4 values here. If more
// qualifiers are added, SIL serialization must be updated.
enum class LoadOwnershipQualifier {
Unqualified, Take, Copy, Trivial
};
static_assert(2 == SILNode::NumLoadOwnershipQualifierBits, "Size mismatch");
/// LoadInst - Represents a load from a memory location.
class LoadInst
: public UnaryInstructionBase<SILInstructionKind::LoadInst,
SingleValueInstruction>
{
friend SILBuilder;
USE_SHARED_UINT8;
/// Constructs a LoadInst.
///
/// \param DebugLoc The location of the expression that caused the load.
///
/// \param LValue The SILValue representing the lvalue (address) to
/// use for the load.
LoadInst(SILDebugLocation DebugLoc, SILValue LValue,
LoadOwnershipQualifier Q = LoadOwnershipQualifier::Unqualified)
: UnaryInstructionBase(DebugLoc, LValue,
LValue->getType().getObjectType()) {
sharedUInt8().LoadInst.ownershipQualifier = uint8_t(Q);
}
public:
LoadOwnershipQualifier getOwnershipQualifier() const {
return LoadOwnershipQualifier(sharedUInt8().LoadInst.ownershipQualifier);
}
void setOwnershipQualifier(LoadOwnershipQualifier qualifier) {
sharedUInt8().LoadInst.ownershipQualifier = uint8_t(qualifier);
}
};
// *NOTE* When serializing, we can only represent up to 4 values here. If more
// qualifiers are added, SIL serialization must be updated.
enum class StoreOwnershipQualifier {
Unqualified, Init, Assign, Trivial
};
static_assert(2 == SILNode::NumStoreOwnershipQualifierBits, "Size mismatch");
/// StoreInst - Represents a store from a memory location.
class StoreInst
: public InstructionBase<SILInstructionKind::StoreInst,
NonValueInstruction>,
public CopyLikeInstruction {
friend SILBuilder;
private:
FixedOperandList<2> Operands;
USE_SHARED_UINT8;
StoreInst(SILDebugLocation DebugLoc, SILValue Src, SILValue Dest,
StoreOwnershipQualifier Qualifier);
public:
SILValue getSrc() const { return Operands[Src].get(); }
SILValue getDest() const { return Operands[Dest].get(); }
void setSrc(SILValue V) { Operands[Src].set(V); }
void setDest(SILValue V) { Operands[Dest].set(V); }
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
StoreOwnershipQualifier getOwnershipQualifier() const {
return StoreOwnershipQualifier(sharedUInt8().StoreInst.ownershipQualifier);
}
void setOwnershipQualifier(StoreOwnershipQualifier qualifier) {
sharedUInt8().StoreInst.ownershipQualifier = uint8_t(qualifier);
}
};
/// Represents a load of a borrowed value. Must be paired with an end_borrow
/// instruction in its use-def list.
class LoadBorrowInst :
public UnaryInstructionBase<SILInstructionKind::LoadBorrowInst,
SingleValueInstruction>
{
friend class SILBuilder;
bool Unchecked = false;
public:
LoadBorrowInst(SILDebugLocation DebugLoc, SILValue LValue)
: UnaryInstructionBase(DebugLoc, LValue,
LValue->getType().getObjectType()) {}
// True if the invariants on `load_borrow` have not been checked and
// should not be strictly enforced.
//
// This can only occur during raw SIL before move-only checking occurs.
// Developers can write incorrect code using noncopyable types that
// consumes or mutates a memory location while that location is borrowed,
// but the move-only checker must diagnose those problems before canonical
// SIL is formed.
bool isUnchecked() const { return Unchecked; }
void setUnchecked(bool value) { Unchecked = value; }
using EndBorrowRange =
decltype(std::declval<ValueBase>().getUsersOfType<EndBorrowInst>());
/// Return a range over all EndBorrow instructions for this BeginBorrow.
EndBorrowRange getEndBorrows() const;
};
inline auto LoadBorrowInst::getEndBorrows() const -> EndBorrowRange {
return getUsersOfType<EndBorrowInst>();
}
/// Represents the begin scope of a borrowed value. Must be paired with an
/// end_borrow instruction in its use-def list.
class BeginBorrowInst
: public UnaryInstructionBase<SILInstructionKind::BeginBorrowInst,
SingleValueInstruction> {
friend class SILBuilder;
USE_SHARED_UINT8;
public:
enum IsFixed_t : bool {
IsNotFixed = false,
IsFixed = true,
};
private:
BeginBorrowInst(SILDebugLocation DebugLoc, SILValue LValue,
IsLexical_t isLexical, HasPointerEscape_t hasPointerEscape,
IsFromVarDecl_t fromVarDecl, IsFixed_t fixed)
: UnaryInstructionBase(DebugLoc, LValue,
LValue->getType().getObjectType()) {
sharedUInt8().BeginBorrowInst.lexical = isLexical;
sharedUInt8().BeginBorrowInst.pointerEscape = hasPointerEscape;
sharedUInt8().BeginBorrowInst.fromVarDecl = (bool)fromVarDecl;
sharedUInt8().BeginBorrowInst.fixed = (bool)fixed;
}
public:
// FIXME: this does not return all instructions that end a local borrow
// scope. Branches can also end it via a reborrow, so APIs using this are
// incorrect. Instead, either iterate over all uses and return those with
// OperandOwnership::EndBorrow or Reborrow.
using EndBorrowRange =
decltype(std::declval<ValueBase>().getUsersOfType<EndBorrowInst>());
/// Whether the borrow scope introduced by this instruction corresponds to a
/// source-level lexical scope.
IsLexical_t isLexical() const {
return IsLexical_t(sharedUInt8().BeginBorrowInst.lexical);
}
/// If this is a lexical borrow, eliminate the lexical bit. If this borrow
/// doesn't have a lexical bit, do not do anything.
void removeIsLexical() {
sharedUInt8().BeginBorrowInst.lexical = (bool)IsNotLexical;
}
/// WARNING: this flag is not yet implemented!
HasPointerEscape_t hasPointerEscape() const {
return HasPointerEscape_t(sharedUInt8().BeginBorrowInst.pointerEscape);
}
void setHasPointerEscape(bool pointerEscape) {
sharedUInt8().BeginBorrowInst.pointerEscape = pointerEscape;
}
IsFromVarDecl_t isFromVarDecl() const {
return IsFromVarDecl_t(sharedUInt8().BeginBorrowInst.fromVarDecl);
}
/// Whether the borrow scope is fixed during move checking and should be
/// treated as an opaque use of the value.
IsFixed_t isFixed() const {
return IsFixed_t(sharedUInt8().BeginBorrowInst.fixed);
}
/// Return a range over all EndBorrow instructions for this BeginBorrow.
EndBorrowRange getEndBorrows() const;
/// Return the single use of this BeginBorrowInst, not including any
/// EndBorrowInst uses, or return nullptr if the borrow is dead or has
/// multiple uses.
///
/// Useful for matching common SILGen patterns that emit one borrow per use,
/// and simplifying pass logic.
Operand *getSingleNonEndingUse() const;
};
/// BorrowedFromInst - Establishes borrow relations.
class BorrowedFromInst final : public InstructionBaseWithTrailingOperands<
SILInstructionKind::BorrowedFromInst, BorrowedFromInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
/// Because of the storage requirements of BorrowedFromInst, object
/// creation goes through 'create()'.
BorrowedFromInst(SILDebugLocation DebugLoc, ArrayRef<SILValue> operands);
/// Construct a BorrowedFromInst.
static BorrowedFromInst *create(SILDebugLocation DebugLoc, SILValue borrowedValue,
ArrayRef<SILValue> enclosingValues, SILModule &M);
public:
SILValue getBorrowedValue() const {
return getAllOperands()[0].get();
}
/// The elements referenced by this StructInst.
ArrayRef<Operand> getEnclosingValueOperands() const {
return getAllOperands().drop_front();
}
/// The elements referenced by this StructInst.
OperandValueArrayRef getEnclosingValues() const {
return OperandValueArrayRef(getEnclosingValueOperands());
}
bool isReborrow() const;
};
inline auto BeginBorrowInst::getEndBorrows() const -> EndBorrowRange {
return getUsersOfType<EndBorrowInst>();
}
/// Represents a store of a borrowed value into an address. Returns the borrowed
/// address. Must be paired with an end_borrow in its use-def list.
class StoreBorrowInst
: public InstructionBase<SILInstructionKind::StoreBorrowInst,
SingleValueInstruction>,
public CopyLikeInstruction {
friend class SILBuilder;
private:
FixedOperandList<2> Operands;
StoreBorrowInst(SILDebugLocation DebugLoc, SILValue Src, SILValue Dest);
public:
SILValue getSrc() const { return Operands[Src].get(); }
SILValue getDest() const { return Operands[Dest].get(); }
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
using EndBorrowRange =
decltype(std::declval<ValueBase>().getUsersOfType<EndBorrowInst>());
/// Return a range over all EndBorrow instructions for this BeginBorrow.
EndBorrowRange getEndBorrows() const;
};
inline auto StoreBorrowInst::getEndBorrows() const -> EndBorrowRange {
return getUsersOfType<EndBorrowInst>();
}
/// Represents the end of a borrow scope of a value %val from a
/// value or address %src.
///
/// While %val is "live" in a region then,
///
/// 1. If %src is an object, it is undefined behavior for %src to be
/// destroyed. This is enforced by the ownership verifier.
///
/// 2. If %src is an address, it is undefined behavior for %src to be
/// destroyed or written to.
class EndBorrowInst
: public UnaryInstructionBase<SILInstructionKind::EndBorrowInst,
NonValueInstruction> {
friend class SILBuilder;
EndBorrowInst(SILDebugLocation debugLoc, SILValue borrowedValue)
: UnaryInstructionBase(debugLoc, borrowedValue) {}
};
/// Different kinds of access.
enum class SILAccessKind : uint8_t {
/// An access which takes uninitialized memory and initializes it.
Init,
/// An access which reads the value of initialized memory, but doesn't
/// modify it.
Read,
/// An access which changes the value of initialized memory.
Modify,
/// An access which takes initialized memory and leaves it uninitialized.
Deinit,
// This enum is encoded.
Last = Deinit,
};
enum { NumSILAccessKindBits = 2 };
StringRef getSILAccessKindName(SILAccessKind kind);
/// Different kinds of exclusivity enforcement for accesses.
enum class SILAccessEnforcement : uint8_t {
/// The access's enforcement has not yet been determined.
Unknown,
/// The access is statically known to not conflict with other accesses.
Static,
/// TODO: maybe add InitiallyStatic for when the access is statically
/// known to not interfere with any accesses when it begins but where
/// it's possible that other accesses might be started during this access.
/// The access is not statically known to not conflict with anything
/// and must be dynamically checked.
Dynamic,
/// The access is not statically known to not conflict with anything
/// but dynamic checking should be suppressed, leaving it undefined
/// behavior.
Unsafe,
/// Access to pointers that are signed via pointer authentication.
/// Such pointers should be authenticated before read and signed before a
/// write. Optimizations should avoid promoting such accesses to values.
Signed,
// This enum is encoded.
Last = Signed
};
StringRef getSILAccessEnforcementName(SILAccessEnforcement enforcement);
class EndAccessInst;
/// Base class for BeginAccessInst and BeginUnpairedAccessInst.
template<typename Base>
class BeginAccessBase : public Base {
TEMPLATE_USE_SHARED_UINT8(Base);
protected:
template <typename... A>
BeginAccessBase(SILDebugLocation loc,
SILAccessKind accessKind, SILAccessEnforcement enforcement,
bool noNestedConflict, bool fromBuiltin, A &&... args)
: Base(loc, std::forward<A>(args)...) {
sharedUInt8().BeginAccessBase.accessKind = (uint8_t)accessKind;
sharedUInt8().BeginAccessBase.enforcement = (uint8_t)enforcement;
sharedUInt8().BeginAccessBase.noNestedConflict = noNestedConflict;
sharedUInt8().BeginAccessBase.fromBuiltin = fromBuiltin;
}
public:
SILAccessKind getAccessKind() const {
return SILAccessKind(sharedUInt8().BeginAccessBase.accessKind);
}
void setAccessKind(SILAccessKind kind) {
sharedUInt8().BeginAccessBase.accessKind = unsigned(kind);
}
SILAccessEnforcement getEnforcement() const {
return
SILAccessEnforcement(sharedUInt8().BeginAccessBase.enforcement);
}
void setEnforcement(SILAccessEnforcement enforcement) {
sharedUInt8().BeginAccessBase.enforcement = unsigned(enforcement);
}
/// If hasNoNestedConflict is true, then it is a static guarantee against
/// inner conflicts. No subsequent access between this point and the
/// corresponding end_access could cause an enforcement failure. Consequently,
/// the access will not need to be tracked by the runtime for the duration of
/// its scope. This access may still conflict with an outer access scope;
/// therefore may still require dynamic enforcement at a single point.
bool hasNoNestedConflict() const {
return sharedUInt8().BeginAccessBase.noNestedConflict;
}
void setNoNestedConflict(bool noNestedConflict) {
sharedUInt8().BeginAccessBase.noNestedConflict = noNestedConflict;
}
/// Return true if this access marker was emitted for a user-controlled
/// Builtin. Return false if this access marker was auto-generated by the
/// compiler to enforce formal access that derives from the language.
bool isFromBuiltin() const {
return sharedUInt8().BeginAccessBase.fromBuiltin;
}
};
/// Begins an access scope. Must be paired with an end_access instruction
/// along every path.
class BeginAccessInst
: public BeginAccessBase<UnaryInstructionBase<SILInstructionKind::BeginAccessInst,
SingleValueInstruction>> {
friend class SILBuilder;
BeginAccessInst(SILDebugLocation loc, SILValue lvalue,
SILAccessKind accessKind, SILAccessEnforcement enforcement,
bool noNestedConflict, bool fromBuiltin)
: BeginAccessBase(loc, accessKind, enforcement, noNestedConflict,
fromBuiltin, lvalue, lvalue->getType()) {
static_assert(unsigned(SILAccessKind::Last) < (1 << 3),
"reserve sufficient bits for serialized SIL");
static_assert(unsigned(SILAccessEnforcement::Last) < (1 << 3),
"reserve sufficient bits for serialized SIL");
static_assert(unsigned(SILAccessKind::Last) <
(1 << SILNode::NumSILAccessKindBits),
"SILNode needs updating");
static_assert(unsigned(SILAccessEnforcement::Last) <
(1 << SILNode::NumSILAccessEnforcementBits),
"SILNode needs updating");
}
public:
SILValue getSource() const {
return getOperand();
}
using EndAccessRange =
decltype(std::declval<ValueBase>().getUsersOfType<EndAccessInst>());
/// Find all the associated end_access instructions for this begin_access.
EndAccessRange getEndAccesses() const;
};
/// Represents the end of an access scope.
class EndAccessInst
: public UnaryInstructionBase<SILInstructionKind::EndAccessInst,
NonValueInstruction> {
friend class SILBuilder;
USE_SHARED_UINT8;
private:
EndAccessInst(SILDebugLocation loc, SILValue access, bool aborting = false)
: UnaryInstructionBase(loc, access) {
sharedUInt8().EndAccessInst.aborting = aborting;
}
public:
/// An aborted access is one that did not perform the expected
/// transition described by the begin_access instruction before it
/// reached this end_access.
///
/// Only AccessKind::Init and AccessKind::Deinit accesses can be
/// aborted.
bool isAborting() const {
return sharedUInt8().EndAccessInst.aborting;
}
void setAborting(bool aborting = true) {
sharedUInt8().EndAccessInst.aborting = aborting;
}
BeginAccessInst *getBeginAccess() const {
return cast<BeginAccessInst>(getOperand());
}
SILValue getSource() const {
return getBeginAccess()->getSource();
}
};
inline auto BeginAccessInst::getEndAccesses() const -> EndAccessRange {
return getUsersOfType<EndAccessInst>();
}
/// Begins an access without requiring a paired end_access.
/// Dynamically, an end_unpaired_access does still need to be called, though.
///
/// This should only be used in materializeForSet, and eventually it should
/// be removed entirely.
class BeginUnpairedAccessInst
: public BeginAccessBase<InstructionBase<
SILInstructionKind::BeginUnpairedAccessInst, NonValueInstruction>> {
friend class SILBuilder;
FixedOperandList<2> Operands;
BeginUnpairedAccessInst(SILDebugLocation loc, SILValue addr, SILValue buffer,
SILAccessKind accessKind,
SILAccessEnforcement enforcement,
bool noNestedConflict,
bool fromBuiltin)
: BeginAccessBase(loc, accessKind, enforcement, noNestedConflict,
fromBuiltin),
Operands(this, addr, buffer) {
}
public:
SILValue getSource() const {
return Operands[0].get();
}
SILValue getBuffer() const {
return Operands[1].get();
}
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
ArrayRef<Operand> getTypeDependentOperands() const {
return {};
}
MutableArrayRef<Operand> getTypeDependentOperands() {
return {};
}
};
/// Ends an unpaired access.
class EndUnpairedAccessInst
: public UnaryInstructionBase<SILInstructionKind::EndUnpairedAccessInst,
NonValueInstruction> {
friend class SILBuilder;
USE_SHARED_UINT8;
private:
EndUnpairedAccessInst(SILDebugLocation loc, SILValue buffer,
SILAccessEnforcement enforcement, bool aborting,
bool fromBuiltin)
: UnaryInstructionBase(loc, buffer) {
sharedUInt8().EndUnpairedAccessInst.enforcement = uint8_t(enforcement);
sharedUInt8().EndUnpairedAccessInst.aborting = aborting;
sharedUInt8().EndUnpairedAccessInst.fromBuiltin = fromBuiltin;
}
public:
/// An aborted access is one that did not perform the expected
/// transition described by the begin_access instruction before it
/// reached this end_access.
///
/// Only AccessKind::Init and AccessKind::Deinit accesses can be
/// aborted.
bool isAborting() const {
return sharedUInt8().EndUnpairedAccessInst.aborting;
}
void setAborting(bool aborting) {
sharedUInt8().EndUnpairedAccessInst.aborting = aborting;
}
SILAccessEnforcement getEnforcement() const {
return SILAccessEnforcement(
sharedUInt8().EndUnpairedAccessInst.enforcement);
}
void setEnforcement(SILAccessEnforcement enforcement) {
sharedUInt8().EndUnpairedAccessInst.enforcement =
unsigned(enforcement);
}
/// Return true if this access marker was emitted for a user-controlled
/// Builtin. Return false if this access marker was auto-generated by the
/// compiler to enforce formal access that derives from the language.
bool isFromBuiltin() const {
return sharedUInt8().EndUnpairedAccessInst.fromBuiltin;
}
SILValue getBuffer() const {
return getOperand();
}
};
// *NOTE* When serializing, we can only represent up to 4 values here. If more
// qualifiers are added, SIL serialization must be updated.
enum class AssignOwnershipQualifier {
/// Unknown initialization method
Unknown,
/// The box contains a fully-initialized value.
Reassign,
/// The box contains a class instance that we own, but the instance has
/// not been initialized and should be freed with a special SIL
/// instruction made for this purpose.
Reinit,
/// The box contains an undefined value that should be ignored.
Init,
};
static_assert(2 == SILNode::NumAssignOwnershipQualifierBits, "Size mismatch");
template <SILInstructionKind Kind, int NumOps>
class AssignInstBase
: public InstructionBase<Kind, NonValueInstruction>,
public CopyLikeInstruction {
protected:
FixedOperandList<NumOps> Operands;
template <class... T>
AssignInstBase(SILDebugLocation DebugLoc, T&&...args) :
InstructionBase<Kind, NonValueInstruction>(DebugLoc),
Operands(this, std::forward<T>(args)...) { }
public:
SILValue getSrc() const { return Operands[Src].get(); }
SILValue getDest() const { return Operands[Dest].get(); }
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
};
/// AssignInst - Represents an abstract assignment to a memory location, which
/// may either be an initialization or a store sequence. This is only valid in
/// Raw SIL.
class AssignInst
: public AssignInstBase<SILInstructionKind::AssignInst, 2> {
friend SILBuilder;
USE_SHARED_UINT8;
AssignInst(SILDebugLocation DebugLoc, SILValue Src, SILValue Dest,
AssignOwnershipQualifier Qualifier =
AssignOwnershipQualifier::Unknown);
public:
AssignOwnershipQualifier getOwnershipQualifier() const {
return AssignOwnershipQualifier(
sharedUInt8().AssignInst.ownershipQualifier);
}
void setOwnershipQualifier(AssignOwnershipQualifier qualifier) {
sharedUInt8().AssignInst.ownershipQualifier = unsigned(qualifier);
}
};
/// AssignByWrapperInst - Represents an abstract assignment via a wrapper,
/// which may either be an initialization or a store sequence. This is only
/// valid in Raw SIL.
class AssignByWrapperInst
: public AssignInstBase<SILInstructionKind::AssignByWrapperInst, 4> {
friend SILBuilder;
USE_SHARED_UINT8;
public:
enum Mode {
/// The mode is not decided yet (by DefiniteInitialization).
Unknown,
/// The initializer is called with Src as argument. The result is stored to
/// Dest.
Initialization,
// Like ``Initialization``, except that the destination is "assigned" rather
// than "initialized". This means that the existing value in the destination
// is destroyed before the new value is stored.
Assign,
/// The setter is called with Src as argument. The Dest is not used in this
/// case.
AssignWrappedValue
};
private:
AssignByWrapperInst(SILDebugLocation DebugLoc,
SILValue Src, SILValue Dest, SILValue Initializer,
SILValue Setter, Mode mode);
public:
SILValue getInitializer() { return Operands[2].get(); }
SILValue getSetter() { return Operands[3].get(); }
Mode getMode() const {
return Mode(sharedUInt8().AssignByWrapperInst.mode);
}
void setMode(Mode mode) {
sharedUInt8().AssignByWrapperInst.mode = uint8_t(mode);
}
};
/// AssignOrInitInst - Represents an abstract assignment via a init accessor
/// or a setter, which may either be an initialization or a store sequence.
/// This is only valid in Raw SIL.
///
/// Note that this instruction does not inherit from AssignInstBase because
/// there is no physical destination of the assignment. Both the init
/// and the setter are factored into functions.
class AssignOrInitInst
: public InstructionBase<SILInstructionKind::AssignOrInitInst,
NonValueInstruction>,
public CopyLikeInstruction {
friend SILBuilder;
USE_SHARED_UINT8;
FixedOperandList<4> Operands;
/// Property the init accessor is associated with.
VarDecl *Property;
/// Marks all of the properties in `initializes(...)` list that
/// have been initialized before this intruction to help Raw SIL
/// lowering to emit destroys.
llvm::BitVector Assignments;
public:
enum Mode {
/// The mode is not decided yet (by DefiniteInitialization).
Unknown,
/// The initializer is called with Src as argument.
Init,
/// The setter is called with Src as argument.
Set
};
private:
AssignOrInitInst(SILDebugLocation DebugLoc, VarDecl *P, SILValue Self,
SILValue Src, SILValue Initializer, SILValue Setter,
Mode mode);
public:
VarDecl *getProperty() const { return Property; }
SILValue getSelf() const { return Operands[0].get(); }
SILValue getSrc() const { return Operands[1].get(); }
SILValue getInitializer() const { return Operands[2].get(); }
SILValue getSetter() { return Operands[3].get(); }
Mode getMode() const {
return Mode(sharedUInt8().AssignOrInitInst.mode);
}
void setMode(Mode mode) {
sharedUInt8().AssignOrInitInst.mode = uint8_t(mode);
}
/// Mark a property from `initializes(...)` list as initialized
/// before this instruction.
void markAsInitialized(VarDecl *property);
void markAsInitialized(unsigned propertyIdx);
/// Check whether a property from `initializes(...)` list with
/// the given index has already been initialized and requires
/// destroy before it could be re-initialized.
bool isPropertyAlreadyInitialized(unsigned propertyIdx);
unsigned getNumInitializedProperties() const;
ArrayRef<VarDecl *> getInitializedProperties() const;
ArrayRef<VarDecl *> getAccessedProperties() const;
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
StringRef getPropertyName() const;
AccessorDecl *getReferencedInitAccessor() const;
};
/// Indicates that a memory location is uninitialized at this point and needs to
/// be initialized by the end of the function and before any escape point for
/// this instruction. This is only valid in Raw SIL.
class MarkUninitializedInst
: public UnaryInstructionBase<SILInstructionKind::MarkUninitializedInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
public:
/// This enum captures what the mark_uninitialized instruction is designating.
///
/// Warning: this enum must be in sync with the swift `MarkUninitializedInst.Kind`
enum Kind {
/// Var designates the start of a normal variable live range.
Var,
/// RootSelf designates "self" in a struct, enum, or root class.
RootSelf,
/// CrossModuleRootSelf is the same as "RootSelf", but in a case where
/// it's not really safe to treat 'self' as root because the original
/// module might add more stored properties.
///
/// This is only used for Swift 4 compatibility. In Swift 5, cross-module
/// initializers are always DelegatingSelf.
CrossModuleRootSelf,
/// DerivedSelf designates "self" in a derived (non-root) class.
DerivedSelf,
/// DerivedSelfOnly designates "self" in a derived (non-root)
/// class whose stored properties have already been initialized.
DerivedSelfOnly,
/// DelegatingSelf designates "self" on a struct, enum, or class
/// in a delegating constructor (one that calls self.init).
DelegatingSelf,
/// DelegatingSelfAllocated designates "self" in a delegating class
/// initializer where memory has already been allocated.
DelegatingSelfAllocated,
/// Out designates an indirectly returned result.
/// This is the result that has to be checked for initialization.
Out,
};
private:
Kind ThisKind;
MarkUninitializedInst(SILDebugLocation DebugLoc, SILValue Value, Kind K,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionBase(DebugLoc, Value, Value->getType(),
forwardingOwnershipKind),
ThisKind(K) {}
public:
Kind getMarkUninitializedKind() const { return ThisKind; }
bool isVar() const { return ThisKind == Var; }
bool isOut() const { return ThisKind == Out; }
bool isRootSelf() const {
return ThisKind == RootSelf;
}
bool isCrossModuleRootSelf() const {
return ThisKind == CrossModuleRootSelf;
}
bool isDerivedClassSelf() const {
return ThisKind == DerivedSelf;
}
bool isDerivedClassSelfOnly() const {
return ThisKind == DerivedSelfOnly;
}
bool isDelegatingSelf() const {
return ThisKind == DelegatingSelf;
}
bool isDelegatingSelfAllocated() const {
return ThisKind == DelegatingSelfAllocated;
}
};
/// MarkFunctionEscape - Represents the escape point of set of variables due to
/// a function definition which uses the variables. This is only valid in Raw
/// SIL.
class MarkFunctionEscapeInst final
: public InstructionBaseWithTrailingOperands<
SILInstructionKind::MarkFunctionEscapeInst,
MarkFunctionEscapeInst, NonValueInstruction> {
friend SILBuilder;
/// Private constructor. Because this is variadic, object creation goes
/// through 'create()'.
MarkFunctionEscapeInst(SILDebugLocation DebugLoc, ArrayRef<SILValue> Elements)
: InstructionBaseWithTrailingOperands(Elements, DebugLoc) {}
/// Construct a MarkFunctionEscapeInst.
static MarkFunctionEscapeInst *create(SILDebugLocation DebugLoc,
ArrayRef<SILValue> Elements,
SILFunction &F);
public:
/// The elements referenced by this instruction.
MutableArrayRef<Operand> getElementOperands() {
return getAllOperands();
}
/// The elements referenced by this instruction.
OperandValueArrayRef getElements() const {
return OperandValueArrayRef(getAllOperands());
}
};
/// This instruction is inserted by Onone optimizations as a replacement for deleted
/// instructions to ensure that it's possible to set a breakpoint on its location.
class DebugStepInst final
: public InstructionBase<SILInstructionKind::DebugStepInst, NonValueInstruction> {
friend SILBuilder;
DebugStepInst(SILDebugLocation debugLoc) : InstructionBase(debugLoc) {}
public:
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
};
enum PoisonRefs_t : bool {
DontPoisonRefs = false,
PoisonRefs = true,
};
/// Define the start or update to a symbolic variable value (for loadable
/// types).
class DebugValueInst final
: public UnaryInstructionBase<SILInstructionKind::DebugValueInst,
NonValueInstruction>,
private SILDebugVariableSupplement,
private llvm::TrailingObjects<DebugValueInst, SILType, SILLocation,
const SILDebugScope *, SILDIExprElement,
char> {
friend TrailingObjects;
friend SILBuilder;
TailAllocatedDebugVariable VarInfo;
USE_SHARED_UINT8;
DebugValueInst(SILDebugLocation DebugLoc, SILValue Operand,
SILDebugVariable Var, PoisonRefs_t poisonRefs,
UsesMoveableValueDebugInfo_t operandWasMoved, bool trace);
static DebugValueInst *create(SILDebugLocation DebugLoc, SILValue Operand,
SILModule &M, SILDebugVariable Var,
PoisonRefs_t poisonRefs,
UsesMoveableValueDebugInfo_t operandWasMoved,
bool trace);
static DebugValueInst *createAddr(SILDebugLocation DebugLoc, SILValue Operand,
SILModule &M, SILDebugVariable Var,
UsesMoveableValueDebugInfo_t wasMoved,
bool trace);
SIL_DEBUG_VAR_SUPPLEMENT_TRAILING_OBJS_IMPL()
size_t numTrailingObjects(OverloadToken<char>) const { return 1; }
public:
/// Sets a bool that states this debug_value is supposed to use the
void setUsesMoveableValueDebugInfo() {
sharedUInt8().DebugValueInst.usesMoveableValueDebugInfo =
(bool)UsesMoveableValueDebugInfo;
}
/// True if this debug_value is on an SSA value that was moved.
///
/// IRGen uses this information to determine if we should use llvm.dbg.addr or
/// llvm.dbg.declare.
UsesMoveableValueDebugInfo_t usesMoveableValueDebugInfo() const {
return UsesMoveableValueDebugInfo_t(
sharedUInt8().DebugValueInst.usesMoveableValueDebugInfo);
}
/// Return the underlying variable declaration that this denotes,
/// or null if we don't have one.
VarDecl *getDecl() const;
/// Return the SILLocation for the debug variable.
SILLocation getVarLoc() const {
if (hasAuxDebugLocation())
return *getTrailingObjects<SILLocation>();
return getLoc().strippedForDebugVariable();
}
/// Return the debug variable information attached to this instruction.
///
/// \param complete If true, always retrieve the complete variable with
/// location and scope, and the type if possible. If false, only return the
/// values if they are stored (if they are different from the instruction's
/// location, scope, and type). This should only be set to false in
/// SILPrinter. Incomplete var info is unpredictable, as it will sometimes
/// have location and scope and sometimes not.
///
/// \note The type is not included because it can change during a pass.
/// Passes must make sure to not lose the type information.
std::optional<SILDebugVariable> getVarInfo(bool complete = true) const {
std::optional<SILType> AuxVarType;
std::optional<SILLocation> VarDeclLoc;
const SILDebugScope *VarDeclScope = nullptr;
if (HasAuxDebugVariableType)
AuxVarType = *getTrailingObjects<SILType>();
// TODO: passes break if we set the type here, as the type of the operand
// can be changed during a pass.
