Files
swift-mirror/lib/AST/DiagnosticEngine.cpp
Anthony Latsis d93b6a4e4d DiagnosticEngine: Do not describe an extension's nominal for %kindonly
This is the desired behavior is most cases. In the future, we should
consider adding format specifiers for short/detailed descriptions.
2025-04-05 12:31:19 +01:00

1744 lines
60 KiB
C++

//===--- DiagnosticEngine.cpp - Diagnostic Display Engine -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2025 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the DiagnosticEngine class, which manages any diagnostics
// emitted by Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticGroups.h"
#include "swift/AST/DiagnosticList.h"
#include "swift/AST/DiagnosticSuppression.h"
#include "swift/AST/DiagnosticsCommon.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/PrintOptions.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Config.h"
#include "swift/Localization/LocalizationFormat.h"
#include "swift/Parse/Lexer.h" // bad dependency
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/Type.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
static_assert(IsTriviallyDestructible<ZeroArgDiagnostic>::value,
"ZeroArgDiagnostic is meant to be trivially destructable");
namespace {
enum class DiagnosticOptions {
/// No options.
none,
/// The location of this diagnostic points to the beginning of the first
/// token that the parser considers invalid. If this token is located at the
/// beginning of the line, then the location is adjusted to point to the end
/// of the previous token.
///
/// This behavior improves experience for "expected token X" diagnostics.
PointsToFirstBadToken,
/// After a fatal error subsequent diagnostics are suppressed.
Fatal,
/// An API or ABI breakage diagnostic emitted by the API digester.
APIDigesterBreakage,
/// A deprecation warning or error.
Deprecation,
/// A diagnostic warning about an unused element.
NoUsage,
/// The diagnostic should be ignored by default, but will be re-enabled
/// by various warning options (-Wwarning, -Werror). This only makes sense
/// for warnings.
DefaultIgnore,
};
struct StoredDiagnosticInfo {
DiagnosticKind kind : 2;
bool pointsToFirstBadToken : 1;
bool isFatal : 1;
bool isAPIDigesterBreakage : 1;
bool isDeprecation : 1;
bool isNoUsage : 1;
bool defaultIgnore : 1;
DiagGroupID groupID;
constexpr StoredDiagnosticInfo(DiagnosticKind k, bool firstBadToken,
bool fatal, bool isAPIDigesterBreakage,
bool deprecation, bool noUsage,
bool defaultIgnore, DiagGroupID groupID)
: kind(k), pointsToFirstBadToken(firstBadToken), isFatal(fatal),
isAPIDigesterBreakage(isAPIDigesterBreakage),
isDeprecation(deprecation), isNoUsage(noUsage),
defaultIgnore(defaultIgnore), groupID(groupID) {}
constexpr StoredDiagnosticInfo(DiagnosticKind k, DiagnosticOptions opts,
DiagGroupID groupID)
: StoredDiagnosticInfo(k,
opts == DiagnosticOptions::PointsToFirstBadToken,
opts == DiagnosticOptions::Fatal,
opts == DiagnosticOptions::APIDigesterBreakage,
opts == DiagnosticOptions::Deprecation,
opts == DiagnosticOptions::NoUsage,
opts == DiagnosticOptions::DefaultIgnore,
groupID) {}
};
} // end anonymous namespace
// TODO: categorization
static const constexpr StoredDiagnosticInfo storedDiagnosticInfos[] = {
#define GROUPED_ERROR(ID, Group, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Error, DiagnosticOptions::Options, \
DiagGroupID::Group),
#define GROUPED_WARNING(ID, Group, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Warning, DiagnosticOptions::Options, \
DiagGroupID::Group),
#define NOTE(ID, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Note, DiagnosticOptions::Options, \
DiagGroupID::no_group),
#define REMARK(ID, Options, Text, Signature) \
StoredDiagnosticInfo(DiagnosticKind::Remark, DiagnosticOptions::Options, \
DiagGroupID::no_group),
#include "swift/AST/DiagnosticsAll.def"
};
static_assert(sizeof(storedDiagnosticInfos) / sizeof(StoredDiagnosticInfo) ==
NumDiagIDs,
"array size mismatch");
static constexpr const char * const diagnosticStrings[] = {
#define DIAG(KIND, ID, Group, Options, Text, Signature) Text,
#include "swift/AST/DiagnosticsAll.def"
"<not a diagnostic>",
};
static constexpr const char *const diagnosticIDStrings[] = {
#define DIAG(KIND, ID, Group, Options, Text, Signature) #ID,
#include "swift/AST/DiagnosticsAll.def"
"<not a diagnostic>",
};
static constexpr const char *const fixItStrings[] = {
#define DIAG(KIND, ID, Group, Options, Text, Signature)
#define FIXIT(ID, Text, Signature) Text,
#include "swift/AST/DiagnosticsAll.def"
"<not a fix-it>",
};
DiagnosticState::DiagnosticState() {
// Initialize our ignored diagnostics to defaults
ignoredDiagnostics.reserve(NumDiagIDs);
for (const auto &info : storedDiagnosticInfos) {
ignoredDiagnostics.push_back(info.defaultIgnore);
}
// Initialize warningsAsErrors to default
warningsAsErrors.resize(DiagGroupsCount);
}
Diagnostic::Diagnostic(DiagID ID)
: Diagnostic(ID, storedDiagnosticInfos[(unsigned)ID].groupID) {}
std::optional<const DiagnosticInfo *> Diagnostic::getWrappedDiagnostic() const {
for (const auto &arg : getArgs()) {
if (arg.getKind() == DiagnosticArgumentKind::Diagnostic) {
return arg.getAsDiagnostic();
}
}
return std::nullopt;
}
static CharSourceRange toCharSourceRange(SourceManager &SM, SourceRange SR) {
return CharSourceRange(SM, SR.Start, Lexer::getLocForEndOfToken(SM, SR.End));
}
static CharSourceRange toCharSourceRange(SourceManager &SM, SourceLoc Start,
SourceLoc End) {
return CharSourceRange(SM, Start, End);
}
/// Extract a character at \p Loc. If \p Loc is the end of the buffer,
/// return '\f'.