// else if (complete)
// AuxVarType = getOperand()->getType().getObjectType();
if (hasAuxDebugLocation())
VarDeclLoc = *getTrailingObjects<SILLocation>();
else if (complete)
VarDeclLoc = getLoc().strippedForDebugVariable();
if (hasAuxDebugScope())
VarDeclScope = *getTrailingObjects<const SILDebugScope *>();
else if (complete)
VarDeclScope = getDebugScope();
llvm::ArrayRef<SILDIExprElement> DIExprElements(
getTrailingObjects<SILDIExprElement>(), NumDIExprOperands);
return VarInfo.get(getDecl(), getTrailingObjects<char>(), AuxVarType,
VarDeclLoc, VarDeclScope, DIExprElements);
}
void setDebugVarScope(const SILDebugScope *NewDS) {
if (hasAuxDebugScope())
*getTrailingObjects<const SILDebugScope *>() = NewDS;
}
/// Whether the SSA value associated with the current debug_value
/// instruction has an address type.
bool hasAddrVal() const {
return getOperand()->getType().isAddress();
}
/// An utility to check if \p I is DebugValueInst and
/// whether it's associated with address type SSA value.
static DebugValueInst *hasAddrVal(SILInstruction *I) {
auto *DVI = dyn_cast_or_null<DebugValueInst>(I);
return DVI && DVI->hasAddrVal()? DVI : nullptr;
}
/// Whether the attached di-expression (if there is any) starts
/// with `op_deref`.
bool exprStartsWithDeref() const;
/// True if all references within this debug value will be overwritten with a
/// poison sentinel at this point in the program. This is used in debug builds
/// when shortening non-trivial value lifetimes to ensure the debugger cannot
/// inspect invalid memory. These are not generated until OSSA is
/// lowered. They are not expected to be serialized within the module, and the
/// debug pipeline is not expected to do any significant code motion after
/// OSSA lowering. It should not be necessary to model the poison operation as
/// a side effect, which would violate the rule that debug_values cannot
/// affect optimization.
PoisonRefs_t poisonRefs() const {
return PoisonRefs_t(sharedUInt8().DebugValueInst.poisonRefs);
}
void setPoisonRefs(PoisonRefs_t poisonRefs = PoisonRefs) {
sharedUInt8().DebugValueInst.poisonRefs = poisonRefs;
}
bool hasTrace() const { return sharedUInt8().DebugValueInst.trace; }
void setTrace(bool trace = true) {
sharedUInt8().DebugValueInst.trace = trace;
}
};
class SpecifyTestInst final
: public InstructionBase<SILInstructionKind::SpecifyTestInst,
NonValueInstruction>,
private llvm::TrailingObjects<SpecifyTestInst, char> {
friend TrailingObjects;
friend SILBuilder;
llvm::StringMap<SILValue> values;
unsigned ArgumentsSpecificationLength;
SpecifyTestInst(SILDebugLocation Loc, unsigned ArgumentsSpecificationLength)
: InstructionBase(Loc),
ArgumentsSpecificationLength(ArgumentsSpecificationLength) {}
static SpecifyTestInst *
create(SILDebugLocation Loc, StringRef argumentsSpecification, SILModule &M);
public:
void setValueForName(StringRef name, SILValue value) { values[name] = value; }
llvm::StringMap<SILValue> const &getValues() { return values; }
StringRef getArgumentsSpecification() const {
return StringRef(getTrailingObjects<char>(), ArgumentsSpecificationLength);
}
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
};
/// An abstract class representing a load from some kind of reference storage.
template <SILInstructionKind K>
class LoadReferenceInstBase
: public UnaryInstructionBase<K, SingleValueInstruction> {
TEMPLATE_USE_SHARED_UINT8(SingleValueInstruction);
static SILType getResultType(SILType operandTy) {
assert(operandTy.isAddress() && "loading from non-address operand?");
auto refType = cast<ReferenceStorageType>(operandTy.getASTType());
return SILType::getPrimitiveObjectType(refType.getReferentType());
}
protected:
LoadReferenceInstBase(SILDebugLocation loc, SILValue lvalue, IsTake_t isTake)
: UnaryInstructionBase<K, SingleValueInstruction>(loc, lvalue,
getResultType(lvalue->getType())) {
sharedUInt8().LoadReferenceInstBase.isTake = bool(isTake);
}
public:
IsTake_t isTake() const {
return IsTake_t(sharedUInt8().LoadReferenceInstBase.isTake);
}
};
/// An abstract class representing a store to some kind of reference storage.
template <SILInstructionKind K>
class StoreReferenceInstBase : public InstructionBase<K, NonValueInstruction> {
enum { Src, Dest };
FixedOperandList<2> Operands;
TEMPLATE_USE_SHARED_UINT8(NonValueInstruction);
protected:
StoreReferenceInstBase(SILDebugLocation loc, SILValue src, SILValue dest,
IsInitialization_t isInit)
: InstructionBase<K, NonValueInstruction>(loc),
Operands(this, src, dest) {
sharedUInt8().StoreReferenceInstBase.isInitializationOfDest = bool(isInit);
}
public:
SILValue getSrc() const { return Operands[Src].get(); }
SILValue getDest() const { return Operands[Dest].get(); }
IsInitialization_t isInitializationOfDest() const {
return IsInitialization_t(
sharedUInt8().StoreReferenceInstBase.isInitializationOfDest);
}
void setIsInitializationOfDest(IsInitialization_t I) {
sharedUInt8().StoreReferenceInstBase.isInitializationOfDest = (bool)I;
}
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
};
/// Represents a load from a dynamic reference storage memory location.
/// This is required for address-only scenarios; for loadable references,
/// it's better to use a load and a strong_retain_#name.
///
/// \param loc The location of the expression that caused the load.
/// \param lvalue The SILValue representing the address to
/// use for the load.
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
class Load##Name##Inst \
: public LoadReferenceInstBase<SILInstructionKind::Load##Name##Inst> { \
friend SILBuilder; \
Load##Name##Inst(SILDebugLocation loc, SILValue lvalue, IsTake_t isTake) \
: LoadReferenceInstBase(loc, lvalue, isTake) {} \
};
#include "swift/AST/ReferenceStorage.def"
/// Represents a store to a dynamic reference storage memory location.
/// This is only required for address-only scenarios; for loadable
/// references, it's better to use a ref_to_##name and a store.
#define NEVER_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
class Store##Name##Inst \
: public StoreReferenceInstBase<SILInstructionKind::Store##Name##Inst> { \
friend SILBuilder; \
Store##Name##Inst(SILDebugLocation loc, SILValue src, SILValue dest, \
IsInitialization_t isInit) \
: StoreReferenceInstBase(loc, src, dest, isInit) {} \
};
#include "swift/AST/ReferenceStorage.def"
/// CopyAddrInst - Represents a copy from one memory location to another. This
/// is similar to:
/// %1 = load %src
/// store %1 to %dest
/// but a copy instruction must be used for address-only types.
class CopyAddrInst
: public InstructionBase<SILInstructionKind::CopyAddrInst,
NonValueInstruction>,
public CopyLikeInstruction {
friend SILBuilder;
private:
FixedOperandList<2> Operands;
USE_SHARED_UINT8;
CopyAddrInst(SILDebugLocation DebugLoc, SILValue Src, SILValue Dest,
IsTake_t isTakeOfSrc, IsInitialization_t isInitializationOfDest);
public:
SILValue getSrc() const { return Operands[Src].get(); }
SILValue getDest() const { return Operands[Dest].get(); }
void setSrc(SILValue V) { Operands[Src].set(V); }
void setDest(SILValue V) { Operands[Dest].set(V); }
IsTake_t isTakeOfSrc() const {
return IsTake_t(sharedUInt8().CopyAddrInst.isTakeOfSrc);
}
IsInitialization_t isInitializationOfDest() const {
return IsInitialization_t(
sharedUInt8().CopyAddrInst.isInitializationOfDest);
}
void setIsTakeOfSrc(IsTake_t T) {
sharedUInt8().CopyAddrInst.isTakeOfSrc = (bool)T;
}
void setIsInitializationOfDest(IsInitialization_t I) {
sharedUInt8().CopyAddrInst.isInitializationOfDest = (bool)I;
}
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
};
/// ExplicitCopyAddrInst - A copy_addr that should not be optimized and should
/// be viewed
class ExplicitCopyAddrInst
: public InstructionBase<SILInstructionKind::ExplicitCopyAddrInst,
NonValueInstruction>,
public CopyLikeInstruction {
friend SILBuilder;
private:
FixedOperandList<2> Operands;
USE_SHARED_UINT8;
ExplicitCopyAddrInst(SILDebugLocation DebugLoc, SILValue Src, SILValue Dest,
IsTake_t isTakeOfSrc,
IsInitialization_t isInitializationOfDest);
public:
SILValue getSrc() const { return Operands[Src].get(); }
SILValue getDest() const { return Operands[Dest].get(); }
void setSrc(SILValue V) { Operands[Src].set(V); }
void setDest(SILValue V) { Operands[Dest].set(V); }
IsTake_t isTakeOfSrc() const {
return IsTake_t(sharedUInt8().ExplicitCopyAddrInst.isTakeOfSrc);
}
IsInitialization_t isInitializationOfDest() const {
return IsInitialization_t(
sharedUInt8().ExplicitCopyAddrInst.isInitializationOfDest);
}
void setIsTakeOfSrc(IsTake_t T) {
sharedUInt8().ExplicitCopyAddrInst.isTakeOfSrc = (bool)T;
}
void setIsInitializationOfDest(IsInitialization_t I) {
sharedUInt8().ExplicitCopyAddrInst.isInitializationOfDest = (bool)I;
}
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
};
/// "%token = bind_memory %0 : $Builtin.RawPointer, %1 : $Builtin.Word to $T"
///
/// Binds memory at the raw pointer %0 to type $T with enough capacity
/// to hold %1 values.
///
/// %token is an opaque word representing the previously bound types of this
/// memory region, before binding it to a contiguous region of type $T. This
/// token has no purpose unless it is consumed be a rebind_memory instruction.
///
/// Semantics: changes the type information assocated with a memory region. This
/// affects all memory operations that alias with the given region of memory,
/// regardless of their type or address provenance. For optimizations that query
/// side effects, this is equivalent to writing and immediately reading an
/// unknown value to memory at `%0` of `%1` bytes.
class BindMemoryInst final : public InstructionBaseWithTrailingOperands<
SILInstructionKind::BindMemoryInst,
BindMemoryInst, SingleValueInstruction> {
friend SILBuilder;
SILType BoundType;
static BindMemoryInst *create(
SILDebugLocation Loc, SILValue Base, SILValue Index, SILType BoundType,
SILFunction &F);
BindMemoryInst(SILDebugLocation Loc, SILValue Base, SILValue Index,
SILType BoundType, SILType TokenType,
ArrayRef<SILValue> TypeDependentOperands)
: InstructionBaseWithTrailingOperands(Base, Index, TypeDependentOperands,
Loc, TokenType),
BoundType(BoundType) {}
public:
enum { BaseOperIdx, IndexOperIdx, NumFixedOpers };
SILValue getBase() const { return getAllOperands()[BaseOperIdx].get(); }
SILValue getIndex() const { return getAllOperands()[IndexOperIdx].get(); }
SILType getBoundType() const { return BoundType; }
ArrayRef<Operand> getTypeDependentOperands() const {
return getAllOperands().slice(NumFixedOpers);
}
MutableArrayRef<Operand> getTypeDependentOperands() {
return getAllOperands().slice(NumFixedOpers);
}
};
/// "%out_token = rebind_memory
/// %0 : $Builtin.RawPointer, %in_token : $Builtin.Word
///
/// Binds memory at the raw pointer %0 to the types abstractly represented by
/// %in_token.
///
/// %in_token is itself the result of a bind_memory or rebind_memory and
/// represents a previously cached set of bound types.
///
/// %out_token represents the previously bound types of this memory region,
/// before binding it to %in_token.
///
/// This has the same semantics as bind_memory except that the size of memory
/// affected must be derived from `%in_token`.
class RebindMemoryInst final : public SingleValueInstruction {
FixedOperandList<2> Operands;
public:
enum { BaseOperIdx, InTokenOperIdx };
RebindMemoryInst(SILDebugLocation Loc, SILValue Base, SILValue InToken,
SILType TokenType)
: SingleValueInstruction(SILInstructionKind::RebindMemoryInst, Loc,
TokenType),
Operands{this, Base, InToken} {}
public:
SILValue getBase() const { return getAllOperands()[BaseOperIdx].get(); }
SILValue getInToken() const { return getAllOperands()[InTokenOperIdx].get(); }
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
};
/// ConvertFunctionInst - Change the type of a function value without
/// affecting how it will codegen.
class ConvertFunctionInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::ConvertFunctionInst, ConvertFunctionInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
USE_SHARED_UINT8;
ConvertFunctionInst(SILDebugLocation DebugLoc, SILValue Operand,
ArrayRef<SILValue> TypeDependentOperands, SILType Ty,
bool WithoutActuallyEscaping,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionWithTypeDependentOperandsBase(DebugLoc, Operand,
TypeDependentOperands, Ty,
forwardingOwnershipKind) {
sharedUInt8().ConvertFunctionInst.withoutActuallyEscaping =
WithoutActuallyEscaping;
assert((Operand->getType().castTo<SILFunctionType>()->isNoEscape() ==
Ty.castTo<SILFunctionType>()->isNoEscape() ||
Ty.castTo<SILFunctionType>()->getRepresentation() !=
SILFunctionType::Representation::Thick) &&
"Change of escapeness is not ABI compatible");
}
static ConvertFunctionInst *create(
SILDebugLocation DebugLoc, SILValue Operand, SILType Ty, SILModule &Mod,
SILFunction *F,
bool WithoutActuallyEscaping, ValueOwnershipKind forwardingOwnershipKind);
public:
/// Returns `true` if this converts a non-escaping closure into an escaping
/// function type. `True` must be returned whenever the closure operand has an
/// unboxed capture (via @inout_aliasable) *and* the resulting function type
/// is escaping. (This only happens as a result of
/// withoutActuallyEscaping()). If `true` is returned, then the resulting
/// function type must be escaping, but the operand's function type may or may
/// not be @noescape. Note that a non-escaping closure may have unboxed
/// captured even though its SIL function type is "escaping".
bool withoutActuallyEscaping() const {
return sharedUInt8().ConvertFunctionInst.withoutActuallyEscaping;
}
/// Returns `true` if the function conversion is between types with the same
/// argument and return types, as well as all other attributes, after substitution,
/// such as converting `$<A, B> in (A) -> B for <Int, String>` to `(Int) -> String`.
bool onlyConvertsSubstitutions() const;
/// Returns true if the source and destination types only differ by `@Sendable`.
bool onlyConvertsSendable() const;
};
class ThunkInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::ThunkInst, ThunkInst, SingleValueInstruction> {
public:
using Kind = SILThunkKind;
/// The type of thunk we are supposed to produce.
Kind kind;
/// The substitutions being applied to the callee when we generate thunks for
/// it. E.x.: if we generate a partial_apply, this will be the substitution
/// map used to generate the partial_apply.
SubstitutionMap substitutions;
private:
friend SILBuilder;
ThunkInst(SILDebugLocation debugLoc, SILValue operand,
ArrayRef<SILValue> typeDependentOperands, SILType outputType,
Kind kind, SubstitutionMap subs)
: UnaryInstructionWithTypeDependentOperandsBase(
debugLoc, operand, typeDependentOperands, outputType),
kind(kind), substitutions(subs) {}
static ThunkInst *create(SILDebugLocation debugLoc, SILValue operand,
SILModule &mod, SILFunction *func, Kind kind,
SubstitutionMap subs);
public:
Kind getThunkKind() const { return kind; }
SubstitutionMap getSubstitutionMap() const { return substitutions; }
CanSILFunctionType getOrigCalleeType() const {
return getOperand()->getType().castTo<SILFunctionType>();
}
};
/// ConvertEscapeToNoEscapeInst - Change the type of a escaping function value
/// to a trivial function type (@noescape T -> U).
class ConvertEscapeToNoEscapeInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::ConvertEscapeToNoEscapeInst,
ConvertEscapeToNoEscapeInst, SingleValueInstruction> {
friend SILBuilder;
bool lifetimeGuaranteed;
ConvertEscapeToNoEscapeInst(SILDebugLocation DebugLoc, SILValue Operand,
ArrayRef<SILValue> TypeDependentOperands,
SILType Ty,
bool isLifetimeGuaranteed)
: UnaryInstructionWithTypeDependentOperandsBase(
DebugLoc, Operand, TypeDependentOperands, Ty),
lifetimeGuaranteed(isLifetimeGuaranteed) {
assert(!Operand->getType().castTo<SILFunctionType>()->isNoEscape());
assert(Ty.castTo<SILFunctionType>()->isNoEscape());
}
static ConvertEscapeToNoEscapeInst *
create(SILDebugLocation DebugLoc, SILValue Operand, SILType Ty,
SILFunction &F, bool lifetimeGuaranteed);
public:
/// Return true if we have extended the lifetime of the argument of the
/// convert_escape_to_no_escape to be over all uses of the trivial type.
bool isLifetimeGuaranteed() const {
return lifetimeGuaranteed;
}
/// Mark that we have extended the lifetime of the argument of the
/// convert_escape_to_no_escape to be over all uses of the trivial type.
///
/// NOTE: This is a one way operation.
void setLifetimeGuaranteed() { lifetimeGuaranteed = true; }
};
/// UpcastInst - Perform a conversion of a class instance to a supertype.
class UpcastInst final : public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::UpcastInst, UpcastInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
UpcastInst(SILDebugLocation DebugLoc, SILValue Operand,
ArrayRef<SILValue> TypeDependentOperands, SILType Ty,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionWithTypeDependentOperandsBase(DebugLoc, Operand,
TypeDependentOperands, Ty,
forwardingOwnershipKind) {
}
static UpcastInst *create(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty, SILModule &Mod,
ValueOwnershipKind forwardingOwnershipKind);
static UpcastInst *create(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty, SILFunction &F,
ValueOwnershipKind forwardingOwnershipKind);
};
/// AddressToPointerInst - Convert a SIL address to a Builtin.RawPointer value.
class AddressToPointerInst
: public UnaryInstructionBase<SILInstructionKind::AddressToPointerInst,
SingleValueInstruction> {
friend SILBuilder;
USE_SHARED_UINT8;
AddressToPointerInst(SILDebugLocation DebugLoc, SILValue Operand, SILType Ty,
bool needsStackProtection)
: UnaryInstructionBase(DebugLoc, Operand, Ty) {
sharedUInt8().AddressToPointerInst.needsStackProtection = needsStackProtection;
}
public:
bool needsStackProtection() const {
return sharedUInt8().AddressToPointerInst.needsStackProtection;
}
};
/// PointerToAddressInst - Convert a Builtin.RawPointer value to a SIL address.
class PointerToAddressInst
: public UnaryInstructionBase<SILInstructionKind::PointerToAddressInst,
SingleValueInstruction> {
friend SILBuilder;
USE_SHARED_UINT8;
USE_SHARED_UINT32;
PointerToAddressInst(SILDebugLocation DebugLoc, SILValue Operand, SILType Ty,
bool IsStrict, bool IsInvariant,
llvm::MaybeAlign Alignment)
: UnaryInstructionBase(DebugLoc, Operand, Ty) {
sharedUInt8().PointerToAddressInst.isStrict = IsStrict;
sharedUInt8().PointerToAddressInst.isInvariant = IsInvariant;
setAlignment(Alignment);
}
public:
/// Whether the returned address adheres to strict aliasing.
/// If true, then the type of each memory access dependent on
/// this address must be consistent with the memory's bound type.
bool isStrict() const {
return sharedUInt8().PointerToAddressInst.isStrict;
}
/// Whether the returned address is invariant.
/// If true, then loading from an address derived from this pointer always
/// produces the same value.
bool isInvariant() const {
return sharedUInt8().PointerToAddressInst.isInvariant;
}
/// The byte alignment of the address. Since the alignment of types isn't
/// known until IRGen (TypeInfo::getBestKnownAlignment), in SIL an unknown
/// alignment indicates the natural in-memory alignment of the element type.
llvm::MaybeAlign alignment() const {
return llvm::decodeMaybeAlign(sharedUInt32().PointerToAddressInst.alignment);
}
void setAlignment(llvm::MaybeAlign Alignment) {
unsigned encodedAlignment = llvm::encode(Alignment);
sharedUInt32().PointerToAddressInst.alignment = encodedAlignment;
assert(sharedUInt32().PointerToAddressInst.alignment == encodedAlignment
&& "pointer_to_address alignment overflow");
}
};
/// Convert a heap object reference to a different type without any runtime
/// checks.
class UncheckedRefCastInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::UncheckedRefCastInst, UncheckedRefCastInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
UncheckedRefCastInst(SILDebugLocation DebugLoc, SILValue Operand,
ArrayRef<SILValue> TypeDependentOperands, SILType Ty,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionWithTypeDependentOperandsBase(DebugLoc, Operand,
TypeDependentOperands, Ty,
forwardingOwnershipKind) {
}
static UncheckedRefCastInst *
create(SILDebugLocation DebugLoc, SILValue Operand, SILType Ty,
SILFunction &F, ValueOwnershipKind forwardingOwnershipKind);
static UncheckedRefCastInst *
create(SILDebugLocation DebugLoc, SILValue Operand, SILType Ty,
SILModule &Mod, ValueOwnershipKind forwardingOwnershipKind);
};
/// Convert a value's binary representation to a trivial type of the same size.
class UncheckedTrivialBitCastInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::UncheckedTrivialBitCastInst,
UncheckedTrivialBitCastInst, SingleValueInstruction> {
friend SILBuilder;
UncheckedTrivialBitCastInst(SILDebugLocation DebugLoc, SILValue Operand,
ArrayRef<SILValue> TypeDependentOperands,
SILType Ty)
: UnaryInstructionWithTypeDependentOperandsBase(DebugLoc, Operand,
TypeDependentOperands, Ty) {}
static UncheckedTrivialBitCastInst *
create(SILDebugLocation DebugLoc, SILValue Operand, SILType Ty,
SILFunction &F);
};
/// Bitwise copy a value into another value of the same size or smaller.
class UncheckedBitwiseCastInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::UncheckedBitwiseCastInst,
UncheckedBitwiseCastInst, SingleValueInstruction> {
friend SILBuilder;
UncheckedBitwiseCastInst(SILDebugLocation DebugLoc, SILValue Operand,
ArrayRef<SILValue> TypeDependentOperands,
SILType Ty)
: UnaryInstructionWithTypeDependentOperandsBase(DebugLoc, Operand,
TypeDependentOperands, Ty) {}
static UncheckedBitwiseCastInst *
create(SILDebugLocation DebugLoc, SILValue Operand, SILType Ty,
SILFunction &F);
};
/// Bitwise copy a value into another value of the same size.
class UncheckedValueCastInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::UncheckedValueCastInst, UncheckedValueCastInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
UncheckedValueCastInst(SILDebugLocation DebugLoc, SILValue Operand,
ArrayRef<SILValue> TypeDependentOperands, SILType Ty,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionWithTypeDependentOperandsBase(DebugLoc, Operand,
TypeDependentOperands, Ty,
forwardingOwnershipKind) {
}
static UncheckedValueCastInst *
create(SILDebugLocation DebugLoc, SILValue Operand, SILType Ty,
SILFunction &F, ValueOwnershipKind forwardingOwnershipKind);
};
/// Build a Builtin.BridgeObject from a heap object reference by bitwise-or-ing
/// in bits from a word.
class RefToBridgeObjectInst
: public InstructionBase<SILInstructionKind::RefToBridgeObjectInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
public:
enum { ConvertedOperand = 0, MaskOperand = 1 };
private:
FixedOperandList<2> Operands;
RefToBridgeObjectInst(SILDebugLocation DebugLoc, SILValue ConvertedValue,
SILValue MaskValue, SILType BridgeObjectTy,
ValueOwnershipKind forwardingOwnershipKind)
: InstructionBase(DebugLoc, BridgeObjectTy, forwardingOwnershipKind),
Operands(this, ConvertedValue, MaskValue) {}
public:
SILValue getBitsOperand() const { return Operands[1].get(); }
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
};
/// Extract the heap object reference from a BridgeObject.
class ClassifyBridgeObjectInst
: public UnaryInstructionBase<SILInstructionKind::ClassifyBridgeObjectInst,
SingleValueInstruction>
{
friend SILBuilder;
ClassifyBridgeObjectInst(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty)
: UnaryInstructionBase(DebugLoc, Operand, Ty) {}
};
/// Extract the heap object reference from a BridgeObject.
class BridgeObjectToRefInst
: public UnaryInstructionBase<SILInstructionKind::BridgeObjectToRefInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
BridgeObjectToRefInst(SILDebugLocation DebugLoc, SILValue Operand, SILType Ty,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionBase(DebugLoc, Operand, Ty, forwardingOwnershipKind) {}
};
/// Sets the BridgeObject to a tagged pointer representation holding its
/// operands
class ValueToBridgeObjectInst
: public UnaryInstructionBase<SILInstructionKind::ValueToBridgeObjectInst,
SingleValueInstruction> {
friend SILBuilder;
ValueToBridgeObjectInst(SILDebugLocation DebugLoc, SILValue Operand,
SILType BridgeObjectTy)
: UnaryInstructionBase(DebugLoc, Operand, BridgeObjectTy) {}
};
/// Retrieve the bit pattern of a BridgeObject.
class BridgeObjectToWordInst
: public UnaryInstructionBase<SILInstructionKind::BridgeObjectToWordInst,
SingleValueInstruction> {
friend SILBuilder;
BridgeObjectToWordInst(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty)
: UnaryInstructionBase(DebugLoc, Operand, Ty) {}
};
/// RefToRawPointer - Convert a reference type to a Builtin.RawPointer.
class RefToRawPointerInst
: public UnaryInstructionBase<SILInstructionKind::RefToRawPointerInst,
SingleValueInstruction> {
friend SILBuilder;
RefToRawPointerInst(SILDebugLocation DebugLoc, SILValue Operand, SILType Ty)
: UnaryInstructionBase(DebugLoc, Operand, Ty) {}
};
/// RawPointerToRefInst - Convert a Builtin.RawPointer to a reference type.
class RawPointerToRefInst
: public UnaryInstructionBase<SILInstructionKind::RawPointerToRefInst,
SingleValueInstruction> {
friend SILBuilder;
RawPointerToRefInst(SILDebugLocation DebugLoc, SILValue Operand, SILType Ty)
: UnaryInstructionBase(DebugLoc, Operand, Ty) {}
};
/// Transparent reference storage to underlying reference type conversion.
/// This does nothing at runtime; it just changes the formal type.
#define LOADABLE_REF_STORAGE(Name, ...) \
class RefTo##Name##Inst \
: public UnaryInstructionBase<SILInstructionKind::RefTo##Name##Inst, \
SingleValueInstruction> { \
friend SILBuilder; \
RefTo##Name##Inst(SILDebugLocation DebugLoc, SILValue Operand, SILType Ty) \
: UnaryInstructionBase(DebugLoc, Operand, Ty) {} \
}; \
class Name##ToRefInst \
: public UnaryInstructionBase<SILInstructionKind::Name##ToRefInst, \
SingleValueInstruction> { \
friend SILBuilder; \
Name##ToRefInst(SILDebugLocation DebugLoc, SILValue Operand, SILType Ty) \
: UnaryInstructionBase(DebugLoc, Operand, Ty) {} \
};
#include "swift/AST/ReferenceStorage.def"
/// ThinToThickFunctionInst - Given a thin function reference, adds a null
/// context to convert the value to a thick function type.
class ThinToThickFunctionInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::ThinToThickFunctionInst, ThinToThickFunctionInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
ThinToThickFunctionInst(SILDebugLocation DebugLoc, SILValue Operand,
ArrayRef<SILValue> TypeDependentOperands, SILType Ty,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionWithTypeDependentOperandsBase(DebugLoc, Operand,
TypeDependentOperands, Ty,
forwardingOwnershipKind) {
}
static ThinToThickFunctionInst *
create(SILDebugLocation DebugLoc, SILValue Operand, SILType Ty,
SILModule &Mod, SILFunction *F,
ValueOwnershipKind forwardingOwnershipKind);
public:
/// Return the callee of the thin_to_thick_function.
///
/// This is not technically necessary, but from a symmetry perspective it
/// makes sense to follow the lead of partial_apply which also creates
/// closures.
SILValue getCallee() const { return getOperand(); }
};
/// Given a thick metatype value, produces an Objective-C metatype
/// value.
class ThickToObjCMetatypeInst
: public UnaryInstructionBase<SILInstructionKind::ThickToObjCMetatypeInst,
SingleValueInstruction> {
friend SILBuilder;
ThickToObjCMetatypeInst(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty)
: UnaryInstructionBase(DebugLoc, Operand, Ty) {}
};
/// Given an Objective-C metatype value, produces a thick metatype
/// value.
class ObjCToThickMetatypeInst
: public UnaryInstructionBase<SILInstructionKind::ObjCToThickMetatypeInst,
SingleValueInstruction> {
friend SILBuilder;
ObjCToThickMetatypeInst(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty)
: UnaryInstructionBase(DebugLoc, Operand, Ty) {}
};
/// Given an Objective-C metatype value, convert it to an AnyObject value.
class ObjCMetatypeToObjectInst
: public UnaryInstructionBase<SILInstructionKind::ObjCMetatypeToObjectInst,
SingleValueInstruction> {
friend SILBuilder;
ObjCMetatypeToObjectInst(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty)
: UnaryInstructionBase(DebugLoc, Operand, Ty) {}
};
/// Given an Objective-C existential metatype value, convert it to an AnyObject
/// value.
class ObjCExistentialMetatypeToObjectInst
: public UnaryInstructionBase<
SILInstructionKind::ObjCExistentialMetatypeToObjectInst,
SingleValueInstruction> {
friend SILBuilder;
ObjCExistentialMetatypeToObjectInst(SILDebugLocation DebugLoc,
SILValue Operand, SILType Ty)
: UnaryInstructionBase(DebugLoc, Operand, Ty) {}
};
/// Return the Objective-C Protocol class instance for a protocol.
class ObjCProtocolInst
: public InstructionBase<SILInstructionKind::ObjCProtocolInst,
SingleValueInstruction> {
friend SILBuilder;
ProtocolDecl *Proto;
ObjCProtocolInst(SILDebugLocation DebugLoc, ProtocolDecl *Proto, SILType Ty)
: InstructionBase(DebugLoc, Ty),
Proto(Proto) {}
public:
ProtocolDecl *getProtocol() const { return Proto; }
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
};
/// Whether isolated conformances are allowed or not in a checked cast
/// instruction.
enum class CastingIsolatedConformances: uint8_t {
/// Allow isolated conformances so long as we are running within their
/// executor.
Allow,
/// Prohibit isolated conformances regardless of what executor is currently
/// active.
Prohibit
};
/// Perform an unconditional checked cast that aborts if the cast fails.
class UnconditionalCheckedCastInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::UnconditionalCheckedCastInst,
UnconditionalCheckedCastInst,
OwnershipForwardingSingleValueInstruction> {
CanType DestFormalTy;
CastingIsolatedConformances IsolatedConformances;
friend SILBuilder;
UnconditionalCheckedCastInst(SILDebugLocation DebugLoc,
CastingIsolatedConformances isolatedConformances,
SILValue Operand,
ArrayRef<SILValue> TypeDependentOperands,
SILType DestLoweredTy, CanType DestFormalTy,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionWithTypeDependentOperandsBase(
DebugLoc, Operand, TypeDependentOperands, DestLoweredTy,
forwardingOwnershipKind),
DestFormalTy(DestFormalTy),
IsolatedConformances(isolatedConformances) {}
static UnconditionalCheckedCastInst *
create(SILDebugLocation DebugLoc, CastingIsolatedConformances isolatedConformances,
SILValue Operand, SILType DestLoweredTy,
CanType DestFormalTy, SILFunction &F,
ValueOwnershipKind forwardingOwnershipKind);
public:
SILType getSourceLoweredType() const { return getOperand()->getType(); }
CanType getSourceFormalType() const { return getSourceLoweredType().getASTType(); }
CanType getTargetFormalType() const { return DestFormalTy; }
SILType getTargetLoweredType() const { return getType(); }
CastingIsolatedConformances getIsolatedConformances() const {
return IsolatedConformances;
}
};
/// StructInst - Represents a constructed loadable struct.
class StructInst final : public InstructionBaseWithTrailingOperands<
SILInstructionKind::StructInst, StructInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
/// Because of the storage requirements of StructInst, object
/// creation goes through 'create()'.
StructInst(SILDebugLocation DebugLoc, SILType Ty, ArrayRef<SILValue> Elements,
ValueOwnershipKind forwardingOwnershipKind);
/// Construct a StructInst.
static StructInst *create(SILDebugLocation DebugLoc, SILType Ty,
ArrayRef<SILValue> Elements, SILModule &M,
ValueOwnershipKind forwardingOwnershipKind);
public:
/// The elements referenced by this StructInst.
MutableArrayRef<Operand> getElementOperands() {
return getAllOperands();
}
/// The elements referenced by this StructInst.
OperandValueArrayRef getElements() const {
return OperandValueArrayRef(getAllOperands());
}
SILValue getFieldValue(const VarDecl *V) const {
return getOperandForField(V)->get();
}
/// Return the Operand associated with the given VarDecl.
const Operand *getOperandForField(const VarDecl *V) const {
return const_cast<StructInst*>(this)->getOperandForField(V);
}
Operand *getOperandForField(const VarDecl *V) {
// If V is null or is computed, there is no operand associated with it.
assert(V && V->hasStorage() &&
"getOperandForField only works with stored fields");
StructDecl *S = getStructDecl();
auto Props = S->getStoredProperties();
for (unsigned I = 0, E = Props.size(); I < E; ++I)
if (V == Props[I])
return &getAllOperands()[I];
// Did not find a matching VarDecl, return nullptr.
return nullptr;
}
/// Search the operands of this struct for a unique non-trivial field. If we
/// find it, return it. Otherwise return SILValue().
SILValue getUniqueNonTrivialFieldValue() {
auto *F = getFunction();
ArrayRef<Operand> Ops = getAllOperands();
std::optional<unsigned> Index;
// For each operand...
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
// If the operand is not trivial...
if (!Ops[i].get()->getType().isTrivial(*F)) {
// And we have not found an Index yet, set index to i and continue.
if (!Index.has_value()) {
Index = i;
continue;
}
// Otherwise, we have two values that are non-trivial. Bail.
return SILValue();
}
}
// If we did not find an index, return an empty SILValue.
if (!Index.has_value())
return SILValue();
// Otherwise, return the value associated with index.
return Ops[Index.value()].get();
}
StructDecl *getStructDecl() const {
auto s = getType().getStructOrBoundGenericStruct();
assert(s && "A struct should always have a StructDecl associated with it");
return s;
}
};
/// RefCountingInst - An abstract class of instructions which
/// manipulate the reference count of their object operand.
class RefCountingInst : public NonValueInstruction {
USE_SHARED_UINT8;
public:
/// The atomicity of a reference counting operation to be used.
enum class Atomicity : bool {
/// Atomic reference counting operations should be used.
Atomic,
/// Non-atomic reference counting operations can be used.
NonAtomic,
};
protected:
RefCountingInst(SILInstructionKind Kind, SILDebugLocation DebugLoc)
: NonValueInstruction(Kind, DebugLoc) {
sharedUInt8().RefCountingInst.atomicity = bool(Atomicity::Atomic);
}
public:
void setAtomicity(Atomicity flag) {
sharedUInt8().RefCountingInst.atomicity = bool(flag);
}
void setNonAtomic() {
sharedUInt8().RefCountingInst.atomicity = bool(Atomicity::NonAtomic);
}
void setAtomic() {
sharedUInt8().RefCountingInst.atomicity = bool(Atomicity::Atomic);
}
Atomicity getAtomicity() const {
return Atomicity(sharedUInt8().RefCountingInst.atomicity);
}
bool isNonAtomic() const { return getAtomicity() == Atomicity::NonAtomic; }
bool isAtomic() const { return getAtomicity() == Atomicity::Atomic; }
DEFINE_ABSTRACT_NON_VALUE_INST_BOILERPLATE(RefCountingInst)
};
/// RetainValueInst - Copies a loadable value.
class RetainValueInst
: public UnaryInstructionBase<SILInstructionKind::RetainValueInst,
RefCountingInst> {
friend SILBuilder;
RetainValueInst(SILDebugLocation DebugLoc, SILValue operand,
Atomicity atomicity)
: UnaryInstructionBase(DebugLoc, operand) {
setAtomicity(atomicity);
}
};
/// RetainValueAddrInst - Copies a loadable value by address.
class RetainValueAddrInst
: public UnaryInstructionBase<SILInstructionKind::RetainValueAddrInst,
RefCountingInst> {
friend SILBuilder;
RetainValueAddrInst(SILDebugLocation DebugLoc, SILValue operand,
Atomicity atomicity)
: UnaryInstructionBase(DebugLoc, operand) {
setAtomicity(atomicity);
}
};
/// ReleaseValueInst - Destroys a loadable value.
class ReleaseValueInst
: public UnaryInstructionBase<SILInstructionKind::ReleaseValueInst,
RefCountingInst> {
friend SILBuilder;
ReleaseValueInst(SILDebugLocation DebugLoc, SILValue operand,
Atomicity atomicity)
: UnaryInstructionBase(DebugLoc, operand) {
setAtomicity(atomicity);
}
};
/// ReleaseValueInst - Destroys a loadable value by address.
class ReleaseValueAddrInst
: public UnaryInstructionBase<SILInstructionKind::ReleaseValueAddrInst,
RefCountingInst> {
friend SILBuilder;
ReleaseValueAddrInst(SILDebugLocation DebugLoc, SILValue operand,
Atomicity atomicity)
: UnaryInstructionBase(DebugLoc, operand) {
setAtomicity(atomicity);
}
};
/// Copies a loadable value in an unmanaged, unbalanced way. Only meant for use
/// in ownership qualified SIL. Please do not use this EVER unless you are
/// implementing a part of the stdlib called Unmanaged.
class UnmanagedRetainValueInst
: public UnaryInstructionBase<SILInstructionKind::UnmanagedRetainValueInst,
RefCountingInst> {
friend SILBuilder;
UnmanagedRetainValueInst(SILDebugLocation DebugLoc, SILValue operand,
Atomicity atomicity)
: UnaryInstructionBase(DebugLoc, operand) {
setAtomicity(atomicity);
}
};
/// Destroys a loadable value in an unmanaged, unbalanced way. Only meant for
/// use in ownership qualified SIL. Please do not use this EVER unless you are
/// implementing a part of the stdlib called Unmanaged.
class UnmanagedReleaseValueInst
: public UnaryInstructionBase<SILInstructionKind::UnmanagedReleaseValueInst,
RefCountingInst> {
friend SILBuilder;
UnmanagedReleaseValueInst(SILDebugLocation DebugLoc, SILValue operand,
Atomicity atomicity)
: UnaryInstructionBase(DebugLoc, operand) {
setAtomicity(atomicity);
}
};
/// Transfers ownership of a loadable value to the current autorelease
/// pool. Unmanaged, so it is ignored from an ownership balancing perspective.
class UnmanagedAutoreleaseValueInst
: public UnaryInstructionBase<SILInstructionKind::UnmanagedAutoreleaseValueInst,
RefCountingInst> {
friend SILBuilder;
UnmanagedAutoreleaseValueInst(SILDebugLocation DebugLoc, SILValue operand,
Atomicity atomicity)
: UnaryInstructionBase(DebugLoc, operand) {
setAtomicity(atomicity);
}
};
/// Transfers ownership of a loadable value to the current autorelease pool.
class AutoreleaseValueInst
: public UnaryInstructionBase<SILInstructionKind::AutoreleaseValueInst,
RefCountingInst> {
friend SILBuilder;
AutoreleaseValueInst(SILDebugLocation DebugLoc, SILValue operand,
Atomicity atomicity)
: UnaryInstructionBase(DebugLoc, operand) {
setAtomicity(atomicity);
}
};
/// BeginDeallocRefInst - Sets the operand in deallocating state.
///
/// This is the same operation what's done by a strong_release immediately
/// before it calls the deallocator of the object.
class BeginDeallocRefInst
: public InstructionBase<SILInstructionKind::BeginDeallocRefInst,
SingleValueInstruction> {
friend SILBuilder;
FixedOperandList<2> Operands;
BeginDeallocRefInst(SILDebugLocation DebugLoc, SILValue reference, SILValue allocation)
: InstructionBase(DebugLoc, reference->getType()),
Operands(this, reference, allocation) {}
public:
SILValue getReference() const { return Operands[0].get(); }
AllocRefInstBase *getAllocation() const {
return cast<AllocRefInstBase>(Operands[1].get());
}
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
};
/// EndInitLetRefInst - Marks the end of a class initialization.
///
/// After this instruction all let-fields of the initialized class can be
/// treated as immutable.
class EndInitLetRefInst
: public UnaryInstructionBase<SILInstructionKind::EndInitLetRefInst,
SingleValueInstruction> {
friend SILBuilder;
EndInitLetRefInst(SILDebugLocation DebugLoc, SILValue operand)
: UnaryInstructionBase(DebugLoc, operand, operand->getType()) {}
};
/// ObjectInst - Represents a object value type.
///
/// This instruction can only appear at the end of a global variable's
/// static initializer list.
class ObjectInst final : public InstructionBaseWithTrailingOperands<
SILInstructionKind::ObjectInst, ObjectInst,
SingleValueInstruction> {
friend SILBuilder;
unsigned numBaseElements;
/// Because of the storage requirements of ObjectInst, object
/// creation goes through 'create()'.
ObjectInst(SILDebugLocation DebugLoc, SILType Ty, ArrayRef<SILValue> Elements,
unsigned NumBaseElements)
: InstructionBaseWithTrailingOperands(Elements, DebugLoc, Ty),
numBaseElements(NumBaseElements) {}
/// Construct an ObjectInst.
static ObjectInst *create(SILDebugLocation DebugLoc, SILType Ty,
ArrayRef<SILValue> Elements,
unsigned NumBaseElements, SILModule &M);
public:
unsigned getNumBaseElements() const { return numBaseElements; }
/// All elements referenced by this ObjectInst.
MutableArrayRef<Operand> getElementOperands() {
return getAllOperands();
}
/// All elements referenced by this ObjectInst.
OperandValueArrayRef getAllElements() const {
return OperandValueArrayRef(getAllOperands());
}
/// The elements which initialize the stored properties of the object itself.
OperandValueArrayRef getBaseElements() const {
return OperandValueArrayRef(getAllOperands().slice(0, numBaseElements));
}
/// The elements which initialize the tail allocated elements.
OperandValueArrayRef getTailElements() const {
return OperandValueArrayRef(getAllOperands().slice(numBaseElements));
}
};
/// VectorInst - Represents a vector value type.
///
/// This instruction can only appear at the end of a global variable's
/// static initializer list.
class VectorInst final : public InstructionBaseWithTrailingOperands<
SILInstructionKind::VectorInst, VectorInst,
SingleValueInstruction> {
friend SILBuilder;
VectorInst(SILDebugLocation DebugLoc, ArrayRef<SILValue> Elements)
: InstructionBaseWithTrailingOperands(Elements, DebugLoc,
Elements[0]->getType()) {}
static VectorInst *create(SILDebugLocation DebugLoc,
ArrayRef<SILValue> Elements,
SILModule &M);
public:
OperandValueArrayRef getElements() const {
return OperandValueArrayRef(getAllOperands());
}
};
/// TupleInst - Represents a constructed loadable tuple.
class TupleInst final : public InstructionBaseWithTrailingOperands<
SILInstructionKind::TupleInst, TupleInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
/// Because of the storage requirements of TupleInst, object
/// creation goes through 'create()'.
TupleInst(SILDebugLocation DebugLoc, SILType Ty, ArrayRef<SILValue> Elems,
ValueOwnershipKind forwardingOwnershipKind)
: InstructionBaseWithTrailingOperands(Elems, DebugLoc, Ty,
forwardingOwnershipKind) {}
/// Construct a TupleInst.
static TupleInst *create(SILDebugLocation DebugLoc, SILType Ty,
ArrayRef<SILValue> Elements, SILModule &M,
ValueOwnershipKind forwardingOwnershipKind);
public:
/// The elements referenced by this TupleInst.
MutableArrayRef<Operand> getElementOperands() {
return getAllOperands();
}
/// The elements referenced by this TupleInst.
OperandValueArrayRef getElements() const {
return OperandValueArrayRef(getAllOperands());
}
/// Return the i'th value referenced by this TupleInst.
SILValue getElement(unsigned i) const {
return getElements()[i];
}
unsigned getElementIndex(Operand *operand) {
assert(operand->getUser() == this);
return operand->getOperandNumber();
}
TupleType *getTupleType() const {
return getType().castTo<TupleType>();
}
/// Search the operands of this tuple for a unique non-trivial elt. If we find
/// it, return it. Otherwise return SILValue().
SILValue getUniqueNonTrivialElt() {
auto *F = getFunction();
ArrayRef<Operand> Ops = getAllOperands();
std::optional<unsigned> Index;
// For each operand...
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
// If the operand is not trivial...
if (!Ops[i].get()->getType().isTrivial(*F)) {
// And we have not found an Index yet, set index to i and continue.
if (!Index.has_value()) {
Index = i;
continue;
}
// Otherwise, we have two values that are non-trivial. Bail.
return SILValue();
}
}
// If we did not find an index, return an empty SILValue.
if (!Index.has_value())
return SILValue();
// Otherwise, return the value associated with index.
return Ops[Index.value()].get();
}
};
/// TupleAddrConstructorInst - a constructor for address tuples. Can take
/// objects and addresses. Intended only to be used with diagnostics and be
/// lowered after diagnostics run. Once we have opaque values this will not be
/// necessary.
///
/// tuple_addr_constructor [init] dest with (operands)
///
/// This always consumes its operands but will either init or assign into dest.
class TupleAddrConstructorInst final
: public InstructionBaseWithTrailingOperands<
SILInstructionKind::TupleAddrConstructorInst,
TupleAddrConstructorInst, NonValueInstruction> {
friend SILBuilder;
USE_SHARED_UINT8;
TupleAddrConstructorInst(SILDebugLocation DebugLoc, ArrayRef<SILValue> Elts,
IsInitialization_t IsInitOfDest)
: InstructionBaseWithTrailingOperands(Elts, DebugLoc) {
sharedUInt8().TupleAddrConstructorInst.isInitializationOfDest =
bool(IsInitOfDest);
}
static TupleAddrConstructorInst *create(SILDebugLocation DebugLoc,
SILValue DestAddr,
ArrayRef<SILValue> Elements,
IsInitialization_t IsInitOfDest,
SILModule &Mod);
public:
enum {
Dest = 0,
};
Operand &getDestOperand() { return getAllOperands().front(); }
const Operand &getDestOperand() const { return getAllOperands().front(); }
SILValue getDest() const { return getDestOperand().get(); }
/// The elements referenced by this TupleInst.
MutableArrayRef<Operand> getElementOperands() {
return getAllOperands().drop_front();
}
/// The elements referenced by this TupleInst.
OperandValueArrayRef getElements() const {
return OperandValueArrayRef(getAllOperands().drop_front());
}
/// Return the i'th value referenced by this TupleInst.
SILValue getElement(unsigned i) const { return getElements()[i]; }
unsigned getElementIndex(Operand *operand) {
assert(operand->getUser() == this);
assert(operand != &getDestOperand() && "Cannot pass in the destination");
return operand->getOperandNumber() + 1;
}
unsigned getNumElements() const { return getTupleType()->getNumElements(); }
TupleType *getTupleType() const {
// We use getASTType() since we want to look through a wrapped noncopyable
// type to get to the underlying tuple type.
return getDest()->getType().getASTType()->castTo<TupleType>();
}
IsInitialization_t isInitializationOfDest() const {
return IsInitialization_t(
sharedUInt8().TupleAddrConstructorInst.isInitializationOfDest);
}
void setIsInitializationOfDest(IsInitialization_t I) {
sharedUInt8().TupleAddrConstructorInst.isInitializationOfDest = (bool)I;
}
};
/// Represents a loadable enum constructed from one of its
/// elements.
class EnumInst
: public InstructionBase<SILInstructionKind::EnumInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
enum : unsigned { InvalidCaseIndex = ~unsigned(0) };
std::optional<FixedOperandList<1>> OptionalOperand;
EnumElementDecl *Element;
USE_SHARED_UINT32;
EnumInst(SILDebugLocation DebugLoc, SILValue Operand,
EnumElementDecl *Element, SILType ResultTy,
ValueOwnershipKind forwardingOwnershipKind)
: InstructionBase(DebugLoc, ResultTy, forwardingOwnershipKind),
Element(Element) {
sharedUInt32().EnumInst.caseIndex = InvalidCaseIndex;
if (Operand) {
OptionalOperand.emplace(this, Operand);
}
}
public:
EnumElementDecl *getElement() const { return Element; }
unsigned getCaseIndex() {
unsigned idx = sharedUInt32().EnumInst.caseIndex;
if (idx != InvalidCaseIndex)
return idx;
unsigned index = getCachedCaseIndex(getElement());
sharedUInt32().EnumInst.caseIndex = index;
return index;
}
bool hasOperand() const { return OptionalOperand.has_value(); }
SILValue getOperand() const { return OptionalOperand->asValueArray()[0]; }
Operand &getOperandRef() { return OptionalOperand->asArray()[0]; }
const Operand &getOperandRef() const { return OptionalOperand->asArray()[0]; }
ArrayRef<Operand> getAllOperands() const {
return OptionalOperand ? OptionalOperand->asArray() : ArrayRef<Operand>{};
}
MutableArrayRef<Operand> getAllOperands() {
return OptionalOperand
? OptionalOperand->asArray() : MutableArrayRef<Operand>{};
}
};
/// Unsafely project the data for an enum case out of an enum without checking
/// the tag.
class UncheckedEnumDataInst
: public UnaryInstructionBase<SILInstructionKind::UncheckedEnumDataInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
enum : unsigned { InvalidCaseIndex = ~unsigned(0) };
EnumElementDecl *Element;
USE_SHARED_UINT32;
UncheckedEnumDataInst(SILDebugLocation DebugLoc, SILValue Operand,
EnumElementDecl *Element, SILType ResultTy,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionBase(DebugLoc, Operand, ResultTy,
forwardingOwnershipKind),
Element(Element) {
sharedUInt32().UncheckedEnumDataInst.caseIndex = InvalidCaseIndex;
}
public:
EnumElementDecl *getElement() const { return Element; }
unsigned getCaseIndex() {
unsigned idx = sharedUInt32().UncheckedEnumDataInst.caseIndex;
if (idx != InvalidCaseIndex)
return idx;
unsigned index = getCachedCaseIndex(getElement());
sharedUInt32().UncheckedEnumDataInst.caseIndex = index;
return index;
}
EnumDecl *getEnumDecl() const {
auto *E = getOperand()->getType().getEnumOrBoundGenericEnum();
assert(E && "Operand of unchecked_enum_data must be of enum type");
return E;
}
unsigned getElementNo() const {
unsigned i = 0;
for (EnumElementDecl *E : getEnumDecl()->getAllElements()) {
if (E == Element)
return i;
++i;
}
llvm_unreachable("An unchecked_enum_data's enumdecl should have at least "
"on element, the element that is being extracted");
}
};
/// Projects the address of the data for a case inside an uninitialized enum in
/// order to initialize the payload for that case.
class InitEnumDataAddrInst
: public UnaryInstructionBase<SILInstructionKind::InitEnumDataAddrInst,
SingleValueInstruction>
{
friend SILBuilder;
enum : unsigned { InvalidCaseIndex = ~unsigned(0) };
EnumElementDecl *Element;
USE_SHARED_UINT32;
InitEnumDataAddrInst(SILDebugLocation DebugLoc, SILValue Operand,
EnumElementDecl *Element, SILType ResultTy)
: UnaryInstructionBase(DebugLoc, Operand, ResultTy), Element(Element) {
sharedUInt32().InitEnumDataAddrInst.caseIndex = InvalidCaseIndex;
}
public:
EnumElementDecl *getElement() const { return Element; }
unsigned getCaseIndex() {
unsigned idx = sharedUInt32().InitEnumDataAddrInst.caseIndex;
if (idx != InvalidCaseIndex)
return idx;
unsigned index = getCachedCaseIndex(getElement());
sharedUInt32().InitEnumDataAddrInst.caseIndex = index;
return index;
}
};
/// InjectEnumAddrInst - Tags an enum as containing a case. The data for
/// that case, if any, must have been written into the enum first.
class InjectEnumAddrInst
: public UnaryInstructionBase<SILInstructionKind::InjectEnumAddrInst,
NonValueInstruction>
{
friend SILBuilder;
enum : unsigned { InvalidCaseIndex = ~unsigned(0) };
EnumElementDecl *Element;
USE_SHARED_UINT32;
InjectEnumAddrInst(SILDebugLocation DebugLoc, SILValue Operand,
EnumElementDecl *Element)
: UnaryInstructionBase(DebugLoc, Operand), Element(Element) {
sharedUInt32().InjectEnumAddrInst.caseIndex = InvalidCaseIndex;
}
public:
EnumElementDecl *getElement() const { return Element; }
unsigned getCaseIndex() {
unsigned idx = sharedUInt32().InjectEnumAddrInst.caseIndex;
if (idx != InvalidCaseIndex)
return idx;
unsigned index = getCachedCaseIndex(getElement());
sharedUInt32().InjectEnumAddrInst.caseIndex = index;
return index;
}
};
/// Project an enum's payload data without checking the case of the enum or
/// moving it in memory.
///
/// For some classes of enum, this is a destructive operation that invalidates
/// the enum, particularly in cases where the layout algorithm can potentially
/// use the common spare bits out of the payloads of a multi-payload enum
/// to store the tag without allocating additional space. The `isDestructive`
/// static method returns true for enums where this is potentially the case.
class UncheckedTakeEnumDataAddrInst
: public UnaryInstructionBase<SILInstructionKind::UncheckedTakeEnumDataAddrInst,
SingleValueInstruction>
{
friend SILBuilder;
enum : unsigned { InvalidCaseIndex = ~unsigned(0) };
EnumElementDecl *Element;
USE_SHARED_UINT32;
UncheckedTakeEnumDataAddrInst(SILDebugLocation DebugLoc, SILValue Operand,
EnumElementDecl *Element, SILType ResultTy)
: UnaryInstructionBase(DebugLoc, Operand, ResultTy), Element(Element) {
sharedUInt32().UncheckedTakeEnumDataAddrInst.caseIndex = InvalidCaseIndex;
}
public:
// Returns true if the projection operation is possibly destructive for
// instances of the given enum declaration.
static bool isDestructive(EnumDecl *forEnum, SILModule &M);
// Returns true if this projection operation is possibly destructive.
bool isDestructive() const {
return isDestructive(Element->getParentEnum(), getModule());
}
EnumElementDecl *getElement() const { return Element; }
unsigned getCaseIndex() {
unsigned idx = sharedUInt32().UncheckedTakeEnumDataAddrInst.caseIndex;
if (idx != InvalidCaseIndex)
return idx;
unsigned index = getCachedCaseIndex(getElement());
sharedUInt32().UncheckedTakeEnumDataAddrInst.caseIndex = index;
return index;
}
EnumDecl *getEnumDecl() const {
auto *E = getOperand()->getType().getEnumOrBoundGenericEnum();
assert(E && "Operand of unchecked_take_enum_data_addr must be of enum"
" type");
return E;
}
};
/// Common base class for the select_enum and select_enum_addr instructions,
/// which select one of a set of possible results based on the case of an enum.
template <typename DerivedTy, typename BaseTy>
class SelectEnumInstBase : public BaseTy {
TEMPLATE_USE_SHARED_UINT8(BaseTy);
// Tail-allocated after the operands is an array of `NumCases`
// EnumElementDecl* pointers, referencing the case discriminators for each
// operand.
EnumElementDecl **getEnumElementDeclStorage();
EnumElementDecl * const* getEnumElementDeclStorage() const {
return const_cast<SelectEnumInstBase*>(this)->getEnumElementDeclStorage();
}
protected:
template <typename... Rest>
SelectEnumInstBase(SILInstructionKind kind, SILDebugLocation debugLoc,
SILType type, bool defaultValue,
std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount, Rest &&...rest)
: BaseTy(kind, debugLoc, type, std::forward<Rest>(rest)...) {
sharedUInt8().SelectEnumInstBase.hasDefault = defaultValue;
}
template <typename... RestTys>
static DerivedTy *
createSelectEnum(SILDebugLocation DebugLoc, SILValue Enum, SILType Type,
SILValue DefaultValue,
ArrayRef<std::pair<EnumElementDecl *, SILValue>> CaseValues,
SILModule &M,
std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount, RestTys &&...restArgs);
public:
ArrayRef<Operand> getAllOperands() const;
MutableArrayRef<Operand> getAllOperands();
SILValue getOperand() const { return getAllOperands()[0].get(); }
SILValue getEnumOperand() const { return getOperand(); }
const Operand &getEnumOperandRef() const { return getAllOperands()[0]; }
std::pair<EnumElementDecl*, SILValue>
getCase(unsigned i) const {
return std::make_pair(getEnumElementDeclStorage()[i],
getAllOperands()[i+1].get());
}
std::pair<EnumElementDecl *, Operand *> getCaseOperand(unsigned i) const {
auto *self = const_cast<SelectEnumInstBase *>(this);
return std::make_pair(getEnumElementDeclStorage()[i],
&self->getAllOperands()[i + 1]);
}
/// Return the value that will be used as the result for the specified enum
/// case.
SILValue getCaseResult(EnumElementDecl *D) {
for (unsigned i = 0, e = getNumCases(); i != e; ++i) {
auto Entry = getCase(i);
if (Entry.first == D) return Entry.second;
}
// select_enum is required to be fully covered, so return the default if we
// didn't find anything.
return getDefaultResult();
}
Operand *getCaseResultOperand(EnumElementDecl *D) {
for (unsigned i = 0, e = getNumCases(); i != e; ++i) {
auto Entry = getCaseOperand(i);
if (Entry.first == D)
return Entry.second;
}
// select_enum is required to be fully covered, so return the default if we
// didn't find anything.
return getDefaultResultOperand();
}
bool hasDefault() const {
return sharedUInt8().SelectEnumInstBase.hasDefault;
}
SILValue getDefaultResult() const {
assert(hasDefault() && "doesn't have a default");
return getAllOperands().back().get();
}
Operand *getDefaultResultOperand() const {
assert(hasDefault() && "doesn't have a default");
auto *self = const_cast<SelectEnumInstBase *>(this);
return &self->getAllOperands().back();
}
unsigned getNumCases() const {
return getAllOperands().size() - 1 - hasDefault();
}
/// If the default refers to exactly one case decl, return it.
NullablePtr<EnumElementDecl> getUniqueCaseForDefault() {
assert(this->hasDefault() && "doesn't have a default");
auto enumValue = getEnumOperand();
SILType enumType = enumValue->getType();
EnumDecl *decl = enumType.getEnumOrBoundGenericEnum();
assert(decl && "switch_enum operand is not an enum");
if (!enumType.isEffectivelyExhaustiveEnumType(this->getFunction())) {
return nullptr;
}
llvm::SmallPtrSet<EnumElementDecl *, 4> unswitchedElts;
for (auto elt : decl->getAllElementsForLowering())
unswitchedElts.insert(elt);
for (unsigned i = 0, e = this->getNumCases(); i != e; ++i) {
auto Entry = this->getCase(i);
unswitchedElts.erase(Entry.first);
}
if (unswitchedElts.size() == 1)
return *unswitchedElts.begin();
return nullptr;
}
/// If there is a single case that returns a literal "true" value (an
/// "integer_literal $Builtin.Int1, 1" value), return it.
///
/// FIXME: This is used to interoperate with passes that reasoned about the
/// old enum_is_tag insn. Ideally those passes would become general enough
/// not to need this.
NullablePtr<EnumElementDecl> getSingleTrueElement() const {
auto SEIType = static_cast<const DerivedTy *>(this)
->getType()
.template getAs<BuiltinIntegerType>();
if (!SEIType)
return nullptr;
if (SEIType->getWidth() != BuiltinIntegerWidth::fixed(1))
return nullptr;
// Try to find a single literal "true" case.
std::optional<EnumElementDecl *> TrueElement;
for (unsigned i = 0, e = getNumCases(); i < e; ++i) {
auto casePair = getCase(i);
if (auto intLit = dyn_cast<IntegerLiteralInst>(casePair.second)) {
if (intLit->getValue() == APInt(1, 1)) {
if (!TrueElement)
TrueElement = casePair.first;
else
// Use Optional(nullptr) to represent more than one.
TrueElement = std::optional<EnumElementDecl *>(nullptr);
}
}
}
if (!TrueElement || !*TrueElement)
return nullptr;
return *TrueElement;
}
};
/// Select one of a set of values based on the case of an enum.
class SelectEnumInst final
: public InstructionBaseWithTrailingOperands<
SILInstructionKind::SelectEnumInst, SelectEnumInst,
SelectEnumInstBase<SelectEnumInst, SingleValueInstruction>,
EnumElementDecl *> {
friend SILBuilder;
friend SelectEnumInstBase<SelectEnumInst, SingleValueInstruction>;
public:
SelectEnumInst(SILDebugLocation DebugLoc, SILValue Operand, SILType Type,
bool DefaultValue, ArrayRef<SILValue> CaseValues,
ArrayRef<EnumElementDecl *> CaseDecls,
std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount)
: InstructionBaseWithTrailingOperands(Operand, CaseValues, DebugLoc, Type,
bool(DefaultValue), CaseCounts,
DefaultCount) {
assert(CaseValues.size() - DefaultValue == CaseDecls.size());
std::uninitialized_copy(CaseDecls.begin(), CaseDecls.end(),
getTrailingObjects<EnumElementDecl *>());
}
static SelectEnumInst *
create(SILDebugLocation DebugLoc, SILValue Operand, SILType Type,
SILValue DefaultValue,
ArrayRef<std::pair<EnumElementDecl *, SILValue>> CaseValues,
SILModule &M, std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount);
};
/// Select one of a set of values based on the case of an enum.
class SelectEnumAddrInst final
: public InstructionBaseWithTrailingOperands<
SILInstructionKind::SelectEnumAddrInst, SelectEnumAddrInst,
SelectEnumInstBase<SelectEnumAddrInst, SingleValueInstruction>,
EnumElementDecl *> {
friend SILBuilder;
friend SelectEnumInstBase<SelectEnumAddrInst, SingleValueInstruction>;
public:
SelectEnumAddrInst(SILDebugLocation DebugLoc, SILValue Operand, SILType Type,
bool DefaultValue, ArrayRef<SILValue> CaseValues,
ArrayRef<EnumElementDecl *> CaseDecls,
std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount)
: InstructionBaseWithTrailingOperands(Operand, CaseValues, DebugLoc, Type,
bool(DefaultValue), CaseCounts,
DefaultCount) {
assert(CaseValues.size() - DefaultValue == CaseDecls.size());
std::uninitialized_copy(CaseDecls.begin(), CaseDecls.end(),
getTrailingObjects<EnumElementDecl *>());
}
static SelectEnumAddrInst *
create(SILDebugLocation DebugLoc, SILValue Operand, SILType Type,
SILValue DefaultValue,
ArrayRef<std::pair<EnumElementDecl *, SILValue>> CaseValues,
SILModule &M, std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount);
};
/// MetatypeInst - Represents the production of an instance of a given metatype
/// named statically.
class MetatypeInst final
: public NullaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::MetatypeInst,
MetatypeInst, SingleValueInstruction> {
friend SILBuilder;
/// Constructs a MetatypeInst
MetatypeInst(SILDebugLocation DebugLoc, SILType Metatype,
ArrayRef<SILValue> TypeDependentOperands)
: NullaryInstructionWithTypeDependentOperandsBase(DebugLoc,
TypeDependentOperands, Metatype) {}
static MetatypeInst *create(SILDebugLocation DebugLoc, SILType Metatype,
SILFunction *F);
};
/// Represents loading a dynamic metatype from a value.
class ValueMetatypeInst
: public UnaryInstructionBase<SILInstructionKind::ValueMetatypeInst,
SingleValueInstruction>
{
friend SILBuilder;
ValueMetatypeInst(SILDebugLocation DebugLoc, SILType Metatype, SILValue Base)
: UnaryInstructionBase(DebugLoc, Base, Metatype) {}
};
/// ExistentialMetatype - Represents loading a dynamic metatype from an
/// existential container.
class ExistentialMetatypeInst
: public UnaryInstructionBase<SILInstructionKind::ExistentialMetatypeInst,
SingleValueInstruction>
{
friend SILBuilder;
ExistentialMetatypeInst(SILDebugLocation DebugLoc, SILType Metatype,
SILValue Base)
: UnaryInstructionBase(DebugLoc, Base, Metatype) {}
};
/// Extract a numbered element out of a value of tuple type.
class TupleExtractInst
: public UnaryInstructionBase<SILInstructionKind::TupleExtractInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
USE_SHARED_UINT32;
TupleExtractInst(SILDebugLocation DebugLoc, SILValue Operand,
unsigned FieldNo, SILType ResultTy,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionBase(DebugLoc, Operand, ResultTy,
forwardingOwnershipKind) {
assert(Operand->getType().castTo<TupleType>());
sharedUInt32().TupleExtractInst.fieldNo = FieldNo;
}
public:
unsigned getFieldIndex() const {
return sharedUInt32().TupleExtractInst.fieldNo;
}
TupleType *getTupleType() const {
return getOperand()->getType().castTo<TupleType>();
}
unsigned getNumTupleElts() const {
return getTupleType()->getNumElements();
}
/// Returns true if this is a trivial result of a tuple that is non-trivial
/// and represents one RCID.
bool isTrivialEltOfOneRCIDTuple() const;
bool isEltOnlyNonTrivialElt() const;
};
/// Derive the address of a numbered element from the address of a tuple.
class TupleElementAddrInst
: public UnaryInstructionBase<SILInstructionKind::TupleElementAddrInst,
SingleValueInstruction>
{
friend SILBuilder;
USE_SHARED_UINT32;
TupleElementAddrInst(SILDebugLocation DebugLoc, SILValue Operand,
unsigned FieldNo, SILType ResultTy)
: UnaryInstructionBase(DebugLoc, Operand, ResultTy) {
sharedUInt32().TupleElementAddrInst.fieldNo = FieldNo;
}
public:
unsigned getFieldIndex() const {
return sharedUInt32().TupleElementAddrInst.fieldNo;
}
TupleType *getTupleType() const {
return getOperand()->getType().castTo<TupleType>();
}
};
unsigned getNumFieldsInNominal(NominalTypeDecl *decl);
/// Get the property for a struct or class by its unique index, or nullptr if
/// the index does not match a property declared in this struct or class or
/// one its superclasses.
///
/// Precondition: \p decl must be a non-resilient struct or class.
VarDecl *getIndexedField(NominalTypeDecl *decl, unsigned index);
/// A common base for instructions that require a cached field index.
///
/// "Field" is a term used here to refer to the ordered, accessible stored
/// properties of a class or struct.
///
/// The field's ordinal value is the basis of efficiently comparing and sorting
/// access paths in SIL. For example, whenever a Projection object is created,
/// it stores the field index. Finding the field index initially requires
/// searching the type declaration's array of all stored properties. If this
/// index is not cached, it will cause widespread quadratic complexity in any
/// pass that queries projections, including the SIL verifier.
///
/// FIXME: This cache may not be necessary if the Decl TypeChecker instead
/// caches a field index in the VarDecl itself. This solution would be superior
/// because it would allow constant time lookup of either the VarDecl or the
/// index from a single pointer without referring back to a projection
/// instruction.
template <typename ParentTy>
class FieldIndexCacheBase : public ParentTy {
enum : unsigned { InvalidFieldIndex = ~unsigned(0) };
VarDecl *field;
TEMPLATE_USE_SHARED_UINT32(ParentTy);
public:
template <typename... ArgTys>
FieldIndexCacheBase(SILInstructionKind kind, SILDebugLocation loc,
SILType type, VarDecl *field, ArgTys &&... extraArgs)
: ParentTy(kind, loc, type, std::forward<ArgTys>(extraArgs)...),
field(field) {
sharedUInt32().FieldIndexCacheBase.fieldIndex = InvalidFieldIndex;
// This needs to be a concrete class to hold bitfield information. However,
// it should only be extended by UnaryInstructions.
assert(ParentTy::getNumOperands() == 1);
}
VarDecl *getField() const { return field; }
unsigned getFieldIndex() {
unsigned idx = sharedUInt32().FieldIndexCacheBase.fieldIndex;
if (idx != InvalidFieldIndex)
return idx;
idx = ParentTy::getCachedFieldIndex(getParentDecl(), getField());
sharedUInt32().FieldIndexCacheBase.fieldIndex = idx;
return idx;
}
NominalTypeDecl *getParentDecl() const {
auto s =
ParentTy::getOperand(0)->getType().getNominalOrBoundGenericNominal();
assert(s);
return s;
}
static bool classof(SILNodePointer node) {
SILNodeKind kind = node->getKind();
return kind == SILNodeKind::StructExtractInst ||
kind == SILNodeKind::StructElementAddrInst ||
kind == SILNodeKind::RefElementAddrInst;
}
};
/// Extract a physical, fragile field out of a value of struct type.
class StructExtractInst
: public UnaryInstructionBase<
SILInstructionKind::StructExtractInst,
FieldIndexCacheBase<OwnershipForwardingSingleValueInstruction>> {
friend SILBuilder;
StructExtractInst(SILDebugLocation DebugLoc, SILValue Operand, VarDecl *Field,
SILType ResultTy,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionBase(DebugLoc, Operand, ResultTy, Field,
forwardingOwnershipKind) {}
public:
StructDecl *getStructDecl() const {
return cast<StructDecl>(getParentDecl());
}
/// Returns true if this is a trivial result of a struct that is non-trivial
/// and represents one RCID.
bool isTrivialFieldOfOneRCIDStruct() const;
/// Return true if we are extracting the only non-trivial field of out parent
/// struct. This implies that a ref count operation on the aggregate is
/// equivalent to a ref count operation on this field.
bool isFieldOnlyNonTrivialField() const;
};
/// Derive the address of a physical field from the address of a struct.
class StructElementAddrInst
: public UnaryInstructionBase<SILInstructionKind::StructElementAddrInst,
FieldIndexCacheBase<SingleValueInstruction>> {
friend SILBuilder;
StructElementAddrInst(SILDebugLocation DebugLoc, SILValue Operand,
VarDecl *Field, SILType ResultTy)
: UnaryInstructionBase(DebugLoc, Operand, ResultTy, Field) {}
public:
StructDecl *getStructDecl() const {
return cast<StructDecl>(getParentDecl());
}
};
/// RefElementAddrInst - Derive the address of a named element in a reference
/// type instance.
class RefElementAddrInst
: public UnaryInstructionBase<SILInstructionKind::RefElementAddrInst,
FieldIndexCacheBase<SingleValueInstruction>> {
friend SILBuilder;
USE_SHARED_UINT8;
RefElementAddrInst(SILDebugLocation DebugLoc, SILValue Operand,
VarDecl *Field, SILType ResultTy, bool IsImmutable)
: UnaryInstructionBase(DebugLoc, Operand, ResultTy, Field) {
setImmutable(IsImmutable);
}
public:
ClassDecl *getClassDecl() const { return cast<ClassDecl>(getParentDecl()); }
/// Returns true if all loads of the same instance variable from the same
/// class reference operand are guaranteed to yield the same value.
bool isImmutable() const {
return sharedUInt8().RefElementAddrInst.immutable;
}
/// Sets the immutable flag.
void setImmutable(bool immutable = true) {
sharedUInt8().RefElementAddrInst.immutable = immutable;
}
};
/// RefTailAddrInst - Derive the address of the first element of the first
/// tail-allocated array in a reference type instance.
class RefTailAddrInst
: public UnaryInstructionBase<SILInstructionKind::RefTailAddrInst,
SingleValueInstruction>
{
friend SILBuilder;
USE_SHARED_UINT8;
RefTailAddrInst(SILDebugLocation DebugLoc, SILValue Operand, SILType ResultTy,
bool IsImmutable)
: UnaryInstructionBase(DebugLoc, Operand, ResultTy) {
setImmutable(IsImmutable);
}
public:
ClassDecl *getClassDecl() const {
auto s = getOperand()->getType().getClassOrBoundGenericClass();
assert(s);
return s;
}
SILType getTailType() const { return getType().getObjectType(); }
/// Returns true if all loads of the same instance variable from the same
/// class reference operand are guaranteed to yield the same value.
bool isImmutable() const {
return sharedUInt8().RefTailAddrInst.immutable;
}
/// Sets the immutable flag.
void setImmutable(bool immutable = true) {
sharedUInt8().RefTailAddrInst.immutable = immutable;
}
};
/// MethodInst - Abstract base for instructions that implement dynamic
/// method lookup.
class MethodInst : public SingleValueInstruction {
SILDeclRef Member;
public:
MethodInst(SILInstructionKind Kind, SILDebugLocation DebugLoc, SILType Ty,
SILDeclRef Member)
: SingleValueInstruction(Kind, DebugLoc, Ty), Member(Member) {
}
SILDeclRef getMember() const { return Member; }
DEFINE_ABSTRACT_SINGLE_VALUE_INST_BOILERPLATE(MethodInst)
};
/// ClassMethodInst - Given the address of a value of class type and a method
/// constant, extracts the implementation of that method for the dynamic
/// instance type of the class.
class ClassMethodInst
: public UnaryInstructionBase<SILInstructionKind::ClassMethodInst,
MethodInst>
{
friend SILBuilder;
ClassMethodInst(SILDebugLocation DebugLoc, SILValue Operand,
SILDeclRef Member, SILType Ty)
: UnaryInstructionBase(DebugLoc, Operand, Ty, Member) {}
};
/// SuperMethodInst - Given the address of a value of class type and a method
/// constant, extracts the implementation of that method for the superclass of
/// the static type of the class.
class SuperMethodInst
: public UnaryInstructionBase<SILInstructionKind::SuperMethodInst, MethodInst>
{
friend SILBuilder;
SuperMethodInst(SILDebugLocation DebugLoc, SILValue Operand,
SILDeclRef Member, SILType Ty)
: UnaryInstructionBase(DebugLoc, Operand, Ty, Member) {}
};
/// ObjCMethodInst - Given the address of a value of class type and a method
/// constant, extracts the implementation of that method for the dynamic
/// instance type of the class.
class ObjCMethodInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::ObjCMethodInst,
ObjCMethodInst,
MethodInst>
{
friend SILBuilder;
ObjCMethodInst(SILDebugLocation DebugLoc, SILValue Operand,
ArrayRef<SILValue> TypeDependentOperands,
SILDeclRef Member, SILType Ty)
: UnaryInstructionWithTypeDependentOperandsBase(DebugLoc, Operand,
TypeDependentOperands, Ty, Member) {}
static ObjCMethodInst *
create(SILDebugLocation DebugLoc, SILValue Operand,
SILDeclRef Member, SILType Ty, SILFunction *F);
};
/// ObjCSuperMethodInst - Given the address of a value of class type and a method
/// constant, extracts the implementation of that method for the superclass of
/// the static type of the class.
class ObjCSuperMethodInst
: public UnaryInstructionBase<SILInstructionKind::ObjCSuperMethodInst, MethodInst>
{
friend SILBuilder;
ObjCSuperMethodInst(SILDebugLocation DebugLoc, SILValue Operand,
SILDeclRef Member, SILType Ty)
: UnaryInstructionBase(DebugLoc, Operand, Ty, Member) {}
};
/// WitnessMethodInst - Given a type, a protocol conformance,
/// and a protocol method constant, extracts the implementation of that method
/// for the type.
class WitnessMethodInst final
: public NullaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::WitnessMethodInst,
WitnessMethodInst, MethodInst> {
friend SILBuilder;
CanType LookupType;
ProtocolConformanceRef Conformance;
WitnessMethodInst(SILDebugLocation DebugLoc, CanType LookupType,
ProtocolConformanceRef Conformance, SILDeclRef Member,
SILType Ty, ArrayRef<SILValue> TypeDependentOperands)
: NullaryInstructionWithTypeDependentOperandsBase(DebugLoc,
TypeDependentOperands, Ty, Member),
LookupType(LookupType), Conformance(Conformance) {}
/// Create a witness method call of a protocol requirement, passing in a lookup
/// type and conformance.
///
/// At runtime, the witness is looked up in the conformance of the lookup type
/// to the protocol.
///
/// The lookup type is usually an archetype, but it will be concrete if the
/// witness_method instruction is inside a function body that was specialized.
///
/// The conformance must exactly match the requirement; the caller must handle
/// the case where the requirement is defined in a base protocol that is
/// refined by the conforming protocol.
static WitnessMethodInst *
create(SILDebugLocation DebugLoc, CanType LookupType,
ProtocolConformanceRef Conformance, SILDeclRef Member, SILType Ty,
SILFunction *Parent);
public:
CanType getLookupType() const { return LookupType; }
ProtocolDecl *getLookupProtocol() const {
return getMember().getDecl()->getDeclContext()->getSelfProtocolDecl();
}
// Returns true if it's expected that the witness method is looked up up from
// a specialized witness table.
// This is the case in Embedded Swift.
bool isSpecialized() const {
return !getType().castTo<SILFunctionType>()->isPolymorphic();
}
ProtocolConformanceRef getConformance() const { return Conformance; }
};
/// Access allowed to the opened value by the open_existential_addr instruction.
/// Allowing mutable access to the opened existential requires a boxed
/// existential value's box to be unique.
enum class OpenedExistentialAccess { Immutable, Mutable };
OpenedExistentialAccess getOpenedExistentialAccessFor(AccessKind access);
/// Given the address of an existential, "opens" the
/// existential by returning a pointer to a fresh archetype T, which also
/// captures the (dynamic) conformances.
class OpenExistentialAddrInst
: public UnaryInstructionBase<SILInstructionKind::OpenExistentialAddrInst,
SingleValueInstruction>
{
friend SILBuilder;
OpenedExistentialAccess ForAccess;
OpenExistentialAddrInst(SILDebugLocation DebugLoc, SILValue Operand,
SILType SelfTy, OpenedExistentialAccess AccessKind);
public:
static bool isRead(SILInstruction *inst) {
auto *open = dyn_cast<OpenExistentialAddrInst>(inst);
return open && open->getAccessKind() == OpenedExistentialAccess::Immutable;
}
OpenedExistentialAccess getAccessKind() const { return ForAccess; }
CanExistentialArchetypeType getDefinedOpenedArchetype() const {
const auto archetype = getOpenedArchetypeOf(getType().getASTType());
assert(archetype && archetype->isRoot() &&
"Type should be a root opened archetype");
return archetype;
}
};
/// Given an opaque value referring to an existential, "opens" the
/// existential by returning a pointer to a fresh archetype T, which also
/// captures the (dynamic) conformances.
class OpenExistentialValueInst
: public UnaryInstructionBase<SILInstructionKind::OpenExistentialValueInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
OpenExistentialValueInst(SILDebugLocation debugLoc, SILValue operand,
SILType selfTy,
ValueOwnershipKind forwardingOwnershipKind);
public:
CanExistentialArchetypeType getDefinedOpenedArchetype() const {
const auto archetype = getOpenedArchetypeOf(getType().getASTType());
assert(archetype && archetype->isRoot() &&
"Type should be a root opened archetype");
return archetype;
}
};
/// Given a class existential, "opens" the
/// existential by returning a pointer to a fresh archetype T, which also
/// captures the (dynamic) conformances.
class OpenExistentialRefInst
: public UnaryInstructionBase<SILInstructionKind::OpenExistentialRefInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
OpenExistentialRefInst(SILDebugLocation DebugLoc, SILValue Operand,
SILType Ty,
ValueOwnershipKind forwardingOwnershipKind);
public:
CanExistentialArchetypeType getDefinedOpenedArchetype() const {
const auto archetype = getOpenedArchetypeOf(getType().getASTType());
assert(archetype && archetype->isRoot() &&
"Type should be a root opened archetype");
return archetype;
}
};
/// Given an existential metatype,
/// "opens" the existential by returning a pointer to a fresh
/// archetype metatype T.Type, which also captures the (dynamic)
/// conformances.
class OpenExistentialMetatypeInst
: public UnaryInstructionBase<SILInstructionKind::OpenExistentialMetatypeInst,
SingleValueInstruction>
{
friend SILBuilder;
OpenExistentialMetatypeInst(SILDebugLocation DebugLoc, SILValue operand,
SILType ty);
public:
CanExistentialArchetypeType getDefinedOpenedArchetype() const {
const auto archetype = getOpenedArchetypeOf(getType().getASTType());
assert(archetype && archetype->isRoot() &&
"Type should be a root opened archetype");
return archetype;
}
};
/// Given a boxed existential container,
/// "opens" the existential by returning a pointer to a fresh
/// archetype T, which also captures the (dynamic) conformances.
class OpenExistentialBoxInst
: public UnaryInstructionBase<SILInstructionKind::OpenExistentialBoxInst,
SingleValueInstruction>
{
friend SILBuilder;
OpenExistentialBoxInst(SILDebugLocation DebugLoc, SILValue operand,
SILType ty);
public:
CanExistentialArchetypeType getDefinedOpenedArchetype() const {
const auto archetype = getOpenedArchetypeOf(getType().getASTType());
assert(archetype && archetype->isRoot() &&
"Type should be a root opened archetype");
return archetype;
}
};
/// Given a boxed existential container, "opens" the existential by returning a
/// fresh archetype T, which also captures the (dynamic) conformances.
class OpenExistentialBoxValueInst
: public UnaryInstructionBase<
SILInstructionKind::OpenExistentialBoxValueInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
OpenExistentialBoxValueInst(SILDebugLocation DebugLoc, SILValue operand,
SILType ty,
ValueOwnershipKind forwardingOwnershipKind);
public:
CanExistentialArchetypeType getDefinedOpenedArchetype() const {
const auto archetype = getOpenedArchetypeOf(getType().getASTType());
assert(archetype && archetype->isRoot() &&
"Type should be a root opened archetype");
return archetype;
}
};
/// Given an address to an uninitialized buffer of
/// a protocol type, initializes its existential container to contain a concrete
/// value of the given type, and returns the address of the uninitialized
/// concrete value inside the existential container.
class InitExistentialAddrInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::InitExistentialAddrInst,
InitExistentialAddrInst,
SingleValueInstruction>
{
friend SILBuilder;
CanType ConcreteType;
ArrayRef<ProtocolConformanceRef> Conformances;
InitExistentialAddrInst(SILDebugLocation DebugLoc, SILValue Existential,
ArrayRef<SILValue> TypeDependentOperands,
CanType ConcreteType, SILType ConcreteLoweredType,
ArrayRef<ProtocolConformanceRef> Conformances)
: UnaryInstructionWithTypeDependentOperandsBase(DebugLoc, Existential,
TypeDependentOperands,
ConcreteLoweredType.getAddressType()),
ConcreteType(ConcreteType), Conformances(Conformances) {}
static InitExistentialAddrInst *
create(SILDebugLocation DebugLoc, SILValue Existential, CanType ConcreteType,
SILType ConcreteLoweredType,
ArrayRef<ProtocolConformanceRef> Conformances, SILFunction *Parent);
public:
ArrayRef<ProtocolConformanceRef> getConformances() const {
return Conformances;
}
CanType getFormalConcreteType() const {
return ConcreteType;
}
SILType getLoweredConcreteType() const {
return getType();
}
};
/// Given an uninitialized buffer of a protocol type,
/// initializes its existential container to contain a concrete
/// value of the given type, and returns the uninitialized
/// concrete value inside the existential container.
class InitExistentialValueInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::InitExistentialValueInst, InitExistentialValueInst,
SingleValueInstruction> {
friend SILBuilder;
CanType ConcreteType;
ArrayRef<ProtocolConformanceRef> Conformances;
InitExistentialValueInst(SILDebugLocation DebugLoc, SILType ExistentialType,
CanType FormalConcreteType, SILValue Instance,
ArrayRef<SILValue> TypeDependentOperands,
ArrayRef<ProtocolConformanceRef> Conformances)
: UnaryInstructionWithTypeDependentOperandsBase(
DebugLoc, Instance, TypeDependentOperands, ExistentialType),
ConcreteType(FormalConcreteType), Conformances(Conformances) {}
static InitExistentialValueInst *
create(SILDebugLocation DebugLoc, SILType ExistentialType,
CanType ConcreteType, SILValue Instance,
ArrayRef<ProtocolConformanceRef> Conformances, SILFunction *Parent);
public:
CanType getFormalConcreteType() const { return ConcreteType; }
ArrayRef<ProtocolConformanceRef> getConformances() const {
return Conformances;
}
};
/// InitExistentialRefInst - Given a class instance reference and a set of
/// conformances, creates a class existential value referencing the
/// class instance.
class InitExistentialRefInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::InitExistentialRefInst, InitExistentialRefInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
CanType ConcreteType;
ArrayRef<ProtocolConformanceRef> Conformances;
InitExistentialRefInst(SILDebugLocation DebugLoc, SILType ExistentialType,
CanType FormalConcreteType, SILValue Instance,
ArrayRef<SILValue> TypeDependentOperands,
ArrayRef<ProtocolConformanceRef> Conformances,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionWithTypeDependentOperandsBase(
DebugLoc, Instance, TypeDependentOperands, ExistentialType,
forwardingOwnershipKind),
ConcreteType(FormalConcreteType), Conformances(Conformances) {}
static InitExistentialRefInst *
create(SILDebugLocation DebugLoc, SILType ExistentialType,
CanType ConcreteType, SILValue Instance,
ArrayRef<ProtocolConformanceRef> Conformances, SILFunction *Parent,
ValueOwnershipKind forwardingOwnershipKind);
public:
CanType getFormalConcreteType() const {
return ConcreteType;
}
ArrayRef<ProtocolConformanceRef> getConformances() const {
return Conformances;
}
};
/// InitExistentialMetatypeInst - Given a metatype reference and a set
/// of conformances, creates an existential metatype value referencing
/// the metatype.
class InitExistentialMetatypeInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::InitExistentialMetatypeInst,
InitExistentialMetatypeInst,
SingleValueInstruction,
ProtocolConformanceRef>
{
friend SILBuilder;
unsigned NumConformances;
InitExistentialMetatypeInst(SILDebugLocation DebugLoc,
SILType existentialMetatypeType,
SILValue metatype,
ArrayRef<SILValue> TypeDependentOperands,
ArrayRef<ProtocolConformanceRef> conformances);
static InitExistentialMetatypeInst *
create(SILDebugLocation DebugLoc, SILType existentialMetatypeType,
SILValue metatype, ArrayRef<ProtocolConformanceRef> conformances,
SILFunction *parent);
public:
/// Return the object type which was erased. That is, if this
/// instruction erases Decoder<T>.Type.Type to Printable.Type.Type,
/// this method returns Decoder<T>.
CanType getFormalErasedObjectType() const {
auto exType = getType().getASTType();
auto concreteType = getOperand()->getType().getASTType();
while (auto exMetatype = dyn_cast<ExistentialMetatypeType>(exType)) {
exType = exMetatype->getExistentialInstanceType()->getCanonicalType();
concreteType = cast<MetatypeType>(concreteType).getInstanceType();
}
assert(exType.isExistentialType());
return concreteType;
}
ArrayRef<ProtocolConformanceRef> getConformances() const;
};
/// DeinitExistentialAddrInst - Given an address of an existential that has been
/// partially initialized with an InitExistentialAddrInst but whose value buffer
/// has not been initialized, deinitializes the existential and deallocates
/// the value buffer. This should only be used for partially-initialized
/// existentials; a fully-initialized existential can be destroyed with
/// DestroyAddrInst and deallocated with DeallocStackInst.
class DeinitExistentialAddrInst
: public UnaryInstructionBase<SILInstructionKind::DeinitExistentialAddrInst,
NonValueInstruction>
{
friend SILBuilder;
DeinitExistentialAddrInst(SILDebugLocation DebugLoc, SILValue Existential)
: UnaryInstructionBase(DebugLoc, Existential) {}
};
class DeinitExistentialValueInst
: public UnaryInstructionBase<SILInstructionKind::DeinitExistentialValueInst,
NonValueInstruction> {
friend SILBuilder;
DeinitExistentialValueInst(SILDebugLocation DebugLoc, SILValue Existential)
: UnaryInstructionBase(DebugLoc, Existential) {}
};
/// Compute the length of a pack (as a Builtin.Word).
class PackLengthInst final
: public NullaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::PackLengthInst,
PackLengthInst,
SingleValueInstruction> {
friend TrailingObjects;
friend SILBuilder;
CanPackType ThePackType;
PackLengthInst(SILDebugLocation loc,
ArrayRef<SILValue> typeDependentOperands,
SILType resultType,
CanPackType packType)
: NullaryInstructionWithTypeDependentOperandsBase(loc,
typeDependentOperands,
resultType),
ThePackType(packType) {}
static PackLengthInst *create(SILFunction &parent,
SILDebugLocation loc,
CanPackType packType);
public:
/// Return the measured pack type.
CanPackType getPackType() const {
return ThePackType;
}
};
/// An abstract class for instructions which producing variadic
/// pack indices.
///
/// All of these instructions produce a Builtin.PackIndex value which
/// can only be used in packs with a specific shape class. In
/// principle, that shape class could be reflected into the result type,
/// but we actually need more structue than that in order to get the
/// type-safety properties we want. It therefore makes more sense to
/// enforce structural properties on pack-index derivation than try
/// to go all-in on dependent types.
class AnyPackIndexInst : public SingleValueInstruction {
CanPackType IndexedPackType;
protected:
AnyPackIndexInst(SILInstructionKind kind, SILDebugLocation loc,
SILType type, CanPackType packType)
: SingleValueInstruction(kind, loc, type), IndexedPackType(packType) {
assert(type.isObject() && type.is<BuiltinPackIndexType>());
}
public:
/// Return the type that this pack index indexes into.
CanPackType getIndexedPackType() const { return IndexedPackType; }
static bool classof(const AnyPackIndexInst *) { return true; }
static bool classof(SILNodePointer node) {
return node->getKind() >= SILNodeKind::First_AnyPackIndexInst &&
node->getKind() <= SILNodeKind::Last_AnyPackIndexInst;
}
};
/// Produce a dynamic pack index from a Builtin.Int32.
///
/// This instruction has undefined behavior if the value is out of
/// bounds for the given pack (including the "one past the end" value).
class DynamicPackIndexInst final :
public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::DynamicPackIndexInst,
DynamicPackIndexInst,
AnyPackIndexInst> {
friend SILBuilder;
DynamicPackIndexInst(SILDebugLocation loc,
SILValue indexOperand,
ArrayRef<SILValue> typeDependentOperands,
SILType type, CanPackType packType)
: UnaryInstructionWithTypeDependentOperandsBase(loc, indexOperand,
typeDependentOperands,
type, packType) {}
static DynamicPackIndexInst *create(SILFunction &parent,
SILDebugLocation loc,
SILValue indexOperand,
CanPackType packType);
};
/// Compute the pack index of an element of a slice of a pack.
class PackPackIndexInst final :
public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::PackPackIndexInst,
PackPackIndexInst,
AnyPackIndexInst> {
unsigned ComponentStartIndex;
friend SILBuilder;
PackPackIndexInst(SILDebugLocation loc,
unsigned componentStartIndex,
SILValue indexWithinComponent,
ArrayRef<SILValue> typeDependentOperands,
SILType type, CanPackType packType)
: UnaryInstructionWithTypeDependentOperandsBase(loc,
indexWithinComponent,
typeDependentOperands,
type, packType),
ComponentStartIndex(componentStartIndex) {}
static PackPackIndexInst *create(SILFunction &parent,
SILDebugLocation loc,
unsigned componentIndex,
SILValue indexWithinComponent,
CanPackType packType);
public:
/// Return the instruction which produces the index within the
/// pack slice.
AnyPackIndexInst *getSliceIndexOperand() const {
return cast<AnyPackIndexInst>(getOperand());
}
/// Return the structural index of the start of the pack slice.
unsigned getComponentStartIndex() const {
return ComponentStartIndex;
}
/// Return the structural index of the end of the pack slice.
unsigned getComponentEndIndex() const {
return getComponentStartIndex()
+ getSliceIndexOperand()->getIndexedPackType()->getNumElements();
}
};
/// Compute the pack index of a scalar component of a pack.
class ScalarPackIndexInst final :
public NullaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::ScalarPackIndexInst,
ScalarPackIndexInst,
AnyPackIndexInst> {
unsigned ComponentIndex;
friend SILBuilder;
ScalarPackIndexInst(SILDebugLocation loc,
unsigned componentIndex,
ArrayRef<SILValue> typeDependentOperands,
SILType type, CanPackType packType)
: NullaryInstructionWithTypeDependentOperandsBase(loc,
typeDependentOperands, type, packType),
ComponentIndex(componentIndex) {}
static ScalarPackIndexInst *create(SILFunction &parent,
SILDebugLocation loc,
unsigned index,
CanPackType packType);
public:
/// Return the structural index of the component within the pack.
unsigned getComponentIndex() const {
return ComponentIndex;
}
};
/// Bind archetypes to the given element of one or more type packs.
///
/// The result of this instruction is just for use in recording type
/// dependencies on the bound archetypes.
///
/// %0 = open_pack_element %index
/// of <t_1_0... where t_1_0: Equatable> // opened signature
/// at <Pack{repeat each T}>, // contextual subs
/// shape $t_1_0,
/// uuid "01234567-89AB-CDEF-0123-000000000000"
///
/// The %index operand is always a $Builtin.PackIndex and must be
/// the immediate result of one of the pack-indexing instructions.
class OpenPackElementInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::OpenPackElementInst,
OpenPackElementInst,
SingleValueInstruction> {
friend SILBuilder;
/// The opened-element generic environment for this operation.
///
/// In the AST, the opened element generic environment of a
/// PackExpansionExpr extends the contextual generic environment with
/// a new, innermost level of parameters representing the opened
/// elements. These parameters are not pack parameters, but they are
/// 1-1 with the expanded pack parameters, and the requirements laid
/// on them are copied from the requirements on those parameters.
/// The substitutions in the environment map the contextual generic
/// parameters to their current archetypes, and only the new element
/// parameters acquire new archetypes within the environment.
///
/// Parts of this correspondence break down for open_pack_element.
/// In particular, SIL instructions can be cloned into new contexts,
/// applying a substitution that can change or even erase the pack
/// parameters in the contextual environment. Rather than require
/// the opened element environment to continue to be an extension
/// of the contextual environment, SIL allows the two to diverge:
/// there is no presumed relationship between the generic signature
/// of the opened environment and that of the contextual environment.
/// The generic environment should be treated as a source of
/// information about the expanded packs, the contextual pack
/// substitutions, and the opened archetype for each pack.
///
/// An alternative representation would be to remove the non-pack
/// parameters from the opened generic environment, replacing them
/// in the requirements with references to the contextual archetypes.
/// However, this would require various algorithms working with
/// generic signatures and environments to work with a mixture of
/// archetypes and type parameters, which can introduce problems
/// when reasoning about certain kinds of generic signatures.
GenericEnvironment *Env;
OpenPackElementInst(SILDebugLocation debugLoc,
SILValue packIndexOperand,
ArrayRef<SILValue> typeDependentOperands,
SILType type,
GenericEnvironment *env);
static OpenPackElementInst *
create(SILFunction &F, SILDebugLocation debugLoc, SILValue index,
GenericEnvironment *env);
public:
/// Call the given function for each element archetype that this
/// instruction opens.
void forEachDefinedLocalEnvironment(
llvm::function_ref<void(GenericEnvironment *, SILValue)> fn) const;
GenericEnvironment *getOpenedGenericEnvironment() const {
return Env;
}
/// Return a pack type which represents the contextual shape class
/// of the types this opens.
CanPackType getOpenedShapeClass() const;
AnyPackIndexInst *getIndexOperand() const {
return cast<AnyPackIndexInst>(getOperand());
}
};
/// Get the value previously stored in a pack by pack_element_set.
class PackElementGetInst final
: public InstructionBaseWithTrailingOperands<
SILInstructionKind::PackElementGetInst,
PackElementGetInst, SingleValueInstruction> {
public:
enum {
IndexOperand = 0,
PackOperand = 1
};
private:
friend SILBuilder;
PackElementGetInst(SILDebugLocation debugLoc,
ArrayRef<SILValue> allOperands,
SILType elementType)
: InstructionBaseWithTrailingOperands(allOperands, debugLoc,
elementType) {}
static PackElementGetInst *create(SILFunction &F,
SILDebugLocation debugLoc,
SILValue indexOperand,
SILValue packOperand,
SILType elementType);
public:
SILValue getIndex() const { return getIndexOperand()->get(); }
Operand *getIndexOperand() { return &getAllOperands()[IndexOperand]; }
const Operand *getIndexOperand() const {
return &getAllOperands()[IndexOperand];
}
SILValue getPack() const { return getPackOperand()->get(); }
Operand *getPackOperand() { return &getAllOperands()[PackOperand]; }
const Operand *getPackOperand() const {
return &getAllOperands()[PackOperand];
}
CanSILPackType getPackType() const {
return getPack()->getType().castTo<SILPackType>();
}
SILType getElementType() const {
return getType();
}
};
/// Set the value stored in a pack.
class PackElementSetInst
: public InstructionBase<SILInstructionKind::PackElementSetInst,
NonValueInstruction> {
public:
enum {
ValueOperand = 0,
IndexOperand = 1,
PackOperand = 2
};
private:
friend SILBuilder;
FixedOperandList<3> Operands;
PackElementSetInst(SILDebugLocation debugLoc,
SILValue valueOperand, SILValue indexOperand,
SILValue packOperand)
: InstructionBase(debugLoc),
Operands(this, valueOperand, indexOperand, packOperand) {
assert(packOperand->getType().is<SILPackType>());
}
public:
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
SILValue getValue() const { return getValueOperand()->get(); }
const Operand *getValueOperand() const {
return &getAllOperands()[ValueOperand];
}
Operand *getValueOperand() { return &getAllOperands()[ValueOperand]; }
SILValue getIndex() const { return getIndexOperand()->get(); }
const Operand *getIndexOperand() const {
return &getAllOperands()[IndexOperand];
}
Operand *getIndexOperand() { return &getAllOperands()[IndexOperand]; }
SILValue getPack() const { return getPackOperand()->get(); }
const Operand *getPackOperand() const {
return &getAllOperands()[PackOperand];
}
Operand *getPackOperand() { return &getAllOperands()[PackOperand]; }
CanSILPackType getPackType() const {
return getPack()->getType().castTo<SILPackType>();
}
SILType getElementType() const {
return getValue()->getType();
}
};
/// Projects a tuple element as appropriate for the given
/// pack element index. The pack index must index into a pack with
/// the same shape as the tuple element type list.
class TuplePackElementAddrInst final
: public InstructionBaseWithTrailingOperands<
SILInstructionKind::TuplePackElementAddrInst,
TuplePackElementAddrInst,
SingleValueInstruction> {
public:
enum {
IndexOperand = 0,
TupleOperand = 1
};
private:
friend SILBuilder;
TuplePackElementAddrInst(SILDebugLocation debugLoc,
ArrayRef<SILValue> allOperands,
SILType elementType)
: InstructionBaseWithTrailingOperands(allOperands, debugLoc,
elementType) {}
static TuplePackElementAddrInst *create(SILFunction &F,
SILDebugLocation debugLoc,
SILValue indexOperand,
SILValue tupleOperand,
SILType elementType);
public:
SILValue getIndex() const { return getIndexOperand()->get(); }
Operand *getIndexOperand() { return &getAllOperands()[IndexOperand]; }
const Operand *getIndexOperand() const {
return &getAllOperands()[IndexOperand];
}
SILValue getTuple() const { return getTupleOperand()->get(); }
Operand *getTupleOperand() { return &getAllOperands()[TupleOperand]; }
const Operand *getTupleOperand() const {
return &getAllOperands()[TupleOperand];
}
CanTupleType getTupleType() const {
return getTuple()->getType().castTo<TupleType>();
}
SILType getElementType() const {
return getType();
}
};
/// Extracts a tuple element as appropriate for the given
/// pack element index. The pack index must index into a pack with
/// the same shape as the tuple element type list.
///
/// Legal only in opaque values mode. Transformed by AddressLowering to
/// TuplePackElementAddrInst.
class TuplePackExtractInst final
: public InstructionBaseWithTrailingOperands<
SILInstructionKind::TuplePackExtractInst, TuplePackExtractInst,
OwnershipForwardingSingleValueInstruction> {
public:
enum { IndexOperand = 0, TupleOperand = 1 };
private:
friend SILBuilder;
TuplePackExtractInst(SILDebugLocation debugLoc,
ArrayRef<SILValue> allOperands, SILType elementType,
ValueOwnershipKind forwardingOwnershipKind)
: InstructionBaseWithTrailingOperands(allOperands, debugLoc, elementType,
forwardingOwnershipKind) {}
static TuplePackExtractInst *
create(SILFunction &F, SILDebugLocation debugLoc, SILValue indexOperand,
SILValue tupleOperand, SILType elementType,
ValueOwnershipKind forwardingOwnershipKind);
public:
SILValue getIndex() const { return getIndexOperand()->get(); }
Operand *getIndexOperand() { return &getAllOperands()[IndexOperand]; }
const Operand *getIndexOperand() const {
return &getAllOperands()[IndexOperand];
}
SILValue getTuple() const { return getTupleOperand()->get(); }
Operand *getTupleOperand() { return &getAllOperands()[TupleOperand]; }
const Operand *getTupleOperand() const {
return &getAllOperands()[TupleOperand];
}
CanTupleType getTupleType() const {
return getTuple()->getType().castTo<TupleType>();
}
SILType getElementType() const { return getType(); }
};
/// Projects the capture storage address from a @block_storage address.
class ProjectBlockStorageInst
: public UnaryInstructionBase<SILInstructionKind::ProjectBlockStorageInst,
SingleValueInstruction>
{
friend SILBuilder;
ProjectBlockStorageInst(SILDebugLocation DebugLoc, SILValue Operand,
SILType DestTy)
: UnaryInstructionBase(DebugLoc, Operand, DestTy) {}
};
/// Initializes a block header, creating a block that
/// invokes a given thin cdecl function.
class InitBlockStorageHeaderInst
: public InstructionBase<SILInstructionKind::InitBlockStorageHeaderInst,
SingleValueInstruction> {
friend SILBuilder;
enum { BlockStorage, InvokeFunction };
SubstitutionMap Substitutions;
FixedOperandList<2> Operands;
InitBlockStorageHeaderInst(SILDebugLocation DebugLoc, SILValue BlockStorage,
SILValue InvokeFunction, SILType BlockType,
SubstitutionMap Subs)
: InstructionBase(DebugLoc, BlockType),
Substitutions(Subs),
Operands(this, BlockStorage, InvokeFunction) {
}
static InitBlockStorageHeaderInst *create(SILFunction &F,
SILDebugLocation DebugLoc, SILValue BlockStorage,
SILValue InvokeFunction, SILType BlockType,
SubstitutionMap Subs);
public:
/// Get the block storage address to be initialized.
SILValue getBlockStorage() const { return Operands[BlockStorage].get(); }
/// Get the invoke function to form the block around.
SILValue getInvokeFunction() const { return Operands[InvokeFunction].get(); }
SubstitutionMap getSubstitutions() const { return Substitutions; }
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
};
/// StrongRetainInst - Increase the strong reference count of an object.
class StrongRetainInst
: public UnaryInstructionBase<SILInstructionKind::StrongRetainInst,
RefCountingInst>
{
friend SILBuilder;
StrongRetainInst(SILDebugLocation DebugLoc, SILValue Operand,
Atomicity atomicity)
: UnaryInstructionBase(DebugLoc, Operand) {
assert(!Operand->getType().getAs<BuiltinFixedArrayType>());
setAtomicity(atomicity);
}
};
/// StrongReleaseInst - Decrease the strong reference count of an object.
///
/// An object can be destroyed when its strong reference count is
/// zero. It can be deallocated when both its strong reference and
/// weak reference counts reach zero.
class StrongReleaseInst
: public UnaryInstructionBase<SILInstructionKind::StrongReleaseInst,
RefCountingInst>
{
friend SILBuilder;
StrongReleaseInst(SILDebugLocation DebugLoc, SILValue Operand,
Atomicity atomicity)
: UnaryInstructionBase(DebugLoc, Operand) {
setAtomicity(atomicity);
}
};
/// Simple reference storage logic.
///
/// StrongRetain##Name##Inst - Increase the strong reference count of an object
/// and assert that it has not been deallocated.
/// The operand must be of type @name.
///
/// Name##RetainInst - Increase the 'name' reference count of an object.
///
/// Name##ReleaseInst - Decrease the 'name' reference count of an object.
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
class StrongRetain##Name##Inst \
: public UnaryInstructionBase<SILInstructionKind::StrongRetain##Name##Inst,\
RefCountingInst> { \
friend SILBuilder; \
StrongRetain##Name##Inst(SILDebugLocation DebugLoc, SILValue operand, \
Atomicity atomicity) \
: UnaryInstructionBase(DebugLoc, operand) { \
setAtomicity(atomicity); \
} \
}; \
class Name##RetainInst \
: public UnaryInstructionBase<SILInstructionKind::Name##RetainInst, \
RefCountingInst> { \
friend SILBuilder; \
Name##RetainInst(SILDebugLocation DebugLoc, SILValue Operand, \
Atomicity atomicity) \
: UnaryInstructionBase(DebugLoc, Operand) { \
setAtomicity(atomicity); \
} \
}; \
class Name##ReleaseInst \
: public UnaryInstructionBase<SILInstructionKind::Name##ReleaseInst, \
RefCountingInst> { \
friend SILBuilder; \
Name##ReleaseInst(SILDebugLocation DebugLoc, SILValue Operand, \
Atomicity atomicity) \
: UnaryInstructionBase(DebugLoc, Operand) { \
setAtomicity(atomicity); \
} \
};
#include "swift/AST/ReferenceStorage.def"
/// FixLifetimeInst - An artificial use of a value for the purposes of ARC or
/// RVO optimizations.
class FixLifetimeInst :
public UnaryInstructionBase<SILInstructionKind::FixLifetimeInst,
NonValueInstruction>
{
friend SILBuilder;
FixLifetimeInst(SILDebugLocation DebugLoc, SILValue Operand)
: UnaryInstructionBase(DebugLoc, Operand) {}
};
/// EndLifetimeInst - An artificial end lifetime use of a value for the purpose
/// of working around verification problems.
///
/// Specifically, the signature of destroying deinit takes self at +0 and
/// returns self at +1. This is an issue since a deallocating deinit takes in
/// self at +1. Previously, we could rely on the deallocating bit being set in
/// the object header to allow SILGen to statically balance the +1 from the
/// deallocating deinit. This is because deallocating values used to be
/// immortal. The runtime now asserts if we release a deallocating value,
/// meaning such an approach does not work. This instruction acts as a "fake"
/// lifetime ending use allowing for static verification of deallocating
/// destroyers, without an actual release being emitted (avoiding the runtime
/// assert).
class EndLifetimeInst
: public UnaryInstructionBase<SILInstructionKind::EndLifetimeInst,
NonValueInstruction> {
friend SILBuilder;
EndLifetimeInst(SILDebugLocation DebugLoc, SILValue Operand)
: UnaryInstructionBase(DebugLoc, Operand) {}
};
/// Mark the end of the linear live range of a value without destroying it.
class ExtendLifetimeInst
: public UnaryInstructionBase<SILInstructionKind::ExtendLifetimeInst,
NonValueInstruction> {
friend SILBuilder;
ExtendLifetimeInst(SILDebugLocation loc, SILValue operand)
: UnaryInstructionBase(loc, operand) {}
};
/// An unsafe conversion in between ownership kinds.
///
/// This is used today in destructors where due to Objective-C legacy
/// constraints, we need to be able to convert a guaranteed parameter to an owned
/// parameter.
class UncheckedOwnershipConversionInst
: public UnaryInstructionBase<SILInstructionKind::UncheckedOwnershipConversionInst,
SingleValueInstruction> {
friend SILBuilder;
USE_SHARED_UINT8;
UncheckedOwnershipConversionInst(SILDebugLocation DebugLoc, SILValue operand,
ValueOwnershipKind Kind)
: UnaryInstructionBase(DebugLoc, operand, operand->getType()) {
sharedUInt8().UncheckedOwnershipConversionInst.valueOwnershipKind = Kind;
}
public:
ValueOwnershipKind getConversionOwnershipKind() const {
uint8_t kind = sharedUInt8().UncheckedOwnershipConversionInst.valueOwnershipKind;
return ValueOwnershipKind(kind);
}
};
enum class MarkDependenceKind {
Unresolved, Escaping, NonEscaping
};
static_assert(2 == SILNode::NumMarkDependenceKindBits, "Size mismatch");
template <SILInstructionKind Kind, typename BaseTy>
class MarkDependenceInstBase : public InstructionBase<Kind, BaseTy> {
FixedOperandList<2> Operands;
TEMPLATE_USE_SHARED_UINT8(BaseTy);
protected:
template <typename... Rest>
MarkDependenceInstBase(SILDebugLocation DebugLoc, SILValue value,
SILValue base, MarkDependenceKind dependenceKind,
Rest &&...rest)
: InstructionBase<Kind, BaseTy>(DebugLoc, std::forward<Rest>(rest)...),
Operands{this, value, base} {
sharedUInt8().MarkDependenceInstBase.dependenceKind =
uint8_t(dependenceKind);
}
public:
enum { Dependent, Base };
SILValue getBase() const { return Operands[Base].get(); }
void setBase(SILValue newVal) {
Operands[Base].set(newVal);
}
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
MarkDependenceKind dependenceKind() const {
return MarkDependenceKind(
sharedUInt8().MarkDependenceInstBase.dependenceKind);
}
/// True if the lifetime dependence is statically enforceable. If so, the
/// compiler can follow all values forwarded from the result, and recognize
/// all final (non-forwarded, non-escaping) use points. This implies that
/// `findPointerEscape` is false.
bool isNonEscaping() const {
return dependenceKind() == MarkDependenceKind::NonEscaping;
}
/// An unresolved escape is semantically an escaping dependence, but this
/// form is only valid prior to lifetime dependence diagnostics which will
/// convert it to NonEscaping if the program is valid.
bool hasUnresolvedEscape() const {
return dependenceKind() == MarkDependenceKind::Unresolved;
}
void resolveToNonEscaping() {
sharedUInt8().MarkDependenceInstBase.dependenceKind =
uint8_t(MarkDependenceKind::NonEscaping);
}
void settleToEscaping() {
sharedUInt8().MarkDependenceInstBase.dependenceKind =
uint8_t(MarkDependenceKind::Escaping);
}
};
/// The result forwards the value of the first operand ('value') and depends on
/// the second operand ('base').
///
/// The 'value' and the forwarded result are both either an object type or an
/// address type. The semantics are the same in each case.
///
/// 'base' may have either object or address type independent from the type of
/// 'value'. If 'base' is an address, then the dependency is on the current
/// value stored at the address.
class MarkDependenceInst
: public MarkDependenceInstBase<SILInstructionKind::MarkDependenceInst,
OwnershipForwardingSingleValueInstruction> {
friend SILBuilder;
MarkDependenceInst(SILDebugLocation DebugLoc, SILValue value, SILValue base,
ValueOwnershipKind forwardingOwnershipKind,
MarkDependenceKind dependenceKind)
: MarkDependenceInstBase(DebugLoc, value, base, dependenceKind,
value->getType(), forwardingOwnershipKind) {}
public:
SILValue getValue() const { return getAllOperands()[Dependent].get(); }
void setValue(SILValue newVal) {
getAllOperands()[Dependent].set(newVal);
}
// True if the dependence is limited to the scope of an OSSA lifetime. Only
// for nonescaping dependencies with owned escapable values.
bool hasScopedLifetime() const {
return isNonEscaping() && getType().isObject()
&& getOwnershipKind() == OwnershipKind::Owned
&& getType().isEscapable(*getFunction());
}
/// Visit the instructions that end the lifetime the dependent value.
///
/// Preconditions:
/// - isNonEscaping()
/// - Produces an owned, Escapable, non-address value
bool visitNonEscapingLifetimeEnds(
llvm::function_ref<bool (Operand*)> visitScopeEnd,
llvm::function_ref<bool (Operand*)> visitUnknownUse);
};
/// The in-memory value at the first operand ('address') depends on the value of
/// the second operand ('base'). This is as if the location at 'address' aliases
/// 'base' on all paths reachable from this instruction.
///
/// 'base' may have either object or address type. If 'base' is an address, then
/// the dependency is on the current value stored at the address.
class MarkDependenceAddrInst
: public MarkDependenceInstBase<SILInstructionKind::MarkDependenceAddrInst,
NonValueInstruction> {
friend SILBuilder;
MarkDependenceAddrInst(SILDebugLocation DebugLoc, SILValue value,
SILValue base, MarkDependenceKind dependenceKind)
: MarkDependenceInstBase(DebugLoc, value, base, dependenceKind) {}
public:
SILValue getAddress() const { return getAllOperands()[Dependent].get(); }
void setAddress(SILValue newVal) {
getAllOperands()[Dependent].set(newVal);
}
};
/// Shared API for MarkDependenceInst and MarkDependenceAddrInst.
class MarkDependenceInstruction {
const SILInstruction *inst = nullptr;
public:
explicit MarkDependenceInstruction(const SILInstruction *inst) {
switch (inst->getKind()) {
case SILInstructionKind::MarkDependenceInst:
case SILInstructionKind::MarkDependenceAddrInst:
this->inst = inst;
break;
default:
break;
}
}
explicit operator bool() const { return inst != nullptr; }
SILValue getBase() const {
if (inst) {
switch (inst->getKind()) {
case SILInstructionKind::MarkDependenceInst:
return cast<MarkDependenceInst>(inst)->getBase();
case SILInstructionKind::MarkDependenceAddrInst:
return cast<MarkDependenceAddrInst>(inst)->getBase();
default:
break;
}
}
return SILValue();
}
SILValue getDependent() const {
if (inst) {
switch (inst->getKind()) {
case SILInstructionKind::MarkDependenceInst:
return cast<MarkDependenceInst>(inst)->getValue();
case SILInstructionKind::MarkDependenceAddrInst:
return cast<MarkDependenceAddrInst>(inst)->getAddress();
default:
break;
}
}
return SILValue();
}
SILType getType() const {
if (auto *mdi = dyn_cast<MarkDependenceInst>(inst))
return mdi->getType();
return SILType();
}
bool isNonEscaping() const {
if (inst) {
switch (inst->getKind()) {
case SILInstructionKind::MarkDependenceInst:
return cast<MarkDependenceInst>(inst)->isNonEscaping();
case SILInstructionKind::MarkDependenceAddrInst:
return cast<MarkDependenceAddrInst>(inst)->isNonEscaping();
default:
break;
}
}
return false;
}
};
/// Promote an Objective-C block that is on the stack to the heap, or simply
/// retain a block that is already on the heap.
class CopyBlockInst
: public UnaryInstructionBase<SILInstructionKind::CopyBlockInst,
SingleValueInstruction>
{
friend SILBuilder;
CopyBlockInst(SILDebugLocation DebugLoc, SILValue operand)
: UnaryInstructionBase(DebugLoc, operand, operand->getType()) {}
};
class CopyBlockWithoutEscapingInst
: public InstructionBase<SILInstructionKind::CopyBlockWithoutEscapingInst,
SingleValueInstruction> {
friend SILBuilder;
FixedOperandList<2> Operands;
CopyBlockWithoutEscapingInst(SILDebugLocation DebugLoc, SILValue block,
SILValue closure)
: InstructionBase(DebugLoc, block->getType()), Operands{this, block,
closure} {}
public:
enum { Block, Closure };
SILValue getBlock() const { return Operands[Block].get(); }
SILValue getClosure() const { return Operands[Closure].get(); }
void setBlock(SILValue block) {
Operands[Block].set(block);
}
void setClosure(SILValue closure) {
Operands[Closure].set(closure);
}
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
};
class CopyValueInst
: public UnaryInstructionBase<SILInstructionKind::CopyValueInst,
SingleValueInstruction> {
friend class SILBuilder;
CopyValueInst(SILDebugLocation DebugLoc, SILValue operand)
: UnaryInstructionBase(DebugLoc, operand, operand->getType()) {
assert(operand->getType().isObject());
}
};
class ExplicitCopyValueInst
: public UnaryInstructionBase<SILInstructionKind::ExplicitCopyValueInst,
SingleValueInstruction> {
friend class SILBuilder;
ExplicitCopyValueInst(SILDebugLocation DebugLoc, SILValue operand)
: UnaryInstructionBase(DebugLoc, operand, operand->getType()) {}
};
class WeakCopyValueInst
: public UnaryInstructionBase<SILInstructionKind::WeakCopyValueInst,
SingleValueInstruction> {
friend class SILBuilder;
WeakCopyValueInst(SILDebugLocation DebugLoc, SILValue operand, SILType type)
: UnaryInstructionBase(DebugLoc, operand, type) {
assert(type.getReferenceStorageOwnership() == ReferenceOwnership::Weak);
assert(type.getReferenceStorageReferentType() == operand->getType());
}
};
class UnownedCopyValueInst
: public UnaryInstructionBase<SILInstructionKind::UnownedCopyValueInst,
SingleValueInstruction> {
friend class SILBuilder;
UnownedCopyValueInst(SILDebugLocation DebugLoc, SILValue operand,
SILType type)
: UnaryInstructionBase(DebugLoc, operand, type) {
assert(type.getReferenceStorageOwnership() == ReferenceOwnership::Unowned);
assert(type.getReferenceStorageReferentType() == operand->getType());
}
};
#define NEVER_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
class StrongCopy##Name##ValueInst \
: public UnaryInstructionBase< \
SILInstructionKind::StrongCopy##Name##ValueInst, \
SingleValueInstruction> { \
friend class SILBuilder; \
StrongCopy##Name##ValueInst(SILDebugLocation DebugLoc, SILValue operand, \
SILType type) \
: UnaryInstructionBase(DebugLoc, operand, \
type.getReferenceStorageReferentType()) {} \
};
#define UNCHECKED_REF_STORAGE(Name, ...) \
class StrongCopy##Name##ValueInst \
: public UnaryInstructionBase< \
SILInstructionKind::StrongCopy##Name##ValueInst, \
SingleValueInstruction> { \
friend class SILBuilder; \
StrongCopy##Name##ValueInst(SILDebugLocation DebugLoc, SILValue operand, \
SILType type) \
: UnaryInstructionBase(DebugLoc, operand, type) {} \
};
#define ALWAYS_OR_SOMETIMES_LOADABLE_CHECKED_REF_STORAGE(Name, ...) \
class StrongCopy##Name##ValueInst \
: public UnaryInstructionBase< \
SILInstructionKind::StrongCopy##Name##ValueInst, \
SingleValueInstruction> { \
friend class SILBuilder; \
StrongCopy##Name##ValueInst(SILDebugLocation DebugLoc, SILValue operand, \
SILType type) \
: UnaryInstructionBase(DebugLoc, operand, type) {} \
};
#include "swift/AST/ReferenceStorage.def"
enum IsDeadEnd_t : bool {
IsntDeadEnd = false,
IsDeadEnd = true,
};
class DestroyValueInst
: public UnaryInstructionBase<SILInstructionKind::DestroyValueInst,
NonValueInstruction> {
friend class SILBuilder;
USE_SHARED_UINT8;
DestroyValueInst(SILDebugLocation DebugLoc, SILValue operand,
PoisonRefs_t poisonRefs, IsDeadEnd_t isDeadEnd)
: UnaryInstructionBase(DebugLoc, operand) {
sharedUInt8().DestroyValueInst.poisonRefs = poisonRefs;
sharedUInt8().DestroyValueInst.deadEnd = isDeadEnd;
}
public:
/// True if this destroy fully deinitializes the type by invoking the
/// user-defined deinitializer if present. This returns false if a prior
/// drop_deinit is present.
bool isFullDeinitialization();
/// If true, then all references within the destroyed value will be
/// overwritten with a sentinel. This is used in debug builds when shortening
/// non-trivial value lifetimes to ensure the debugger cannot inspect invalid
/// memory. These semantics are part of the destroy_value instruction to
/// avoid representing use-after-destroy in OSSA form and so that OSSA
/// transformations keep the poison operation associated with the destroy
/// point. After OSSA, these are lowered to 'debug_values [poison]'
/// instructions, after which the Onone pipeline should avoid code motion.
PoisonRefs_t poisonRefs() const {
return PoisonRefs_t(sharedUInt8().DestroyValueInst.poisonRefs);
}
void setPoisonRefs(PoisonRefs_t poisonRefs = PoisonRefs) {
sharedUInt8().DestroyValueInst.poisonRefs = poisonRefs;
}
/// If the value being destroyed is a stack allocation of a nonescaping
/// closure, then return the PartialApplyInst that allocated the closure.
PartialApplyInst *getNonescapingClosureAllocation() const;
IsDeadEnd_t isDeadEnd() const {
return IsDeadEnd_t(sharedUInt8().DestroyValueInst.deadEnd);
}
};
class MoveValueInst
: public UnaryInstructionBase<SILInstructionKind::MoveValueInst,
SingleValueInstruction> {
friend class SILBuilder;
USE_SHARED_UINT8;
MoveValueInst(SILDebugLocation DebugLoc, SILValue operand,
IsLexical_t isLexical, HasPointerEscape_t hasPointerEscape,
IsFromVarDecl_t fromVarDecl)
: UnaryInstructionBase(DebugLoc, operand, operand->getType()) {
sharedUInt8().MoveValueInst.lexical = (bool)isLexical;
sharedUInt8().MoveValueInst.pointerEscape = (bool)hasPointerEscape;
sharedUInt8().MoveValueInst.fromVarDecl = (bool)fromVarDecl;
}
public:
/// If set to true, we should emit the kill diagnostic for this move_value. If
/// set to false, we shouldn't emit such a diagnostic. This is a short term
/// addition until we get MoveOnly wrapper types into the SIL type system.
bool getAllowDiagnostics() const {
return sharedUInt8().MoveValueInst.allowDiagnostics;
}
void setAllowsDiagnostics(bool newValue) {
sharedUInt8().MoveValueInst.allowDiagnostics = newValue;
}
IsLexical_t isLexical() const {
return IsLexical_t(sharedUInt8().MoveValueInst.lexical);
}
void removeIsLexical() {
sharedUInt8().MoveValueInst.lexical = (bool)IsNotLexical;
}
HasPointerEscape_t hasPointerEscape() const {
return HasPointerEscape_t(sharedUInt8().MoveValueInst.pointerEscape);
}
void setHasPointerEscape(bool pointerEscape) {
sharedUInt8().MoveValueInst.pointerEscape = pointerEscape;
}
IsFromVarDecl_t isFromVarDecl() const {
return IsFromVarDecl_t(sharedUInt8().MoveValueInst.fromVarDecl);
}
};
/// Drop the user-defined deinitializer from a struct or enum. Takes either an
/// object or address operand and produces an object or address. See SIL.rst
/// for details. See SILVerifier.cpp for constraints on valid uses.
class DropDeinitInst
: public UnaryInstructionBase<SILInstructionKind::DropDeinitInst,
OwnershipForwardingSingleValueInstruction> {
friend class SILBuilder;
DropDeinitInst(SILDebugLocation DebugLoc, SILValue operand)
: UnaryInstructionBase(DebugLoc, operand, operand->getType(),
OwnershipKind::Owned) {}
};
/// Equivalent to a copy_addr to [init] except that it is used for diagnostics
/// and should not be pattern matched. During the diagnostic passes, the "move
/// function" checker for addresses always converts this to a copy_addr [init]
/// (if we emitted a diagnostic and proved we could not emit a move here) or a
/// copy_addr [take][init] if we can. So this should never occur in canonical
/// SIL.
class MarkUnresolvedMoveAddrInst
: public InstructionBase<SILInstructionKind::MarkUnresolvedMoveAddrInst,
NonValueInstruction>,
public CopyLikeInstruction {
friend class SILBuilder;
FixedOperandList<2> Operands;
MarkUnresolvedMoveAddrInst(SILDebugLocation DebugLoc, SILValue srcAddr,
SILValue takeAddr)
: InstructionBase(DebugLoc), Operands(this, srcAddr, takeAddr) {}
public:
SILValue getSrc() const { return Operands[Src].get(); }
SILValue getDest() const { return Operands[Dest].get(); }
void setSrc(SILValue V) { Operands[Src].set(V); }
void setDest(SILValue V) { Operands[Dest].set(V); }
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
};
/// This is a marker instruction that has no effect that is consumed by a
/// diagnostic based semantic checker. Example: no implicit copy. Only legal in
/// Raw SIL so that we can guarantee canonical SIL has had all SSA based
/// checking by the checkers that rely upon this instruction.
class MarkUnresolvedNonCopyableValueInst
: public UnaryInstructionBase<
SILInstructionKind::MarkUnresolvedNonCopyableValueInst,
OwnershipForwardingSingleValueInstruction> {
friend class SILBuilder;
public:
enum class CheckKind : unsigned {
Invalid = 0,
/// A signal to the move only checker to perform checking that allows for
/// this value to be consumed along its boundary (in the case of let/var
/// semantics) and also written over in the case of var semantics. NOTE: Of
/// course this still implies the value cannot be copied and can be consumed
/// only once along all program paths.
ConsumableAndAssignable,
/// A signal to the move only checker to perform no consume or assign
/// checking. This forces the result of this instruction owned value to
/// never be consumed (for let/var semantics) or assigned over (for var
/// semantics). Of course, we still allow for non-consuming uses.
NoConsumeOrAssign,
/// A signal to the move checker that the given value cannot be consumed,
/// but is allowed to be assigned over. This is used for situations like
/// global_addr/ref_element_addr/closure escape where we do not want to
/// allow for the user to take the value (leaving the memory in an
/// uninitialized state), but we are ok with the user assigning a new value,
/// completely assigning over the value at once.
AssignableButNotConsumable,
/// A signal to the move checker that the given value cannot be consumed or
/// assigned, but is allowed to be initialized. This is used for situations
/// like class initializers.
InitableButNotConsumable,
};
/// During SILGen, we have not yet done escape analysis on local variables,
/// so we conservatively emit them as boxed and let the AllocBoxToStack
/// pass promote unescaped local variables. As part of this promotion,
/// non-strict `NoConsumeOrAssign` accesses can be promoted to
/// `ConsumableAndAssignable` since the variable is locally owned
/// if it doesn't escape. "Strict" accesses on the other hand preserve
/// their stricter access constraints. This is useful for representing things
/// like `borrow` bindings.
enum IsStrict_t : bool {
IsNotStrict = false,
IsStrict = true,
};
private:
CheckKind kind;
IsStrict_t strict;
MarkUnresolvedNonCopyableValueInst(SILDebugLocation DebugLoc,
SILValue operand, CheckKind checkKind,
IsStrict_t strict = IsNotStrict)
: UnaryInstructionBase(DebugLoc, operand, operand->getType(),
operand->getOwnershipKind()),
kind(checkKind),
strict(strict) {
assert(operand->getType().isMoveOnly() &&
"mark_unresolved_non_copyable_value can only take a move only typed "
"value");
}
public:
CheckKind getCheckKind() const { return kind; }
void setCheckKind(CheckKind newKind) { kind = newKind; }
bool hasMoveCheckerKind() const {
switch (kind) {
case CheckKind::Invalid:
return false;
case CheckKind::ConsumableAndAssignable:
case CheckKind::NoConsumeOrAssign:
case CheckKind::AssignableButNotConsumable:
case CheckKind::InitableButNotConsumable:
return true;
}
}
IsStrict_t isStrict() const {
return strict;
}
};
/// A marker instruction that states a given alloc_box or alloc_stack is a
/// reference binding that must be transformed.
class MarkUnresolvedReferenceBindingInst
: public UnaryInstructionBase<
SILInstructionKind::MarkUnresolvedReferenceBindingInst,
OwnershipForwardingSingleValueInstruction> {
friend class SILBuilder;
public:
enum class Kind : unsigned {
Invalid = 0,
InOut = 1,
};
private:
Kind kind;
MarkUnresolvedReferenceBindingInst(SILDebugLocation debugLoc,
SILValue operand, Kind kind)
: UnaryInstructionBase(debugLoc, operand, operand->getType(),
operand->getOwnershipKind()),
kind(kind) {}
public:
Kind getKind() const { return kind; }
};
/// Convert from a non-trivial copyable type to an `@moveOnly` wrapper type.
///
/// IMPORTANT: Unlike other forwarding instructions, the ownership of
/// copyable_to_moveonly is not decided by the operand passed in on
/// construction. Instead in SILBuilder one must select the specific type of
/// ownership one wishes by using the following APIs:
///
/// * SILBuilder::createOwnedCopyableToMoveOnlyWrapperValueInst
/// * SILBuilder::createGuaranteedCopyableToMoveOnlyWrapperInst
///
/// The reason why this instruction was designed in this manner is that a
/// frontend chooses the ownership form of this instruction based off of the
/// semantic place that the value is used. Specifically:
///
/// 1. When creating a moveOnly wrapped value for an owned argument or a value,
/// we use the owned variant.
///
/// 2. When creating a moveOnly wrapped value from a guaranteed argument, we use
/// the guaranteed variant.
class CopyableToMoveOnlyWrapperValueInst
: public UnaryInstructionBase<
SILInstructionKind::CopyableToMoveOnlyWrapperValueInst,
OwnershipForwardingSingleValueInstruction> {
public:
enum InitialKind {
Guaranteed,
Owned,
};
private:
friend class SILBuilder;
InitialKind initialKind;
CopyableToMoveOnlyWrapperValueInst(SILDebugLocation DebugLoc,
SILValue operand, InitialKind kind)
: UnaryInstructionBase(
DebugLoc, operand, operand->getType().addingMoveOnlyWrapper(),
kind == InitialKind::Guaranteed ? OwnershipKind::Guaranteed
: OwnershipKind::Owned),
initialKind(kind) {
assert(!operand->getType().isMoveOnly() &&
"Cannot be moveonly or moveonly wrapped");
}
public:
InitialKind getInitialKind() const { return initialKind; }
bool hasGuaranteedInitialKind() const {
return getInitialKind() == InitialKind::Guaranteed;
}
bool hasOwnedInitialKind() const {
return getInitialKind() == InitialKind::Owned;
}
};
/// Convert from an @moveOnly wrapper type to the underlying copyable type. Can
/// be either owned or guaranteed.
///
/// IMPORTANT: Unlike other forwarding instructions, the ownership of moveonly
/// to copyable is not forwarded from the operand. Instead in SILBuilder one
/// must select the specific type of ownership one wishes by using the following
/// APIs:
///
/// * SILBuilder::createOwnedMoveOnlyWrapperToCopyableValueInst
/// * SILBuilder::createGuaranteedMoveOnlyWrapperToCopyableValueInst
///
/// The reason why this instruction was designed in this manner is that a
/// frontend chooses the ownership form of this instruction based off of the
/// semantic place that the value is used. As an example:
///
/// 1. When calling a function semantically with guaranteed ownership, the
/// frontend would use the "guaranteed variant".
///
/// 2. When returning a value or assigning into another binding, a frontend
/// would want to use the owned variant so that the move only checker will
/// enforce the end of the moved value's lifetime.
///
/// NOTE: With time, we are going to eliminate the guaranteed form of this
/// instruction in favor of a function conversion instruction.
class MoveOnlyWrapperToCopyableValueInst
: public UnaryInstructionBase<
SILInstructionKind::MoveOnlyWrapperToCopyableValueInst,
OwnershipForwardingSingleValueInstruction> {
public:
enum InitialKind {
Guaranteed,
Owned,
};
private:
friend class SILBuilder;
InitialKind initialKind;
MoveOnlyWrapperToCopyableValueInst(const SILFunction &fn,
SILDebugLocation DebugLoc,
SILValue operand, InitialKind kind)
: UnaryInstructionBase(
DebugLoc, operand, operand->getType().removingMoveOnlyWrapper(),
kind == InitialKind::Guaranteed ? OwnershipKind::Guaranteed
: OwnershipKind::Owned),
initialKind(kind) {
assert(operand->getType().isMoveOnlyWrapped() &&
"Expected moveonlywrapped argument!");
}
public:
InitialKind getInitialKind() const { return initialKind; }
bool hasGuaranteedInitialKind() const {
return getInitialKind() == InitialKind::Guaranteed;
}
bool hasOwnedInitialKind() const {
return getInitialKind() == InitialKind::Owned;
}
};
/// Convert a ${ @moveOnly T } to $T. This is a forwarding instruction that acts
/// similarly to an object cast like upcast, unlike
/// MoveOnlyWrapperToCopyableValue which provides artificial semantics injected
/// by SILGen.
class MoveOnlyWrapperToCopyableBoxInst
: public UnaryInstructionBase<
SILInstructionKind::MoveOnlyWrapperToCopyableBoxInst,
OwnershipForwardingSingleValueInstruction> {
friend class SILBuilder;
MoveOnlyWrapperToCopyableBoxInst(SILDebugLocation DebugLoc, SILValue operand,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionBase(
DebugLoc, operand,
operand->getType().removingMoveOnlyWrapperFromBoxedType(
operand->getFunction()),
forwardingOwnershipKind) {
assert(
operand->getType().isBoxedMoveOnlyWrappedType(operand->getFunction()) &&
"Expected moveonlywrapped argument!");
}
};
class CopyableToMoveOnlyWrapperAddrInst
: public UnaryInstructionBase<
SILInstructionKind::CopyableToMoveOnlyWrapperAddrInst,
SingleValueInstruction> {
friend class SILBuilder;
CopyableToMoveOnlyWrapperAddrInst(SILDebugLocation DebugLoc, SILValue operand)
: UnaryInstructionBase(DebugLoc, operand,
operand->getType().addingMoveOnlyWrapper()) {
assert(!operand->getType().isMoveOnly() && "Expected copyable argument");
}
};
class MoveOnlyWrapperToCopyableAddrInst
: public UnaryInstructionBase<
SILInstructionKind::MoveOnlyWrapperToCopyableAddrInst,
SingleValueInstruction> {
friend class SILBuilder;
MoveOnlyWrapperToCopyableAddrInst(SILDebugLocation DebugLoc, SILValue operand)
: UnaryInstructionBase(DebugLoc, operand,
operand->getType().removingMoveOnlyWrapper()) {
assert(operand->getType().isMoveOnlyWrapped() &&
"Expected moveonlywrapped argument");
}
};
/// Given an object reference, return true iff it is non-nil and refers
/// to a native swift object with strong reference count of 1.
class IsUniqueInst
: public UnaryInstructionBase<SILInstructionKind::IsUniqueInst,
SingleValueInstruction>
{
friend SILBuilder;
IsUniqueInst(SILDebugLocation DebugLoc, SILValue Operand, SILType BoolTy)
: UnaryInstructionBase(DebugLoc, Operand, BoolTy) {}
};
/// Performs a uniqueness check of the operand for the purpose of modifying
/// a copy-on-write object.
///
/// Returns two results: the first result is an Int1 which is the result of the
/// uniqueness check. The second result is the class reference operand, which
/// can be used for mutation.
class BeginCOWMutationInst final
: public UnaryInstructionBase<SILInstructionKind::BeginCOWMutationInst,
MultipleValueInstruction>,
public MultipleValueInstructionTrailingObjects<BeginCOWMutationInst>
{
friend SILBuilder;
friend TrailingObjects;
USE_SHARED_UINT8;
BeginCOWMutationInst(SILDebugLocation loc, SILValue operand,
ArrayRef<SILType> resultTypes,
ArrayRef<ValueOwnershipKind> resultOwnerships,
bool isNative);
static BeginCOWMutationInst *
create(SILDebugLocation loc, SILValue operand, SILType BoolTy, SILFunction &F,
bool isNative);
public:
using MultipleValueInstructionTrailingObjects::totalSizeToAlloc;
/// Returns the result of the uniqueness check.
SILValue getUniquenessResult() const {
return &getAllResultsBuffer()[0];
}
/// Returns the class reference which can be used for mutation.
SILValue getBufferResult() const {
return &getAllResultsBuffer()[1];
}
bool isNative() const {
return sharedUInt8().BeginCOWMutationInst.native;
}
void setNative(bool native = true) {
sharedUInt8().BeginCOWMutationInst.native = native;
}
};
/// Marks the end of the mutation of a reference counted object.
class EndCOWMutationInst
: public UnaryInstructionBase<SILInstructionKind::EndCOWMutationInst,
SingleValueInstruction>
{
friend SILBuilder;
USE_SHARED_UINT8;
EndCOWMutationInst(SILDebugLocation DebugLoc, SILValue Operand,
bool keepUnique)
: UnaryInstructionBase(DebugLoc, Operand, Operand->getType()) {
setKeepUnique(keepUnique);
}
public:
bool doKeepUnique() const {
return sharedUInt8().EndCOWMutationInst.keepUnique;
}
void setKeepUnique(bool keepUnique = true) {
sharedUInt8().EndCOWMutationInst.keepUnique = keepUnique;
}
};
/// Given an escaping closure return true iff it has a non-nil context and the
/// context has a strong reference count greater than 1.
class DestroyNotEscapedClosureInst
: public UnaryInstructionBase<SILInstructionKind::DestroyNotEscapedClosureInst,
SingleValueInstruction> {
friend SILBuilder;
unsigned VerificationType;
DestroyNotEscapedClosureInst(SILDebugLocation DebugLoc, SILValue Operand,
SILType BoolTy, unsigned VerificationType)
: UnaryInstructionBase(DebugLoc, Operand, BoolTy),
VerificationType(VerificationType) {}
public:
enum { WithoutActuallyEscaping, ObjCEscaping };
unsigned getVerificationType() const { return VerificationType; }
};
//===----------------------------------------------------------------------===//
// DeallocationInsts
//===----------------------------------------------------------------------===//
/// DeallocationInst - An abstract parent class for Dealloc{Stack, Box, Ref}.
class DeallocationInst : public NonValueInstruction {
protected:
DeallocationInst(SILInstructionKind Kind, SILDebugLocation DebugLoc)
: NonValueInstruction(Kind, DebugLoc) {}
public:
DEFINE_ABSTRACT_NON_VALUE_INST_BOILERPLATE(DeallocationInst)
};
/// DeallocStackInst - Deallocate stack memory allocated by alloc_stack.
class DeallocStackInst :
public UnaryInstructionBase<SILInstructionKind::DeallocStackInst,
DeallocationInst> {
friend SILBuilder;
DeallocStackInst(SILDebugLocation DebugLoc, SILValue operand)
: UnaryInstructionBase(DebugLoc, operand) {}
};
/// DeallocPackInst - Deallocate stack memory allocated by alloc_pack.
class DeallocPackInst :
public UnaryInstructionBase<SILInstructionKind::DeallocPackInst,
DeallocationInst> {
friend SILBuilder;
DeallocPackInst(SILDebugLocation debugLoc, SILValue operand)
: UnaryInstructionBase(debugLoc, operand) {}
};
/// DeallocPackMetadataInst - Deallocate stack memory allocated on behalf of the
/// operand by IRGen.
///
/// Only valid in lowered SIL.
class DeallocPackMetadataInst final
: public UnaryInstructionBase<SILInstructionKind::DeallocPackMetadataInst,
DeallocationInst> {
friend SILBuilder;
DeallocPackMetadataInst(SILDebugLocation debugLoc, SILValue alloc)
: UnaryInstructionBase(debugLoc, alloc) {}
public:
AllocPackMetadataInst *getAllocation() {
return cast<AllocPackMetadataInst>(getOperand().getDefiningInstruction());
}
/// The instruction which may trigger on-stack pack metadata when IRGen
/// lowering.
SILInstruction *getIntroducer() { return getAllocation()->getIntroducer(); }
};
/// Like DeallocStackInst, but for `alloc_ref [stack]`.
class DeallocStackRefInst
: public UnaryInstructionBase<SILInstructionKind::DeallocStackRefInst,
DeallocationInst> {
friend SILBuilder;
DeallocStackRefInst(SILDebugLocation DebugLoc, SILValue Operand)
: UnaryInstructionBase(DebugLoc, Operand) {}
public:
AllocRefInstBase *getAllocRef() {
return cast<AllocRefInstBase>(getOperand());
}
};
/// Deallocate memory for a reference type instance from a destructor or
/// failure path of a constructor.
///
/// This does not destroy the referenced instance; it must be destroyed
/// first.
///
/// It is undefined behavior if the type of the operand does not match the
/// most derived type of the allocated instance.
class DeallocRefInst :
public UnaryInstructionBase<SILInstructionKind::DeallocRefInst,
DeallocationInst> {
friend SILBuilder;
DeallocRefInst(SILDebugLocation DebugLoc, SILValue Operand)
: UnaryInstructionBase(DebugLoc, Operand) { }
};
/// Deallocate memory for a reference type instance from a failure path of a
/// constructor.
///
/// The instance is assumed to have been partially initialized, with the
/// initialized portion being all instance variables in classes that are more
/// derived than the given metatype.
///
/// The metatype value can either be the static self type (in a designated
/// initializer) or a dynamic self type (in a convenience initializer).
class DeallocPartialRefInst
: public InstructionBase<SILInstructionKind::DeallocPartialRefInst,
DeallocationInst> {
friend SILBuilder;
private:
FixedOperandList<2> Operands;
DeallocPartialRefInst(SILDebugLocation DebugLoc, SILValue Operand,
SILValue Metatype)
: InstructionBase(DebugLoc),
Operands(this, Operand, Metatype) {}
public:
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
SILValue getInstance() const { return getOperand(0); }
SILValue getMetatype() const { return getOperand(1); }
};
/// Deallocate memory allocated for a boxed value created by an AllocBoxInst.
/// It is undefined behavior if the type of the boxed type does not match the
/// type the box was allocated for.
///
/// This does not destroy the boxed value instance; it must either be
/// uninitialized or have been manually destroyed.
class DeallocBoxInst
: public UnaryInstructionBase<SILInstructionKind::DeallocBoxInst,
DeallocationInst>
{
friend SILBuilder;
USE_SHARED_UINT8;
public:
IsDeadEnd_t isDeadEnd() const {
return IsDeadEnd_t(sharedUInt8().DeallocBoxInst.deadEnd);
}
private:
DeallocBoxInst(SILDebugLocation DebugLoc, SILValue operand,
IsDeadEnd_t isDeadEnd)
: UnaryInstructionBase(DebugLoc, operand) {
sharedUInt8().DeallocBoxInst.deadEnd = isDeadEnd;
}
};
/// Deallocate memory allocated for a boxed existential container created by
/// AllocExistentialBox. It is undefined behavior if the given concrete type
/// does not match the concrete type for which the box was allocated.
///
/// This does not destroy the boxed value instance; it must either be
/// uninitialized or have been manually destroyed.
class DeallocExistentialBoxInst
: public UnaryInstructionBase<SILInstructionKind::DeallocExistentialBoxInst,
DeallocationInst>
{
friend SILBuilder;
CanType ConcreteType;
DeallocExistentialBoxInst(SILDebugLocation DebugLoc, CanType concreteType,
SILValue operand)
: UnaryInstructionBase(DebugLoc, operand), ConcreteType(concreteType) {}
public:
CanType getConcreteType() const { return ConcreteType; }
};
/// Destroy the value at a memory location according to
/// its SIL type. This is similar to:
/// %1 = load %operand
/// release_value %1
/// but a destroy instruction can be used for types that cannot be loaded,
/// such as resilient value types.
class DestroyAddrInst
: public UnaryInstructionBase<SILInstructionKind::DestroyAddrInst,
NonValueInstruction>
{
friend SILBuilder;
DestroyAddrInst(SILDebugLocation DebugLoc, SILValue Operand)
: UnaryInstructionBase(DebugLoc, Operand) {}
};
/// Project out the address of the value in a box.
class ProjectBoxInst
: public UnaryInstructionBase<SILInstructionKind::ProjectBoxInst,
SingleValueInstruction> {
friend SILBuilder;
unsigned Index;
ProjectBoxInst(SILDebugLocation DebugLoc,
SILValue operand,
unsigned fieldIndex,
SILType fieldTy)
: UnaryInstructionBase(DebugLoc, operand, fieldTy.getAddressType()),
Index(fieldIndex) {}
public:
unsigned getFieldIndex() const { return Index; }
};
/// Project out the address of the value in an existential box.
class ProjectExistentialBoxInst
: public UnaryInstructionBase<SILInstructionKind::ProjectExistentialBoxInst,
SingleValueInstruction> {
friend SILBuilder;
ProjectExistentialBoxInst(SILDebugLocation DebugLoc, SILType valueType,
SILValue operand)
: UnaryInstructionBase(DebugLoc, operand, valueType.getAddressType()) {}
};
//===----------------------------------------------------------------------===//
// Runtime failure
//===----------------------------------------------------------------------===//
/// Trigger a runtime failure if the given Int1 value is true.
///
/// Optionally cond_fail has a static failure message, which is displayed in the debugger in case the failure
/// is triggered.
class CondFailInst final
: public UnaryInstructionBase<SILInstructionKind::CondFailInst,
NonValueInstruction>,
private llvm::TrailingObjects<CondFailInst, char>
{
friend TrailingObjects;
friend SILBuilder;
unsigned MessageSize;
CondFailInst(SILDebugLocation DebugLoc, SILValue Operand, StringRef Message);
static CondFailInst *create(SILDebugLocation DebugLoc, SILValue Operand,
StringRef Message, SILModule &M);
public:
StringRef getMessage() const {
return {getTrailingObjects<char>(), MessageSize};
}
};
//===----------------------------------------------------------------------===//
// Pointer/address indexing instructions
//===----------------------------------------------------------------------===//
/// Abstract base class for indexing instructions.
class IndexingInst : public SingleValueInstruction {
enum { Base, Index };
FixedOperandList<2> Operands;
public:
IndexingInst(SILInstructionKind Kind, SILDebugLocation DebugLoc,
SILType ResultTy, SILValue Operand, SILValue Index)
: SingleValueInstruction(Kind, DebugLoc, ResultTy),
Operands{this, Operand, Index} {}
SILValue getBase() const { return Operands[Base].get(); }
SILValue getIndex() const { return Operands[Index].get(); }
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
const Operand &getBaseOperandRef() const { return getAllOperands()[Base]; }
DEFINE_ABSTRACT_SINGLE_VALUE_INST_BOILERPLATE(IndexingInst)
};
/// IndexAddrInst - "%2 : $*T = index_addr %0 : $*T, %1 : $Builtin.Word"
/// This takes an address and indexes it, striding by the pointed-
/// to type. This is used to index into arrays of uniform elements.
class IndexAddrInst
: public InstructionBase<SILInstructionKind::IndexAddrInst,
IndexingInst> {
friend SILBuilder;
USE_SHARED_UINT8;
enum { Base, Index };
IndexAddrInst(SILDebugLocation DebugLoc, SILValue Operand, SILValue Index,
bool needsStackProtection)
: InstructionBase(DebugLoc, Operand->getType(), Operand, Index) {
sharedUInt8().IndexAddrInst.needsStackProtection = needsStackProtection;
}
public:
bool needsStackProtection() const {
return sharedUInt8().IndexAddrInst.needsStackProtection;
}
};
/// TailAddrInst - like IndexingInst, but aligns-up the resulting address to a
/// tail-allocated element type.
class TailAddrInst
: public InstructionBase<SILInstructionKind::TailAddrInst,
IndexingInst> {
friend SILBuilder;
TailAddrInst(SILDebugLocation DebugLoc, SILValue Operand, SILValue Count,
SILType ResultTy)
: InstructionBase(DebugLoc, ResultTy, Operand, Count) {}
public:
SILType getTailType() const { return getType().getObjectType(); }
};
/// IndexRawPointerInst
/// %2 : $Builtin.RawPointer \
/// = index_raw_pointer %0 : $Builtin.RawPointer, %1 : $Builtin.Word
/// This takes an address and indexes it, striding by the pointed-
/// to type. This is used to index into arrays of uniform elements.
class IndexRawPointerInst
: public InstructionBase<SILInstructionKind::IndexRawPointerInst,
IndexingInst> {
friend SILBuilder;
enum { Base, Index };
IndexRawPointerInst(SILDebugLocation DebugLoc, SILValue Operand,
SILValue Index)
: InstructionBase(DebugLoc, Operand->getType(), Operand, Index) {
}
};
//===----------------------------------------------------------------------===//
// Instructions representing terminators
//===----------------------------------------------------------------------===//
enum class TermKind {
#define TERMINATOR(Id, TextualName, Parent, MemBehavior, MayRelease) \
Id = unsigned(SILInstructionKind::Id),
#include "SILNodes.def"
};
/// This class defines a "terminating instruction" for a SILBasicBlock.
class TermInst : public NonValueInstruction {
protected:
TermInst(SILInstructionKind K, SILDebugLocation DebugLoc)
: NonValueInstruction(K, DebugLoc) {}
public:
using ConstSuccessorListTy = ArrayRef<SILSuccessor>;
using SuccessorListTy = MutableArrayRef<SILSuccessor>;
/// The successor basic blocks of this terminator.
SuccessorListTy getSuccessors();
ConstSuccessorListTy getSuccessors() const {
return const_cast<TermInst*>(this)->getSuccessors();
}
using const_succ_iterator = ConstSuccessorListTy::const_iterator;
using succ_iterator = SuccessorListTy::iterator;
bool succ_empty() const { return getSuccessors().empty(); }
succ_iterator succ_begin() { return getSuccessors().begin(); }
succ_iterator succ_end() { return getSuccessors().end(); }
const_succ_iterator succ_begin() const { return getSuccessors().begin(); }
const_succ_iterator succ_end() const { return getSuccessors().end(); }
unsigned getNumSuccessors() const { return getSuccessors().size(); }
using succblock_iterator =
TransformIterator<SILSuccessor *,
SILBasicBlock *(*)(const SILSuccessor &)>;
using const_succblock_iterator = TransformIterator<
const SILSuccessor *,
const SILBasicBlock *(*)(const SILSuccessor &)>;
succblock_iterator succblock_begin() {
return succblock_iterator(getSuccessors().begin(),
[](const SILSuccessor &succ) -> SILBasicBlock * {
return succ.getBB();
});
}
succblock_iterator succblock_end() {
return succblock_iterator(getSuccessors().end(),
[](const SILSuccessor &succ) -> SILBasicBlock * {
return succ.getBB();
});
}
const_succblock_iterator succblock_begin() const {
return const_succblock_iterator(
getSuccessors().begin(),
[](const SILSuccessor &succ) -> const SILBasicBlock * {
return succ.getBB();
});
}
const_succblock_iterator succblock_end() const {
return const_succblock_iterator(
getSuccessors().end(),
[](const SILSuccessor &succ) -> const SILBasicBlock * {
return succ.getBB();
});
}
SILBasicBlock *getSingleSuccessorBlock() {
if (succ_empty() || std::next(succ_begin()) != succ_end())
return nullptr;
return *succ_begin();
}
const SILBasicBlock *getSingleSuccessorBlock() const {
return const_cast<TermInst *>(this)->getSingleSuccessorBlock();
}
using SuccessorBlockArgumentListTy =
TransformRange<ConstSuccessorListTy, function_ref<ArrayRef<SILArgument *>(
const SILSuccessor &)>>;
/// Return the range of Argument arrays for each successor of this
/// block.
SuccessorBlockArgumentListTy getSuccessorBlockArgumentLists() const;
using SuccessorBlockListTy =
TransformRange<SuccessorListTy,
SILBasicBlock *(*)(const SILSuccessor &)>;
using ConstSuccessorBlockListTy =
TransformRange<ConstSuccessorListTy,
const SILBasicBlock *(*)(const SILSuccessor &)>;
/// Return the range of SILBasicBlocks that are successors of this block.
SuccessorBlockListTy getSuccessorBlocks() {
return SuccessorBlockListTy(getSuccessors(),
[](const SILSuccessor &succ) -> SILBasicBlock* {
return succ.getBB();
});
}
/// Return the range of SILBasicBlocks that are successors of this block.
ConstSuccessorBlockListTy getSuccessorBlocks() const {
return ConstSuccessorBlockListTy(
getSuccessors(),
[](const SILSuccessor &succ) -> const SILBasicBlock * {
return succ.getBB();
});
}
void replaceBranchTarget(SILBasicBlock *oldDest, SILBasicBlock *newDest);
DEFINE_ABSTRACT_NON_VALUE_INST_BOILERPLATE(TermInst)
bool isBranch() const { return !getSuccessors().empty(); }
/// Returns true if this terminator exits the function.
bool isFunctionExiting() const;
/// Returns true if this terminator terminates the program.
bool isProgramTerminating() const;
TermKind getTermKind() const { return TermKind(getKind()); }
/// Returns true if this terminator may have a result, represented as a block
/// argument in any of its successor blocks.
///
/// Phis (whose operands originate from BranchInst terminators) are not
/// terminator results.
///
/// CondBr might produce block arguments for legacy reasons. This is gradually
/// being deprecated. For now, they are considered phis. In OSSA, these "phis"
/// must be trivial and critical edges cannot be present.
bool mayHaveTerminatorResult() const {
switch (getTermKind()) {
case TermKind::UnwindInst:
case TermKind::UnreachableInst:
case TermKind::ReturnInst:
case TermKind::ThrowInst:
case TermKind::ThrowAddrInst:
case TermKind::YieldInst:
case TermKind::CondBranchInst:
case TermKind::BranchInst:
case TermKind::SwitchEnumAddrInst:
case TermKind::CheckedCastAddrBranchInst:
return false;
case TermKind::CheckedCastBranchInst:
case TermKind::SwitchEnumInst:
case TermKind::SwitchValueInst:
case TermKind::TryApplyInst:
case TermKind::AwaitAsyncContinuationInst:
case TermKind::DynamicMethodBranchInst:
return true;
}
llvm_unreachable("Covered switch isn't covered.");
}
/// Returns an Operand reference if this terminator forwards ownership of a
/// single operand to a single result for at least one successor
/// block. Otherwise returns nullptr.
///
/// By convention, terminators can forward ownership of at most one operand to
/// at most one result. The operand value might not be directly forwarded. For
/// example, a switch forwards ownership of the enum type into ownership of
/// the payload.
///
/// Postcondition: if the result is non-null, then each successor has zero or
/// one block arguments which represents the forwaded result.
const Operand *forwardedOperand() const;
Operand *forwardedOperand() {
return const_cast<Operand *>(
static_cast<const TermInst *>(this)->forwardedOperand());
}
};
// Forwards the first operand to a result in each successor block.
class OwnershipForwardingTermInst : public TermInst,
public ForwardingInstruction {
protected:
OwnershipForwardingTermInst(SILInstructionKind kind,
SILDebugLocation debugLoc,
ValueOwnershipKind ownershipKind,
bool preservesOwnership = true)
: TermInst(kind, debugLoc),
ForwardingInstruction(kind, ownershipKind, preservesOwnership) {
assert(classof(kind));
}
public:
static bool classof(SILNodePointer node) {
if (auto *i = dyn_cast<SILInstruction>(node.get()))
return classof(i);
return false;
}
static bool classof(const SILInstruction *inst) {
return classof(inst->getKind());
}
static bool classof(SILInstructionKind kind) {
return kind == SILInstructionKind::SwitchEnumInst ||
kind == SILInstructionKind::CheckedCastBranchInst;
}
SILValue getOperand() const { return getAllOperands()[0].get(); }
Operand &getOperandRef() { return getAllOperands()[0]; }
const Operand &getOperandRef() const { return getAllOperands()[0]; }
/// Create a result for this terminator on the given successor block.
SILPhiArgument *createResult(SILBasicBlock *succ, SILType resultTy);
};
/// UnreachableInst - Position in the code which would be undefined to reach.
/// These are always implicitly generated, e.g. when falling off the end of a
/// function or after a no-return function call.
class UnreachableInst
: public InstructionBase<SILInstructionKind::UnreachableInst,
TermInst> {
friend SILBuilder;
UnreachableInst(SILDebugLocation DebugLoc)
: InstructionBase(DebugLoc) {}
public:
SuccessorListTy getSuccessors() {
// No Successors.
return SuccessorListTy();
}
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
};
/// ReturnInst - Representation of a ReturnStmt.
class ReturnInst
: public UnaryInstructionBase<SILInstructionKind::ReturnInst, TermInst>
{
friend SILBuilder;
/// We store the ownership kind in the return inst, but we do not consider the
/// underlying return inst to be forwarding. This is because its ownership is
/// tied to the function signature and thus should be static.
ValueOwnershipKind ownershipKind;
/// Constructs a ReturnInst representing a return.
///
/// \param func The function we are returning from. Used to compute the
/// preferred ownership kind.
/// \param debugLoc The backing AST location.
/// \param returnValue The value to be returned.
ReturnInst(SILFunction &func, SILDebugLocation debugLoc,
SILValue returnValue);
public:
/// Return the ownership kind for this instruction if we had any direct
/// results.
ValueOwnershipKind getOwnershipKind() const { return ownershipKind; }
SuccessorListTy getSuccessors() {
// No Successors.
return SuccessorListTy();
}
};
/// ThrowInst - Throw a typed error, returning it via the direct error result.
class ThrowInst
: public UnaryInstructionBase<SILInstructionKind::ThrowInst, TermInst>
{
friend SILBuilder;
/// Constructs a ThrowInst representing a throw out of the current
/// function.
///
/// \param DebugLoc The location of the throw.
/// \param errorValue The value to be thrown.
ThrowInst(SILDebugLocation DebugLoc, SILValue errorValue)
: UnaryInstructionBase(DebugLoc, errorValue) {}
public:
SuccessorListTy getSuccessors() {
// No successors.
return SuccessorListTy();
}
};
/// ThrowAddrInst - Throw a typed error, previously stored in the indirect
/// error result.
class ThrowAddrInst
: public InstructionBase<SILInstructionKind::ThrowAddrInst, TermInst>
{
friend SILBuilder;
/// Constructs a ThrowAddrInst representing a throw out of the current
/// function.
///
/// \param DebugLoc The location of the throw.
ThrowAddrInst(SILDebugLocation DebugLoc)
: InstructionBase(DebugLoc) {}
public:
SuccessorListTy getSuccessors() {
// No successors.
return SuccessorListTy();
}
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
};
/// UnwindInst - Continue unwinding out of this function. Currently this is
/// only used in coroutines as the eventual terminator of the unwind edge
/// out of a 'yield'.
class UnwindInst
: public InstructionBase<SILInstructionKind::UnwindInst,
TermInst> {
friend SILBuilder;
UnwindInst(SILDebugLocation loc)
: InstructionBase(loc) {}
public:
SuccessorListTy getSuccessors() {
// No successors.
return SuccessorListTy();
}
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
};
/// Suspend execution of an async task until
/// essentially just a funny kind of return).
class AwaitAsyncContinuationInst final
: public UnaryInstructionBase<SILInstructionKind::AwaitAsyncContinuationInst,
TermInst>
{
friend SILBuilder;
std::array<SILSuccessor, 2> Successors;
AwaitAsyncContinuationInst(SILDebugLocation Loc, SILValue Continuation,
SILBasicBlock *resumeBB,
SILBasicBlock *errorBBOrNull)
: UnaryInstructionBase(Loc, Continuation),
Successors{{{this}, {this}}}
{
Successors[0] = resumeBB;
if (errorBBOrNull)
Successors[1] = errorBBOrNull;
}
public:
/// Returns the basic block to which control is transferred when the task is
/// resumed normally.
///
/// This basic block should take an argument of the continuation's resume type,
/// unless the continuation is formed by a \c GetAsyncContinuationAddrInst
/// that binds a specific memory location to receive the resume value.
SILBasicBlock *getResumeBB() const { return Successors[0].getBB(); }
/// Returns the basic block to which control is transferred when the task is
/// resumed in an error state, or `nullptr` if the continuation does not support
/// failure.
///
/// This basic block should take an argument of Error type.
SILBasicBlock *getErrorBB() const {
return Successors[1].getBB();
}
SuccessorListTy getSuccessors() {
if (getErrorBB())
return Successors;
return SuccessorListTy(Successors.data(), 1);
}
};
/// YieldInst - Yield control temporarily to the caller of this coroutine.
///
/// This is a terminator because the caller can abort the coroutine,
/// e.g. if an error is thrown and an unwind is provoked.
class YieldInst final
: public InstructionBaseWithTrailingOperands<SILInstructionKind::YieldInst,
YieldInst, TermInst> {
friend SILBuilder;
std::array<SILSuccessor, 2> DestBBs;
YieldInst(SILDebugLocation loc, ArrayRef<SILValue> yieldedValues,
SILBasicBlock *normalBB, SILBasicBlock *unwindBB)
: InstructionBaseWithTrailingOperands(yieldedValues, loc),
DestBBs{{{this, normalBB}, {this, unwindBB}}} {}
static YieldInst *create(SILDebugLocation loc,
ArrayRef<SILValue> yieldedValues,
SILBasicBlock *normalBB, SILBasicBlock *unwindBB,
SILFunction &F);
public:
/// Return the normal resume destination of the yield, which is where the
/// coroutine resumes when the caller is ready to continue normally.
///
/// This must be the unique predecessor edge of the given block.
///
/// Control flow along every path from this block must either loop or
/// eventually terminate in a 'return', 'throw', or 'unreachable'
/// instruction. In a yield_many coroutine, control is permitted to
/// first reach a 'yield' instruction; this is prohibited in a
/// yield_once coroutine.
SILBasicBlock *getResumeBB() const { return DestBBs[0]; }
/// Return the 'unwind' destination of the yield, which is where the
/// coroutine resumes when the caller is unconditionally aborting the
/// coroutine.
///
/// This must be the unique predecessor edge of the given block.
///
/// Control flow along every path from this block must either loop or
/// eventually terminate in an 'unwind' or 'unreachable' instruction.
/// It is not permitted to reach a 'yield' instruction.
SILBasicBlock *getUnwindBB() const { return DestBBs[1]; }
OperandValueArrayRef getYieldedValues() const {
return OperandValueArrayRef(getAllOperands());
}
SuccessorListTy getSuccessors() {
return DestBBs;
}
SILYieldInfo getYieldInfoForOperand(const Operand &op) const;
SILArgumentConvention
getArgumentConventionForOperand(const Operand &op) const;
};
/// BranchInst - An unconditional branch.
class BranchInst final
: public InstructionBaseWithTrailingOperands<SILInstructionKind::BranchInst,
BranchInst, TermInst> {
friend SILBuilder;
SILSuccessor DestBB;
BranchInst(SILDebugLocation DebugLoc, SILBasicBlock *DestBB,
ArrayRef<SILValue> Args)
: InstructionBaseWithTrailingOperands(Args, DebugLoc),
DestBB(this, DestBB) {}
/// Construct a BranchInst that will branch to the specified block.
/// The destination block must take no parameters.
static BranchInst *create(SILDebugLocation DebugLoc, SILBasicBlock *DestBB,
SILFunction &F);
/// Construct a BranchInst that will branch to the specified block with
/// the given parameters.
static BranchInst *create(SILDebugLocation DebugLoc, SILBasicBlock *DestBB,
ArrayRef<SILValue> Args, SILFunction &F);
public:
/// returns jump target for the branch.
SILBasicBlock *getDestBB() const { return DestBB; }
/// The arguments for the destination BB.
OperandValueArrayRef getArgs() const {
return OperandValueArrayRef(getAllOperands());
}
SuccessorListTy getSuccessors() {
return SuccessorListTy(&DestBB, 1);
}
unsigned getNumArgs() const { return getAllOperands().size(); }
SILValue getArg(unsigned i) const { return getAllOperands()[i].get(); }
/// Return the SILPhiArgument for the given operand.
const SILPhiArgument *getArgForOperand(const Operand *oper) const {
auto *self = const_cast<BranchInst *>(this);
return self->getArgForOperand(oper);
}
/// Return the SILPhiArgument for the given operand.
///
/// See SILArgument.cpp.
SILPhiArgument *getArgForOperand(const Operand *oper);
};
/// A conditional branch.
class CondBranchInst final
: public InstructionBaseWithTrailingOperands<
SILInstructionKind::CondBranchInst,
CondBranchInst,
TermInst> {
friend SILBuilder;
public:
enum {
/// The operand index of the condition value used for the branch.
ConditionIdx,
NumFixedOpers,
};
enum {
// Map branch targets to block successor indices.
TrueIdx,
FalseIdx
};
private:
std::array<SILSuccessor, 2> DestBBs;
unsigned numTrueArguments;
CondBranchInst(SILDebugLocation DebugLoc, SILValue Condition,
SILBasicBlock *TrueBB, SILBasicBlock *FalseBB,
ArrayRef<SILValue> Args, unsigned NumTrue, unsigned NumFalse,
ProfileCounter TrueBBCount, ProfileCounter FalseBBCount);
/// Construct a CondBranchInst that will branch to TrueBB or FalseBB based on
/// the Condition value. Both blocks must not take any arguments.
static CondBranchInst *create(SILDebugLocation DebugLoc, SILValue Condition,
SILBasicBlock *TrueBB, SILBasicBlock *FalseBB,
ProfileCounter TrueBBCount,
ProfileCounter FalseBBCount, SILFunction &F);
/// Construct a CondBranchInst that will either branch to TrueBB and pass
/// TrueArgs or branch to FalseBB and pass FalseArgs based on the Condition
/// value.
static CondBranchInst *
create(SILDebugLocation DebugLoc, SILValue Condition, SILBasicBlock *TrueBB,
ArrayRef<SILValue> TrueArgs, SILBasicBlock *FalseBB,
ArrayRef<SILValue> FalseArgs, ProfileCounter TrueBBCount,
ProfileCounter FalseBBCount, SILFunction &F);
public:
const Operand *getConditionOperand() const {
return &getAllOperands()[ConditionIdx];
}
SILValue getCondition() const { return getConditionOperand()->get(); }
void setCondition(SILValue newCondition) {
getAllOperands()[ConditionIdx].set(newCondition);
}
SuccessorListTy getSuccessors() {
return DestBBs;
}
SILBasicBlock *getTrueBB() { return DestBBs[0]; }
const SILBasicBlock *getTrueBB() const { return DestBBs[0]; }
SILBasicBlock *getFalseBB() { return DestBBs[1]; }
const SILBasicBlock *getFalseBB() const { return DestBBs[1]; }
/// The number of times the True branch was executed.
ProfileCounter getTrueBBCount() const { return DestBBs[0].getCount(); }
/// The number of times the False branch was executed.
ProfileCounter getFalseBBCount() const { return DestBBs[1].getCount(); }
/// The number of arguments for the True branch.
unsigned getNumTrueArgs() const { return numTrueArguments; }
/// The number of arguments for the False branch.
unsigned getNumFalseArgs() const {
return getAllOperands().size() - NumFixedOpers - numTrueArguments;
}
/// Get the arguments to the true BB.
OperandValueArrayRef getTrueArgs() const {
return OperandValueArrayRef(getTrueOperands());
}
/// Get the arguments to the false BB.
OperandValueArrayRef getFalseArgs() const {
return OperandValueArrayRef(getFalseOperands());
}
/// Get the operands to the true BB.
ArrayRef<Operand> getTrueOperands() const {
return getAllOperands().slice(NumFixedOpers, getNumTrueArgs());
}
MutableArrayRef<Operand> getTrueOperands() {
return getAllOperands().slice(NumFixedOpers, getNumTrueArgs());
}
/// Get the operands to the false BB.
ArrayRef<Operand> getFalseOperands() const {
// The remaining arguments are 'false' operands.
return getAllOperands().slice(NumFixedOpers + getNumTrueArgs());
}
MutableArrayRef<Operand> getFalseOperands() {
// The remaining arguments are 'false' operands.
return getAllOperands().slice(NumFixedOpers + getNumTrueArgs());
}
/// Returns true if \p op is mapped to the condition operand of the cond_br.
bool isConditionOperand(Operand *op) const {
return getConditionOperand() == op;
}
bool isConditionOperandIndex(unsigned OpIndex) const {
assert(OpIndex < getNumOperands() &&
"OpIndex must be an index for an actual operand");
return OpIndex == ConditionIdx;
}
/// Is \p OpIndex an operand associated with the true case?
bool isTrueOperandIndex(unsigned OpIndex) const {
assert(OpIndex < getNumOperands() &&
"OpIndex must be an index for an actual operand");
if (getNumTrueArgs() == 0)
return false;
auto Operands = getTrueOperands();
return Operands.front().getOperandNumber() <= OpIndex &&
OpIndex <= Operands.back().getOperandNumber();
}
/// Is \p OpIndex an operand associated with the false case?
bool isFalseOperandIndex(unsigned OpIndex) const {
assert(OpIndex < getNumOperands() &&
"OpIndex must be an index for an actual operand");
if (getNumFalseArgs() == 0)
return false;
auto Operands = getFalseOperands();
return Operands.front().getOperandNumber() <= OpIndex &&
OpIndex <= Operands.back().getOperandNumber();
}
/// Returns the operand on the cond_br terminator associated with the value
/// that will be passed to DestBB in A.
Operand *getOperandForDestBB(const SILBasicBlock *DestBB,
const SILArgument *A) const;
/// Returns the operand on the cond_br terminator associated with the value
/// that will be passed as the \p Index argument to DestBB.
Operand *getOperandForDestBB(const SILBasicBlock *DestBB,
unsigned ArgIndex) const;
/// Returns the argument on the cond_br terminator that will be passed to
/// DestBB in A.
SILValue getArgForDestBB(const SILBasicBlock *DestBB,
const SILArgument *A) const {
if (auto *op = getOperandForDestBB(DestBB, A)) {
return op->get();
}
return SILValue();
}
/// Returns the argument on the cond_br terminator that will be passed as the
/// \p Index argument to DestBB.
SILValue getArgForDestBB(const SILBasicBlock *DestBB,
unsigned ArgIndex) const {
if (auto *op = getOperandForDestBB(DestBB, ArgIndex)) {
return op->get();
}
return SILValue();
}
/// Return the SILPhiArgument from either the true or false destination for
/// the given operand.
///
/// Returns nullptr for an operand with no block argument
/// (i.e the branch condition).
///
/// See SILArgument.cpp.
const SILPhiArgument *getArgForOperand(const Operand *oper) const;
void swapSuccessors();
};
/// A switch on a value of a builtin type.
class SwitchValueInst final
: public InstructionBaseWithTrailingOperands<
SILInstructionKind::SwitchValueInst,
SwitchValueInst, TermInst, SILSuccessor> {
friend SILBuilder;
USE_SHARED_UINT8;
SwitchValueInst(SILDebugLocation DebugLoc, SILValue Operand,
SILBasicBlock *DefaultBB, ArrayRef<SILValue> Cases,
ArrayRef<SILBasicBlock *> BBs);
// Tail-allocated after the SwitchValueInst record are:
// - `NumCases` SILValue values, containing
// the SILValue references for each case
// - `NumCases + HasDefault` SILSuccessor records, referencing the
// destinations for each case, ending with the default destination if
// present.
OperandValueArrayRef getCaseBuf() const {
return OperandValueArrayRef(getAllOperands().slice(1));
}
SILSuccessor *getSuccessorBuf() {
return getTrailingObjects<SILSuccessor>();
}
const SILSuccessor *getSuccessorBuf() const {
return getTrailingObjects<SILSuccessor>();
}
static SwitchValueInst *
create(SILDebugLocation DebugLoc, SILValue Operand, SILBasicBlock *DefaultBB,
ArrayRef<std::pair<SILValue, SILBasicBlock *>> CaseBBs,
SILFunction &F);
public:
/// Clean up tail-allocated successor records for the switch cases.
~SwitchValueInst();
SILValue getOperand() const { return getAllOperands()[0].get(); }
SuccessorListTy getSuccessors() {
return MutableArrayRef<SILSuccessor>{getSuccessorBuf(),
static_cast<size_t>(getNumCases() + hasDefault())};
}
unsigned getNumCases() const {
return getAllOperands().size() - 1;
}
std::pair<SILValue, SILBasicBlock*>
getCase(unsigned i) const {
assert(i < getNumCases() && "case out of bounds");
return {getCaseBuf()[i], getSuccessorBuf()[i]};
}
bool hasDefault() const {
return sharedUInt8().SwitchValueInst.hasDefault;
}
SILBasicBlock *getDefaultBB() const {
assert(hasDefault() && "doesn't have a default");
return getSuccessorBuf()[getNumCases()];
}
std::optional<unsigned> getUniqueCaseForDestination(SILBasicBlock *bb) const {
for (unsigned i = 0; i < getNumCases(); ++i) {
if (getCase(i).second == bb) {
return i;
}
}
return std::nullopt;
}
};
/// Common implementation for the switch_enum and switch_enum_addr instructions.
template <typename BaseTy>
class SwitchEnumInstBase : public BaseTy {
FixedOperandList<1> Operands;
TEMPLATE_USE_SHARED_UINT8(BaseTy);
TEMPLATE_USE_SHARED_UINT32(BaseTy);
// Tail-allocated after the SwitchEnumInst record are:
// - an array of `NumCases` EnumElementDecl* pointers, referencing the case
// discriminators
// - `NumCases + HasDefault` SILSuccessor records, referencing the
// destinations for each case, ending with the default destination if
// present.
// FIXME: This should use llvm::TrailingObjects, but it has subclasses
// (which are empty, of course).
EnumElementDecl **getCaseBuf() {
return reinterpret_cast<EnumElementDecl**>(this + 1);
}
EnumElementDecl * const* getCaseBuf() const {
return reinterpret_cast<EnumElementDecl* const*>(this + 1);
}
SILSuccessor *getSuccessorBuf() {
return reinterpret_cast<SILSuccessor*>(getCaseBuf() + getNumCases());
}
const SILSuccessor *getSuccessorBuf() const {
return reinterpret_cast<const SILSuccessor*>(getCaseBuf() + getNumCases());
}
protected:
template <typename... Rest>
SwitchEnumInstBase(
SILInstructionKind Kind, SILDebugLocation DebugLoc, SILValue Operand,
SILBasicBlock *DefaultBB,
ArrayRef<std::pair<EnumElementDecl *, SILBasicBlock *>> CaseBBs,
std::optional<ArrayRef<ProfileCounter>> Counts,
ProfileCounter DefaultCount, Rest &&...rest)
: BaseTy(Kind, DebugLoc, std::forward<Rest>(rest)...),
Operands(this, Operand) {
sharedUInt8().SwitchEnumInstBase.hasDefault = bool(DefaultBB);
sharedUInt32().SwitchEnumInstBase.numCases = CaseBBs.size();
// Initialize the case and successor arrays.
auto *cases = getCaseBuf();
auto *succs = getSuccessorBuf();
for (unsigned i = 0, size = CaseBBs.size(); i < size; ++i) {
cases[i] = CaseBBs[i].first;
if (Counts) {
::new (succs + i)
SILSuccessor(this, CaseBBs[i].second, Counts.value()[i]);
} else {
::new (succs + i) SILSuccessor(this, CaseBBs[i].second);
}
}
if (hasDefault()) {
::new (succs + getNumCases()) SILSuccessor(this, DefaultBB, DefaultCount);
}
}
template <typename SWITCH_ENUM_INST, typename... RestTys>
static SWITCH_ENUM_INST *createSwitchEnum(
SILDebugLocation DebugLoc, SILValue Operand, SILBasicBlock *DefaultBB,
ArrayRef<std::pair<EnumElementDecl *, SILBasicBlock *>> CaseBBs,
SILFunction &F, std::optional<ArrayRef<ProfileCounter>> Counts,
ProfileCounter DefaultCount, RestTys &&...restArgs);
public:
/// Clean up tail-allocated successor records for the switch cases.
~SwitchEnumInstBase() {
// Destroy the successor records to keep the CFG up to date.
auto *succs = getSuccessorBuf();
for (unsigned i = 0, end = getNumCases() + hasDefault(); i < end; ++i) {
succs[i].~SILSuccessor();
}
}
SILValue getOperand() const { return Operands[0].get(); }
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
TermInst::SuccessorListTy getSuccessors() {
return MutableArrayRef<SILSuccessor>{getSuccessorBuf(),
static_cast<size_t>(getNumCases() + hasDefault())};
}
unsigned getNumCases() const {
return sharedUInt32().SwitchEnumInstBase.numCases;
}
std::pair<EnumElementDecl*, SILBasicBlock*>
getCase(unsigned i) const {
assert(i < getNumCases() && "case out of bounds");
return {getCaseBuf()[i], getSuccessorBuf()[i].getBB()};
}
ProfileCounter getCaseCount(unsigned i) const {
assert(i < getNumCases() && "case out of bounds");
return getSuccessorBuf()[i].getCount();
}
// Swap the cases at indices \p i and \p j.
void swapCase(unsigned i, unsigned j) {
assert(i < getNumCases() && "First index is out of bounds?!");
assert(j < getNumCases() && "Second index is out of bounds?!");
auto *succs = getSuccessorBuf();
// First grab our destination blocks.
SILBasicBlock *iBlock = succs[i].getBB();
SILBasicBlock *jBlock = succs[j].getBB();
// Then destroy the sil successors and reinitialize them with the new things
// that they are pointing at.
succs[i].~SILSuccessor();
::new (succs + i) SILSuccessor(this, jBlock);
succs[j].~SILSuccessor();
::new (succs + j) SILSuccessor(this, iBlock);
// Now swap our cases.
auto *cases = getCaseBuf();
std::swap(cases[i], cases[j]);
}
/// Return the block that will be branched to on the specified enum
/// case.
SILBasicBlock *getCaseDestination(EnumElementDecl *D) {
for (unsigned i = 0, e = getNumCases(); i != e; ++i) {
auto Entry = getCase(i);
if (Entry.first == D) return Entry.second;
}
// switch_enum is required to be fully covered, so return the default if we
// didn't find anything.
return getDefaultBB();
}
/// If the default refers to exactly one case decl, return it.
NullablePtr<EnumElementDecl> getUniqueCaseForDefault() {
auto enumValue = getOperand();
SILType enumType = enumValue->getType();
auto *f = SILInstruction::getFunction();
if (!enumType.isEffectivelyExhaustiveEnumType(f))
return nullptr;
EnumDecl *decl = enumType.getEnumOrBoundGenericEnum();
assert(decl && "switch_enum operand is not an enum");
SmallPtrSet<EnumElementDecl *, 4> unswitchedElts;
for (auto elt : decl->getAllElementsForLowering())
unswitchedElts.insert(elt);
for (unsigned i = 0, e = getNumCases(); i != e; ++i) {
auto Entry = getCase(i);
unswitchedElts.erase(Entry.first);
}
if (unswitchedElts.size() == 1)
return *unswitchedElts.begin();
return nullptr;
}
/// If the given block only has one enum element decl matched to it,
/// return it.
NullablePtr<EnumElementDecl>
getUniqueCaseForDestination(SILBasicBlock *block) {
SILValue value = getOperand();
SILType enumType = value->getType();
EnumDecl *decl = enumType.getEnumOrBoundGenericEnum();
assert(decl && "switch_enum operand is not an enum");
(void)decl;
EnumElementDecl *eltDecl = nullptr;
for (unsigned i : range(getNumCases())) {
auto entry = getCase(i);
if (entry.second == block) {
if (eltDecl != nullptr)
return nullptr;
eltDecl = entry.first;
}
}
if (!eltDecl && hasDefault() && getDefaultBB() == block) {
return getUniqueCaseForDefault();
}
return eltDecl;
}
bool hasDefault() const { return sharedUInt8().SwitchEnumInstBase.hasDefault; }
SILBasicBlock *getDefaultBB() const {
assert(hasDefault() && "doesn't have a default");
return getSuccessorBuf()[getNumCases()];
}
NullablePtr<SILBasicBlock> getDefaultBBOrNull() const {
if (!hasDefault())
return nullptr;
return getDefaultBB();
}
ProfileCounter getDefaultCount() const {
assert(hasDefault() && "doesn't have a default");
return getSuccessorBuf()[getNumCases()].getCount();
}
static bool classof(SILNodePointer node) {
return node->getKind() >= SILNodeKind::SwitchEnumInst &&
node->getKind() <= SILNodeKind::SwitchEnumAddrInst;
}
};
/// A switch on a loadable enum's discriminator. The data for each case is
/// passed into the corresponding destination block as an argument.
class SwitchEnumInst
: public InstructionBase<SILInstructionKind::SwitchEnumInst,
SwitchEnumInstBase<OwnershipForwardingTermInst>> {
friend SILBuilder;
private:
friend SwitchEnumInstBase;
SwitchEnumInst(
SILDebugLocation DebugLoc, SILValue Operand, SILBasicBlock *DefaultBB,
ArrayRef<std::pair<EnumElementDecl *, SILBasicBlock *>> CaseBBs,
std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount, ValueOwnershipKind forwardingOwnershipKind)
: InstructionBase(DebugLoc, Operand, DefaultBB, CaseBBs, CaseCounts,
DefaultCount, forwardingOwnershipKind) {}
static SwitchEnumInst *
create(SILDebugLocation DebugLoc, SILValue Operand, SILBasicBlock *DefaultBB,
ArrayRef<std::pair<EnumElementDecl *, SILBasicBlock *>> CaseBBs,
SILFunction &F, std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount,
ValueOwnershipKind forwardingOwnershipKind);
public:
/// Create the default result for a partially built switch_enum.
/// Returns nullptr if no default argument is needed.
SILPhiArgument *createDefaultResult();
/// Create the .some result for an optional switch_enum.
SILPhiArgument *createOptionalSomeResult();
};
/// A switch on an enum's discriminator in memory.
class SwitchEnumAddrInst
: public InstructionBase<SILInstructionKind::SwitchEnumAddrInst,
SwitchEnumInstBase<TermInst>> {
friend SILBuilder;
private:
friend SwitchEnumInstBase;
SwitchEnumAddrInst(
SILDebugLocation DebugLoc, SILValue Operand, SILBasicBlock *DefaultBB,
ArrayRef<std::pair<EnumElementDecl *, SILBasicBlock *>> CaseBBs,
std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount)
: InstructionBase(DebugLoc, Operand, DefaultBB, CaseBBs, CaseCounts,
DefaultCount) {}
static SwitchEnumAddrInst *
create(SILDebugLocation DebugLoc, SILValue Operand, SILBasicBlock *DefaultBB,
ArrayRef<std::pair<EnumElementDecl *, SILBasicBlock *>> CaseBBs,
SILFunction &F, std::optional<ArrayRef<ProfileCounter>> CaseCounts,
ProfileCounter DefaultCount);
};
/// Branch on the existence of an Objective-C method in the dynamic type of
/// an object.
///
/// If the method exists, branches to the first BB, providing it with the
/// method reference; otherwise, branches to the second BB.
class DynamicMethodBranchInst
: public InstructionBase<SILInstructionKind::DynamicMethodBranchInst,
TermInst> {
friend SILBuilder;
SILDeclRef Member;
std::array<SILSuccessor, 2> DestBBs;
/// The operand.
FixedOperandList<1> Operands;
DynamicMethodBranchInst(SILDebugLocation DebugLoc, SILValue Operand,
SILDeclRef Member, SILBasicBlock *HasMethodBB,
SILBasicBlock *NoMethodBB);
/// Construct a DynamicMethodBranchInst that will branch to \c HasMethodBB or
/// \c NoMethodBB based on the ability of the object operand to respond to
/// a message with the same selector as the member.
static DynamicMethodBranchInst *
create(SILDebugLocation DebugLoc, SILValue Operand, SILDeclRef Member,
SILBasicBlock *HasMethodBB, SILBasicBlock *NoMethodBB, SILFunction &F);
public:
SILValue getOperand() const { return Operands[0].get(); }
SILDeclRef getMember() const { return Member; }
SuccessorListTy getSuccessors() {
return DestBBs;
}
SILBasicBlock *getHasMethodBB() { return DestBBs[0]; }
const SILBasicBlock *getHasMethodBB() const { return DestBBs[0]; }
SILBasicBlock *getNoMethodBB() { return DestBBs[1]; }
const SILBasicBlock *getNoMethodBB() const { return DestBBs[1]; }
ArrayRef<Operand> getAllOperands() const { return Operands.asArray(); }
MutableArrayRef<Operand> getAllOperands() { return Operands.asArray(); }
};
/// The base class for cast instructions which are terminators.
template <typename BaseTy> class CastBranchInstBase : public BaseTy {
std::array<SILSuccessor, 2> DestBBs;
public:
template <typename... ArgTys>
CastBranchInstBase(SILInstructionKind K, SILDebugLocation DebugLoc,
SILBasicBlock *SuccessBB, SILBasicBlock *FailureBB,
ProfileCounter Target1Count, ProfileCounter Target2Count,
ArgTys &&... args)
: BaseTy(K, DebugLoc, std::forward<ArgTys>(args)...),
DestBBs{{{this, SuccessBB, Target1Count},
{this, FailureBB, Target2Count}}} {}
TermInst::SuccessorListTy getSuccessors() { return DestBBs; }
// Enumerate the successor indices
enum SuccessorPath { SuccessIdx = 0, FailIdx = 1};
SILBasicBlock *getSuccessBB() { return DestBBs[SuccessIdx]; }
const SILBasicBlock *getSuccessBB() const { return DestBBs[SuccessIdx]; }
SILBasicBlock *getFailureBB() { return DestBBs[FailIdx]; }
const SILBasicBlock *getFailureBB() const { return DestBBs[FailIdx]; }
/// The number of times the True branch was executed
ProfileCounter getTrueBBCount() const { return DestBBs[0].getCount(); }
/// The number of times the False branch was executed
ProfileCounter getFalseBBCount() const { return DestBBs[1].getCount(); }
};
/// The base class for cast instructions which are terminators and have a
/// CastConsumptionKind.
class CastBranchWithConsumptionKindBase : public CastBranchInstBase<TermInst> {
CastConsumptionKind ConsumptionKind;
public:
CastBranchWithConsumptionKindBase(SILInstructionKind K, SILDebugLocation DebugLoc,
CastConsumptionKind consumptionKind,
SILBasicBlock *SuccessBB, SILBasicBlock *FailureBB,
ProfileCounter Target1Count = ProfileCounter(),
ProfileCounter Target2Count = ProfileCounter()) :
CastBranchInstBase(K, DebugLoc, SuccessBB, FailureBB,
Target1Count, Target2Count),
ConsumptionKind(consumptionKind) {}
CastConsumptionKind getConsumptionKind() const { return ConsumptionKind; }
};
/// Helper base class for AddrCastInstBase.
///
/// Ideally, the types would just be a member of AddrCastInstBase. But because
/// of tail-allocated operands, they need to be in a base class of
/// InstructionBaseWithTrailingOperands.
template<typename Base>
class TypesForAddrCasts : public Base {
CanType SourceType;
CanType TargetType;
public:
template <typename... Args>
TypesForAddrCasts(SILInstructionKind K, SILDebugLocation debugLoc,
CanType SourceType, CanType TargetType,
Args &&...args)
: Base(K, debugLoc, std::forward<Args>(args)...),
SourceType(SourceType), TargetType(TargetType) {}
CanType getSourceFormalType() const { return SourceType; }
CanType getTargetFormalType() const { return TargetType; }
};
/// Base class for cast instructions with address-type operands.
template<SILInstructionKind Kind,
typename Derived,
typename Base>
class AddrCastInstBase
: public InstructionBaseWithTrailingOperands<Kind, Derived,
TypesForAddrCasts<Base>>,
public CopyLikeInstruction {
protected:
friend InstructionBaseWithTrailingOperands<Kind, Derived, Operand>;
using TrailingObjects =
InstructionBaseWithTrailingOperands<Kind, Derived, Operand>;
public:
template <typename... Args>
AddrCastInstBase(SILDebugLocation debugLoc,
SILValue src, CanType srcType,
SILValue dest, CanType targetType,
ArrayRef<SILValue> typeDependentOperands,
Args &&...args)
: InstructionBaseWithTrailingOperands<Kind, Derived, TypesForAddrCasts<Base>> (
src, dest, typeDependentOperands,
debugLoc, srcType, targetType,
std::forward<Args>(args)...) {}
unsigned getNumTypeDependentOperands() const {
return this->getAllOperands().size() - 2;
}
ArrayRef<Operand> getTypeDependentOperands() const {
return this->getAllOperands().slice(2);
}
MutableArrayRef<Operand> getTypeDependentOperands() {
return this->getAllOperands().slice(2);
}
SILValue getSrc() const { return this->getAllOperands()[Src].get(); }
SILValue getDest() const { return this->getAllOperands()[Dest].get(); }
SILType getSourceLoweredType() const { return getSrc()->getType(); }
SILType getTargetLoweredType() const { return getDest()->getType(); }
};
/// Perform a checked cast operation and branch on whether the cast succeeds.
/// The success branch destination block receives the cast result as a BB
/// argument.
class CheckedCastBranchInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::CheckedCastBranchInst, CheckedCastBranchInst,
CastBranchInstBase<OwnershipForwardingTermInst>> {
friend SILBuilder;
CanType SrcFormalTy;
SILType DestLoweredTy;
CanType DestFormalTy;
bool IsExact;
CastingIsolatedConformances IsolatedConformances;
CheckedCastBranchInst(SILDebugLocation DebugLoc, bool IsExact,
CastingIsolatedConformances isolatedConformances,
SILValue Operand, CanType SrcFormalTy,
ArrayRef<SILValue> TypeDependentOperands,
SILType DestLoweredTy, CanType DestFormalTy,
SILBasicBlock *SuccessBB, SILBasicBlock *FailureBB,
ProfileCounter Target1Count,
ProfileCounter Target2Count,
ValueOwnershipKind forwardingOwnershipKind,
bool preservesOwnership)
: UnaryInstructionWithTypeDependentOperandsBase(
DebugLoc, Operand, TypeDependentOperands, SuccessBB, FailureBB,
Target1Count, Target2Count, forwardingOwnershipKind,
preservesOwnership),
SrcFormalTy(SrcFormalTy), DestLoweredTy(DestLoweredTy),
DestFormalTy(DestFormalTy), IsExact(IsExact),
IsolatedConformances(isolatedConformances) {}
static CheckedCastBranchInst *
create(SILDebugLocation DebugLoc, bool IsExact,
CastingIsolatedConformances isolatedConformances, SILValue Operand,
CanType SrcFormalTy, SILType DestLoweredTy, CanType DestFormalTy,
SILBasicBlock *SuccessBB, SILBasicBlock *FailureBB, SILFunction &F,
ProfileCounter Target1Count, ProfileCounter Target2Count,
ValueOwnershipKind forwardingOwnershipKind);
public:
bool isExact() const { return IsExact; }
CastingIsolatedConformances getIsolatedConformances() const {
return IsolatedConformances;
}
SILType getSourceLoweredType() const { return getOperand()->getType(); }
CanType getSourceFormalType() const { return SrcFormalTy; }
void updateSourceFormalTypeFromOperandLoweredType() {
SrcFormalTy = getSourceLoweredType().getASTType();
}
SILType getTargetLoweredType() const { return DestLoweredTy; }
CanType getTargetFormalType() const { return DestFormalTy; }
};
/// Perform a checked cast operation and branch on whether the cast succeeds.
/// The result of the checked cast is left in the destination address.
class CheckedCastAddrBranchInst final
: public AddrCastInstBase<
SILInstructionKind::CheckedCastAddrBranchInst,
CheckedCastAddrBranchInst, CastBranchWithConsumptionKindBase> {
friend SILBuilder;
CastingIsolatedConformances IsolatedConformances;
CheckedCastAddrBranchInst(SILDebugLocation DebugLoc,
CastingIsolatedConformances isolatedConformances,
CastConsumptionKind consumptionKind, SILValue src,
CanType srcType, SILValue dest, CanType targetType,
ArrayRef<SILValue> TypeDependentOperands,
SILBasicBlock *successBB, SILBasicBlock *failureBB,
ProfileCounter Target1Count,
ProfileCounter Target2Count);
static CheckedCastAddrBranchInst *
create(SILDebugLocation DebugLoc,
CastingIsolatedConformances isolatedConformances,
CastConsumptionKind consumptionKind,
SILValue src, CanType srcType, SILValue dest, CanType targetType,
SILBasicBlock *successBB, SILBasicBlock *failureBB,
ProfileCounter Target1Count, ProfileCounter Target2Count,
SILFunction &F);
public:
CastingIsolatedConformances getIsolatedConformances() const {
return IsolatedConformances;
}
};
/// Converts a heap object reference to a different type without any runtime
/// checks. This is a variant of UncheckedRefCast that works on address types,
/// thus encapsulates an implicit load and take of the reference followed by a
/// store and initialization of a new reference.
class UncheckedRefCastAddrInst final
: public AddrCastInstBase<
SILInstructionKind::UncheckedRefCastAddrInst,
UncheckedRefCastAddrInst, NonValueInstruction> {
public:
UncheckedRefCastAddrInst(SILDebugLocation Loc, SILValue src, CanType srcType,
SILValue dest, CanType targetType,
ArrayRef<SILValue> TypeDependentOperands);
static UncheckedRefCastAddrInst *
create(SILDebugLocation Loc, SILValue src, CanType srcType,
SILValue dest, CanType targetType, SILFunction &F);
};
class UncheckedAddrCastInst final
: public UnaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::UncheckedAddrCastInst, UncheckedAddrCastInst,
SingleValueInstruction> {
friend SILBuilder;
UncheckedAddrCastInst(SILDebugLocation DebugLoc, SILValue Operand,
ArrayRef<SILValue> TypeDependentOperands, SILType Ty)
: UnaryInstructionWithTypeDependentOperandsBase(DebugLoc, Operand,
TypeDependentOperands, Ty) {}
static UncheckedAddrCastInst *
create(SILDebugLocation DebugLoc, SILValue Operand, SILType Ty,
SILFunction &F);
};
/// Perform an unconditional checked cast that aborts if the cast fails.
/// The result of the checked cast is left in the destination address.
class UnconditionalCheckedCastAddrInst final
: public AddrCastInstBase<
SILInstructionKind::UnconditionalCheckedCastAddrInst,
UnconditionalCheckedCastAddrInst, NonValueInstruction> {
friend SILBuilder;
CastingIsolatedConformances IsolatedConformances;
UnconditionalCheckedCastAddrInst(SILDebugLocation Loc,
CastingIsolatedConformances isolatedConformances,
SILValue src, CanType sourceType,
SILValue dest, CanType targetType,
ArrayRef<SILValue> TypeDependentOperands);
static UnconditionalCheckedCastAddrInst *
create(SILDebugLocation DebugLoc, CastingIsolatedConformances isolatedConformances,
SILValue src, CanType sourceType,
SILValue dest, CanType targetType,
SILFunction &F);
public:
CastingIsolatedConformances getIsolatedConformances() const {
return IsolatedConformances;
}
};
/// A private abstract class to store the destinations of a TryApplyInst.
class TryApplyInstBase : public TermInst {
public:
enum {
// Map branch targets to block successor indices.
NormalIdx,
ErrorIdx
};
private:
std::array<SILSuccessor, 2> DestBBs;
protected:
TryApplyInstBase(SILInstructionKind valueKind, SILDebugLocation Loc,
SILBasicBlock *normalBB, SILBasicBlock *errorBB,
ProfileCounter normalCount, ProfileCounter errorCount);
public:
SuccessorListTy getSuccessors() {
return DestBBs;
}
bool isNormalSuccessorRef(SILSuccessor *successor) const {
assert(successor == &DestBBs[0] || successor == &DestBBs[1]);
return successor == &DestBBs[0];
}
bool isErrorSuccessorRef(SILSuccessor *successor) const {
assert(successor == &DestBBs[0] || successor == &DestBBs[1]);
return successor == &DestBBs[1];
}
SILBasicBlock *getNormalBB() { return DestBBs[NormalIdx]; }
const SILBasicBlock *getNormalBB() const { return DestBBs[NormalIdx]; }
SILBasicBlock *getErrorBB() { return DestBBs[ErrorIdx]; }
const SILBasicBlock *getErrorBB() const { return DestBBs[ErrorIdx]; }
/// The number of times the Normal branch was executed
ProfileCounter getNormalBBCount() const { return DestBBs[NormalIdx].getCount(); }
/// The number of times the Error branch was executed
ProfileCounter getErrorBBCount() const { return DestBBs[ErrorIdx].getCount(); }
};
/// TryApplyInst - Represents the full application of a function that
/// can produce an error.
class TryApplyInst final
: public InstructionBase<SILInstructionKind::TryApplyInst,
ApplyInstBase<TryApplyInst, TryApplyInstBase>>,
public llvm::TrailingObjects<TryApplyInst, Operand> {
friend SILBuilder;
TryApplyInst(SILDebugLocation debugLoc, SILValue callee,
SILType substCalleeType, SubstitutionMap substitutions,
ArrayRef<SILValue> args,
ArrayRef<SILValue> typeDependentOperands,
SILBasicBlock *normalBB, SILBasicBlock *errorBB,
ApplyOptions options,
const GenericSpecializationInformation *specializationInfo,
std::optional<ApplyIsolationCrossing> isolationCrossing,
ProfileCounter normalCount,
ProfileCounter errorCount);
static TryApplyInst *
create(SILDebugLocation debugLoc, SILValue callee,
SubstitutionMap substitutions, ArrayRef<SILValue> args,
SILBasicBlock *normalBB, SILBasicBlock *errorBB, ApplyOptions options,
SILFunction &parentFunction,
const GenericSpecializationInformation *specializationInfo,
std::optional<ApplyIsolationCrossing> isolationCrossing,
ProfileCounter normalCount,
ProfileCounter errorCount);
};
/// DifferentiableFunctionInst - creates a `@differentiable` function-typed
/// value from an original function operand and derivative function operands
/// (optional). The differentiation transform canonicalizes
/// `differentiable_function` instructions, filling in derivative function
/// operands if missing.
class DifferentiableFunctionInst final
: public InstructionBaseWithTrailingOperands<
SILInstructionKind::DifferentiableFunctionInst,
DifferentiableFunctionInst,
OwnershipForwardingSingleValueInstruction> {
private:
friend SILBuilder;
/// Differentiability parameter indices.
IndexSubset *ParameterIndices;
/// Differentiability result indices.
IndexSubset *ResultIndices;
/// Indicates whether derivative function operands (JVP/VJP) exist.
bool HasDerivativeFunctions;
DifferentiableFunctionInst(SILDebugLocation DebugLoc,
IndexSubset *ParameterIndices,
IndexSubset *ResultIndices,
SILValue OriginalFunction,
ArrayRef<SILValue> DerivativeFunctions,
ValueOwnershipKind forwardingOwnershipKind);
static SILType getDifferentiableFunctionType(SILValue OriginalFunction,
IndexSubset *ParameterIndices,
IndexSubset *ResultIndices);
static ValueOwnershipKind
getMergedOwnershipKind(SILValue OriginalFunction,
ArrayRef<SILValue> DerivativeFunctions);
public:
static DifferentiableFunctionInst *
create(SILModule &Module, SILDebugLocation Loc, IndexSubset *ParameterIndices,
IndexSubset *ResultIndices, SILValue OriginalFunction,
std::optional<std::pair<SILValue, SILValue>> VJPAndJVPFunctions,
ValueOwnershipKind forwardingOwnershipKind);
/// Returns the original function operand.
SILValue getOriginalFunction() const { return getOperand(0); }
/// Returns differentiability parameter indices.
IndexSubset *getParameterIndices() const { return ParameterIndices; }
/// Returns differentiability result indices.
IndexSubset *getResultIndices() const { return ResultIndices; }
/// Returns true if derivative functions (JVP/VJP) exist.
bool hasDerivativeFunctions() const { return HasDerivativeFunctions; }
/// Returns the derivative function operands if they exist.
/// Otherwise, return `None`.
std::optional<std::pair<SILValue, SILValue>>
getOptionalDerivativeFunctionPair() const {
if (!HasDerivativeFunctions)
return std::nullopt;
return std::make_pair(getOperand(1), getOperand(2));
}
ArrayRef<Operand> getDerivativeFunctionArray() const {
return getAllOperands().drop_front();
}
/// Returns the JVP function operand.
SILValue getJVPFunction() const {
assert(HasDerivativeFunctions);
return getOperand(1);
}
/// Returns the VJP function operand.
SILValue getVJPFunction() const {
assert(HasDerivativeFunctions);
return getOperand(2);
}
/// Returns the derivative function operand (JVP or VJP) with the given kind.
SILValue getDerivativeFunction(AutoDiffDerivativeFunctionKind kind) const {
switch (kind) {
case AutoDiffDerivativeFunctionKind::JVP:
return getJVPFunction();
case AutoDiffDerivativeFunctionKind::VJP:
return getVJPFunction();
}
llvm_unreachable("invalid derivative kind");
}
/// Returns true iff the operand corresponding to the given extractee kind
/// exists.
bool hasExtractee(NormalDifferentiableFunctionTypeComponent extractee) const {
switch (extractee) {
case NormalDifferentiableFunctionTypeComponent::Original:
return true;
case NormalDifferentiableFunctionTypeComponent::JVP:
case NormalDifferentiableFunctionTypeComponent::VJP:
return hasDerivativeFunctions();
}
llvm_unreachable("invalid extractee kind");
}
/// Returns the operand corresponding to the given extractee kind.
SILValue
getExtractee(NormalDifferentiableFunctionTypeComponent extractee) const {
switch (extractee) {
case NormalDifferentiableFunctionTypeComponent::Original:
return getOriginalFunction();
case NormalDifferentiableFunctionTypeComponent::JVP:
return getJVPFunction();
case NormalDifferentiableFunctionTypeComponent::VJP:
return getVJPFunction();
}
llvm_unreachable("invalid extractee kind");
}
};
/// LinearFunctionInst - given a function, its derivative and transpose functions,
/// create an `@differentiable(_linear)` function that represents a bundle of these.
class LinearFunctionInst final
: public InstructionBaseWithTrailingOperands<
SILInstructionKind::LinearFunctionInst, LinearFunctionInst,
OwnershipForwardingSingleValueInstruction> {
private:
friend SILBuilder;
/// Parameters to differentiate with respect to.
IndexSubset *ParameterIndices;
/// Indicates whether a transpose function exists.
bool HasTransposeFunction;
static SILType getLinearFunctionType(
SILValue OriginalFunction, IndexSubset *ParameterIndices);
public:
LinearFunctionInst(SILDebugLocation Loc, IndexSubset *ParameterIndices,
SILValue OriginalFunction,
std::optional<SILValue> TransposeFunction,
ValueOwnershipKind forwardingOwnershipKind);
static LinearFunctionInst *create(SILModule &Module, SILDebugLocation Loc,
IndexSubset *ParameterIndices,
SILValue OriginalFunction,
std::optional<SILValue> TransposeFunction,
ValueOwnershipKind forwardingOwnershipKind);
IndexSubset *getParameterIndices() const { return ParameterIndices; }
bool hasTransposeFunction() const { return HasTransposeFunction; }
SILValue getOriginalFunction() const { return getOperand(0); }
std::optional<SILValue> getOptionalTransposeFunction() const {
return HasTransposeFunction ? std::optional<SILValue>(getOperand(1))
: std::nullopt;
}
SILValue getTransposeFunction() const {
assert(HasTransposeFunction);
return getOperand(1);
}
/// Returns true iff the operand corresponding to the given extractee kind
/// exists.
bool hasExtractee(LinearDifferentiableFunctionTypeComponent extractee) const {
switch (extractee) {
case LinearDifferentiableFunctionTypeComponent::Original:
return true;
case LinearDifferentiableFunctionTypeComponent::Transpose:
return hasTransposeFunction();
}
llvm_unreachable("invalid extractee kind");
}
/// Returns the operand corresponding to the given extractee kind.
SILValue
getExtractee(LinearDifferentiableFunctionTypeComponent extractee) const {
switch (extractee) {
case LinearDifferentiableFunctionTypeComponent::Original:
return getOriginalFunction();
case LinearDifferentiableFunctionTypeComponent::Transpose:
return getTransposeFunction();
}
llvm_unreachable("invalid extractee kind");
}
};
/// DifferentiableFunctionExtractInst - extracts either the original or
/// derivative function value from a `@differentiable` function.
class DifferentiableFunctionExtractInst
: public UnaryInstructionBase<
SILInstructionKind::DifferentiableFunctionExtractInst,
OwnershipForwardingSingleValueInstruction> {
private:
/// The extractee.
NormalDifferentiableFunctionTypeComponent Extractee;
/// True if the instruction has an explicit extractee type.
bool HasExplicitExtracteeType;
static SILType
getExtracteeType(SILValue function,
NormalDifferentiableFunctionTypeComponent extractee,
SILModule &module);
public:
/// Note: explicit extractee type is used to avoid inconsistent typing in:
/// - Canonical SIL, due to generic specialization.
/// - Lowered SIL, due to LoadableByAddress.
/// - Raw SIL, due to deserialization of canonical/lowered SIL functions.
/// See `TypeSubstCloner::visitDifferentiableFunctionExtractInst` for an
/// explanation of how explicit extractee type is used.
explicit DifferentiableFunctionExtractInst(
SILModule &module, SILDebugLocation debugLoc,
NormalDifferentiableFunctionTypeComponent extractee, SILValue function,
ValueOwnershipKind forwardingOwnershipKind,
std::optional<SILType> extracteeType = std::nullopt);
NormalDifferentiableFunctionTypeComponent getExtractee() const {
return Extractee;
}
AutoDiffDerivativeFunctionKind getDerivativeFunctionKind() const {
auto kind = Extractee.getAsDerivativeFunctionKind();
assert(kind);
return *kind;
}
bool hasExplicitExtracteeType() const { return HasExplicitExtracteeType; }
};
/// LinearFunctionExtractInst - given an `@differentiable(_linear)` function
/// representing a bundle of the original function and the transpose function,
/// extract the specified function.
class LinearFunctionExtractInst
: public UnaryInstructionBase<SILInstructionKind::LinearFunctionExtractInst,
OwnershipForwardingSingleValueInstruction> {
private:
/// The extractee.
LinearDifferentiableFunctionTypeComponent extractee;
static SILType
getExtracteeType(SILValue function,
LinearDifferentiableFunctionTypeComponent extractee,
SILModule &module);
public:
explicit LinearFunctionExtractInst(
SILModule &module, SILDebugLocation debugLoc,
LinearDifferentiableFunctionTypeComponent extractee, SILValue theFunction,
ValueOwnershipKind forwardingOwnershipKind);
LinearDifferentiableFunctionTypeComponent getExtractee() const {
return extractee;
}
};
inline bool
OwnershipForwardingSingleValueInstruction::classof(SILInstructionKind kind) {
switch (kind) {
case SILInstructionKind::EnumInst:
case SILInstructionKind::UncheckedEnumDataInst:
case SILInstructionKind::OpenExistentialRefInst:
case SILInstructionKind::InitExistentialRefInst:
case SILInstructionKind::MarkDependenceInst:
case SILInstructionKind::MoveOnlyWrapperToCopyableValueInst:
case SILInstructionKind::MoveOnlyWrapperToCopyableBoxInst:
case SILInstructionKind::CopyableToMoveOnlyWrapperValueInst:
case SILInstructionKind::MarkUninitializedInst:
case SILInstructionKind::TupleExtractInst:
case SILInstructionKind::TuplePackExtractInst:
case SILInstructionKind::StructExtractInst:
case SILInstructionKind::DifferentiableFunctionExtractInst:
case SILInstructionKind::LinearFunctionExtractInst:
case SILInstructionKind::OpenExistentialValueInst:
case SILInstructionKind::OpenExistentialBoxValueInst:
case SILInstructionKind::StructInst:
case SILInstructionKind::TupleInst:
case SILInstructionKind::LinearFunctionInst:
case SILInstructionKind::DifferentiableFunctionInst:
case SILInstructionKind::MarkUnresolvedNonCopyableValueInst:
case SILInstructionKind::MarkUnresolvedReferenceBindingInst:
case SILInstructionKind::ConvertFunctionInst:
case SILInstructionKind::UpcastInst:
case SILInstructionKind::UncheckedRefCastInst:
case SILInstructionKind::UncheckedValueCastInst:
case SILInstructionKind::RefToBridgeObjectInst:
case SILInstructionKind::BridgeObjectToRefInst:
case SILInstructionKind::ThinToThickFunctionInst:
case SILInstructionKind::UnconditionalCheckedCastInst:
case SILInstructionKind::FunctionExtractIsolationInst:
case SILInstructionKind::DropDeinitInst:
case SILInstructionKind::BorrowedFromInst:
return true;
default:
return false;
}
}
/// DifferentiabilityWitnessFunctionInst - Looks up a differentiability witness
/// function for a given original function.
class DifferentiabilityWitnessFunctionInst
: public InstructionBase<
SILInstructionKind::DifferentiabilityWitnessFunctionInst,
SingleValueInstruction> {
private:
friend SILBuilder;
/// The differentiability witness function kind.
DifferentiabilityWitnessFunctionKind witnessKind;
/// The referenced SIL differentiability witness.
SILDifferentiabilityWitness *witness;
/// Whether the instruction has an explicit function type.
bool hasExplicitFunctionType;
static SILType getDifferentiabilityWitnessType(
SILModule &module, DifferentiabilityWitnessFunctionKind witnessKind,
SILDifferentiabilityWitness *witness);
public:
/// Note: explicit function type may be specified only in lowered SIL.
DifferentiabilityWitnessFunctionInst(
SILModule &module, SILDebugLocation loc,
DifferentiabilityWitnessFunctionKind witnessKind,
SILDifferentiabilityWitness *witness,
std::optional<SILType> FunctionType);
DifferentiabilityWitnessFunctionKind getWitnessKind() const {
return witnessKind;
}
SILDifferentiabilityWitness *getWitness() const { return witness; }
bool getHasExplicitFunctionType() const { return hasExplicitFunctionType; }
ArrayRef<Operand> getAllOperands() const { return {}; }
MutableArrayRef<Operand> getAllOperands() { return {}; }
};
// This is defined out of line to work around the fact that this depends on
// PartialApplyInst being defined, but PartialApplyInst is a subclass of
// ApplyInstBase, so we can not place ApplyInstBase after it.
template <class Impl, class Base>
SILValue ApplyInstBase<Impl, Base, false>::getCalleeOrigin() const {
SILValue Callee = getCallee();
while (true) {
if (auto *TTTFI = dyn_cast<ThinToThickFunctionInst>(Callee)) {
Callee = TTTFI->getCallee();
continue;
}
if (auto *CFI = dyn_cast<ConvertFunctionInst>(Callee)) {
Callee = CFI->getOperand();
continue;
}
if (auto *CETN = dyn_cast<ConvertEscapeToNoEscapeInst>(Callee)) {
Callee = CETN->getOperand();
continue;
}
// convert_escape_to_noescape's are within a borrow scope.
if (auto *beginBorrow = dyn_cast<BeginBorrowInst>(Callee)) {
Callee = beginBorrow->getOperand();
continue;
}
if (auto *copy = dyn_cast<CopyValueInst>(Callee)) {
Callee = copy->getOperand();
continue;
}
return Callee;
}
}
template <class Impl, class Base>
bool ApplyInstBase<Impl, Base, false>::isCalleeDynamicallyReplaceable() const {
SILValue Callee = getCalleeOrigin();
while (true) {
if (isa<FunctionRefInst>(Callee))
return false;
if (isa<DynamicFunctionRefInst>(Callee))
return true;
if (isa<PreviousDynamicFunctionRefInst>(Callee))
return true;
if (auto *PAI = dyn_cast<PartialApplyInst>(Callee)) {
Callee = PAI->getCalleeOrigin();
continue;
}
return false;
}
}
template <class Impl, class Base>
SILFunction *ApplyInstBase<Impl, Base, false>::getCalleeFunction() const {
SILValue Callee = getCalleeOrigin();
while (true) {
// Intentionally don't lookup through dynamic_function_ref and
// previous_dynamic_function_ref as the target of those functions is not
// statically known.
if (auto *FRI = dyn_cast<FunctionRefInst>(Callee))
return FRI->getReferencedFunctionOrNull();
if (auto *PAI = dyn_cast<PartialApplyInst>(Callee)) {
Callee = PAI->getCalleeOrigin();
continue;
}
return nullptr;
}
}
/// The first operand is the ownership equivalent source.
class OwnershipForwardingMultipleValueInstruction
: public MultipleValueInstruction,
public ForwardingInstruction {
public:
OwnershipForwardingMultipleValueInstruction(SILInstructionKind kind,
SILDebugLocation loc,
ValueOwnershipKind ownershipKind)
: MultipleValueInstruction(kind, loc),
ForwardingInstruction(kind, ownershipKind) {
assert(classof(kind) && "Missing subclass from classof?!");
}
static bool classof(SILNodePointer node) {
if (auto *i = dyn_cast<SILInstruction>(node.get()))
return classof(i);
return false;
}
static bool classof(const SILInstruction *i) { return classof(i->getKind()); }
static bool classof(SILInstructionKind kind) {
switch (kind) {
case SILInstructionKind::DestructureTupleInst:
case SILInstructionKind::DestructureStructInst:
return true;
default:
return false;
}
}
};
/// Instruction that takes in a struct value and splits the struct into the
/// struct's fields.
class DestructureStructInst final
: public UnaryInstructionBase<SILInstructionKind::DestructureStructInst,
OwnershipForwardingMultipleValueInstruction>,
public MultipleValueInstructionTrailingObjects<DestructureStructInst> {
friend TrailingObjects;
DestructureStructInst(SILModule &M, SILDebugLocation Loc, SILValue Operand,
ArrayRef<SILType> Types,
ArrayRef<ValueOwnershipKind> OwnershipKinds,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionBase(Loc, Operand, forwardingOwnershipKind),
MultipleValueInstructionTrailingObjects(this, Types, OwnershipKinds) {}
public:
static DestructureStructInst *
create(const SILFunction &F, SILDebugLocation Loc, SILValue Operand,
ValueOwnershipKind forwardingOwnershipKind);
StructDecl *getStructDecl() const {
return getOperand()->getType().getStructOrBoundGenericStruct();
}
static bool classof(SILNodePointer node) {
return node->getKind() == SILNodeKind::DestructureStructInst;
}
};
/// Instruction that takes in a tuple value and splits the tuple into the
/// tuples's elements.
class DestructureTupleInst final
: public UnaryInstructionBase<SILInstructionKind::DestructureTupleInst,
OwnershipForwardingMultipleValueInstruction>,
public MultipleValueInstructionTrailingObjects<DestructureTupleInst> {
friend TrailingObjects;
DestructureTupleInst(SILModule &M, SILDebugLocation Loc, SILValue Operand,
ArrayRef<SILType> Types,
ArrayRef<ValueOwnershipKind> OwnershipKinds,
ValueOwnershipKind forwardingOwnershipKind)
: UnaryInstructionBase(Loc, Operand, forwardingOwnershipKind),
MultipleValueInstructionTrailingObjects(this, Types, OwnershipKinds) {}
public:
static DestructureTupleInst *
create(const SILFunction &F, SILDebugLocation Loc, SILValue Operand,
ValueOwnershipKind forwardingOwnershipKind);
static bool classof(SILNodePointer node) {
return node->getKind() == SILNodeKind::DestructureTupleInst;
}
};
/// Instruction that takes a value generic parameter type and produces a value
/// of the underlying parameter type.
///
/// E.g. type_value $Int for let N produces an Int value from the let N type.
class TypeValueInst final
: public NullaryInstructionWithTypeDependentOperandsBase<
SILInstructionKind::TypeValueInst,
TypeValueInst,
SingleValueInstruction> {
friend TrailingObjects;
friend SILBuilder;
CanType ParamType;
TypeValueInst(SILDebugLocation loc,
ArrayRef<SILValue> typeDependentOperands,
SILType valueType,
CanType paramType)
: NullaryInstructionWithTypeDependentOperandsBase(loc,
typeDependentOperands,
valueType),
ParamType(paramType) {}
static TypeValueInst *create(SILFunction &parent,
SILDebugLocation loc,
SILType valueType,
CanType paramType);
public:
/// Return the parameter type that defined this value.
CanType getParamType() const {
return ParamType;
}
};
class MergeIsolationRegionInst final
: public InstructionBaseWithTrailingOperands<
SILInstructionKind::MergeIsolationRegionInst,
MergeIsolationRegionInst, NonValueInstruction> {
friend SILBuilder;
MergeIsolationRegionInst(SILDebugLocation loc, ArrayRef<SILValue> operands)
: InstructionBaseWithTrailingOperands(operands, loc) {}
static MergeIsolationRegionInst *
create(SILDebugLocation loc, ArrayRef<SILValue> operands, SILModule &mod);
public:
/// Return the SILValues for all operands of this instruction.
OperandValueArrayRef getArguments() const {
return OperandValueArrayRef(getAllOperands());
}
};
/// An instruction that represents a semantic-less use that is used to
/// suppresses unused value variable warnings. E.x.: _ = x.
class IgnoredUseInst final
: public UnaryInstructionBase<SILInstructionKind::IgnoredUseInst,
NonValueInstruction> {
friend SILBuilder;
IgnoredUseInst(SILDebugLocation loc, SILValue operand)
: UnaryInstructionBase(loc, operand) {}
};
inline SILType *AllocRefInstBase::getTypeStorage() {
// If the size of the subclasses are equal, then all of this compiles away.
if (auto I = dyn_cast<AllocRefInst>(this))
return I->getTrailingObjects<SILType>();
if (auto I = dyn_cast<AllocRefDynamicInst>(this))
return I->getTrailingObjects<SILType>();
llvm_unreachable("Unhandled AllocRefInstBase subclass");
}
inline ArrayRef<Operand> AllocRefInstBase::getAllOperands() const {
// If the size of the subclasses are equal, then all of this compiles away.
if (auto I = dyn_cast<AllocRefInst>(this))
return I->getAllOperands();
if (auto I = dyn_cast<AllocRefDynamicInst>(this))
return I->getAllOperands();
llvm_unreachable("Unhandled AllocRefInstBase subclass");
}
inline MutableArrayRef<Operand> AllocRefInstBase::getAllOperands() {
// If the size of the subclasses are equal, then all of this compiles away.
if (auto I = dyn_cast<AllocRefInst>(this))
return I->getAllOperands();
if (auto I = dyn_cast<AllocRefDynamicInst>(this))
return I->getAllOperands();
llvm_unreachable("Unhandled AllocRefInstBase subclass");
}
template <typename DerivedTy, typename BaseTy>
inline ArrayRef<Operand>
SelectEnumInstBase<DerivedTy, BaseTy>::getAllOperands() const {
const auto &I = static_cast<const DerivedTy &>(*this);
return I.getAllOperands();
}
template <typename DerivedTy, typename BaseTy>
inline MutableArrayRef<Operand>
SelectEnumInstBase<DerivedTy, BaseTy>::getAllOperands() {
auto &I = static_cast<DerivedTy &>(*this);
return I.getAllOperands();
}
template <typename DerivedTy, typename BaseTy>
inline EnumElementDecl **
SelectEnumInstBase<DerivedTy, BaseTy>::getEnumElementDeclStorage() {
auto &I = static_cast<DerivedTy &>(*this);
return I.template getTrailingObjects<EnumElementDecl *>();
}
inline void SILSuccessor::pred_iterator::cacheBasicBlock() {
if (Cur != nullptr) {
Block = Cur->ContainingInst->getParent();
assert(Block != nullptr);
} else {
Block = nullptr;
}
}
// Declared in SILValue.h
inline bool Operand::isTypeDependent() const {
return getUser()->isTypeDependentOperand(*this);
}
inline bool ForwardingInstruction::isa(SILInstructionKind kind) {
return OwnershipForwardingSingleValueInstruction::classof(kind) ||
OwnershipForwardingTermInst::classof(kind) ||
OwnershipForwardingMultipleValueInstruction::classof(kind);
}
inline ForwardingInstruction *ForwardingInstruction::get(SILInstruction *inst) {
// I am purposely performing this cast in this manner rather than reinterpret
// casting to ForwardingInstruction to ensure that we offset to the
// appropriate offset inside of inst instead of converting inst's current
// location to an ForwardingInstruction which would be incorrect.
if (auto *result = dyn_cast<OwnershipForwardingSingleValueInstruction>(inst))
return result;
if (auto *result = dyn_cast<OwnershipForwardingTermInst>(inst))
return result;
if (auto *result =
dyn_cast<OwnershipForwardingMultipleValueInstruction>(inst))
return result;
return nullptr;
}
inline bool MultipleValueInstructionResult::isBeginApplyToken() const {
return getParent<BeginApplyInst>()->getTokenResult() == this;
}
} // end swift namespace
//===----------------------------------------------------------------------===//
// ilist_traits for SILInstruction
//===----------------------------------------------------------------------===//
namespace llvm {
template <>
struct ilist_traits<::swift::SILInstruction> :
public ilist_node_traits<::swift::SILInstruction> {
using SILInstruction = ::swift::SILInstruction;
private:
swift::SILBasicBlock *getContainingBlock();
using instr_iterator = simple_ilist<SILInstruction>::iterator;
public:
static void deleteNode(SILInstruction *V) {
SILInstruction::destroy(V);
}
void addNodeToList(SILInstruction *I);
void transferNodesFromList(ilist_traits<SILInstruction> &L2,
instr_iterator first, instr_iterator last);
private:
void createNode(const SILInstruction &);
};
template <>
struct DenseMapInfo<swift::SILDebugVariable> {
using KeyTy = swift::SILDebugVariable;
static inline KeyTy getEmptyKey() {
return KeyTy(KeyTy::IsDenseMapSingleton::IsEmpty);
}
static inline KeyTy getTombstoneKey() {
return KeyTy(KeyTy::IsDenseMapSingleton::IsTombstone);
}
static unsigned getHashValue(const KeyTy &Val) { return hash_value(Val); }
static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) { return LHS == RHS; }
};
} // end llvm namespace
#endif