static char extractCharAfter(SourceManager &SM, SourceLoc Loc) {
auto chars = SM.extractText({Loc, 1});
return chars.empty() ? '\f' : chars[0];
}
/// Extract a character immediately before \p Loc. If \p Loc is the
/// start of the buffer, return '\f'.
static char extractCharBefore(SourceManager &SM, SourceLoc Loc) {
// We have to be careful not to go off the front of the buffer.
auto bufferID = SM.findBufferContainingLoc(Loc);
auto bufferRange = SM.getRangeForBuffer(bufferID);
if (bufferRange.getStart() == Loc)
return '\f';
auto chars = SM.extractText({Loc.getAdvancedLoc(-1), 1}, bufferID);
assert(!chars.empty() && "Couldn't extractText with valid range");
return chars[0];
}
InFlightDiagnostic &InFlightDiagnostic::highlight(SourceRange R) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (Engine && R.isValid())
Engine->getActiveDiagnostic()
.addRange(toCharSourceRange(Engine->SourceMgr, R));
return *this;
}
InFlightDiagnostic &InFlightDiagnostic::highlightChars(SourceLoc Start,
SourceLoc End) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (Engine && Start.isValid())
Engine->getActiveDiagnostic()
.addRange(toCharSourceRange(Engine->SourceMgr, Start, End));
return *this;
}
InFlightDiagnostic &InFlightDiagnostic::highlightChars(CharSourceRange Range) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (Engine && Range.getStart().isValid())
Engine->getActiveDiagnostic().addRange(Range);
return *this;
}
/// Add an insertion fix-it to the currently-active diagnostic. The
/// text is inserted immediately *after* the token specified.
///
InFlightDiagnostic &
InFlightDiagnostic::fixItInsertAfter(SourceLoc L, StringRef FormatString,
ArrayRef<DiagnosticArgument> Args) {
L = Lexer::getLocForEndOfToken(Engine->SourceMgr, L);
return fixItInsert(L, FormatString, Args);
}
/// Add a token-based removal fix-it to the currently-active
/// diagnostic.
InFlightDiagnostic &InFlightDiagnostic::fixItRemove(SourceRange R) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (R.isInvalid() || !Engine) return *this;
// Convert from a token range to a CharSourceRange, which points to the end of
// the token we want to remove.
auto &SM = Engine->SourceMgr;
auto charRange = toCharSourceRange(SM, R);
// If we're removing something (e.g. a keyword), do a bit of extra work to
// make sure that we leave the code in a good place, without extraneous white
// space around its hole. Specifically, check to see there is whitespace
// before and after the end of range. If so, nuke the space afterward to keep
// things consistent.
if (extractCharAfter(SM, charRange.getEnd()) == ' ' &&
isspace(extractCharBefore(SM, charRange.getStart()))) {
charRange = CharSourceRange(charRange.getStart(),
charRange.getByteLength()+1);
}
Engine->getActiveDiagnostic().addFixIt(Diagnostic::FixIt(charRange, {}, {}));
return *this;
}
InFlightDiagnostic &
InFlightDiagnostic::fixItReplace(SourceRange R, StringRef FormatString,
ArrayRef<DiagnosticArgument> Args) {
auto &SM = Engine->SourceMgr;
auto charRange = toCharSourceRange(SM, R);
Engine->getActiveDiagnostic().addFixIt(
Diagnostic::FixIt(charRange, FormatString, Args));
return *this;
}
InFlightDiagnostic &InFlightDiagnostic::fixItReplace(SourceRange R,
StringRef Str) {
if (Str.empty())
return fixItRemove(R);
assert(IsActive && "Cannot modify an inactive diagnostic");
if (R.isInvalid() || !Engine) return *this;
auto &SM = Engine->SourceMgr;
auto charRange = toCharSourceRange(SM, R);
// If we're replacing with something that wants spaces around it, do a bit of
// extra work so that we don't suggest extra spaces.
// FIXME: This could probably be applied to structured fix-its as well.
if (Str.back() == ' ') {
if (isspace(extractCharAfter(SM, charRange.getEnd())))
Str = Str.drop_back();
}
if (!Str.empty() && Str.front() == ' ') {
if (isspace(extractCharBefore(SM, charRange.getStart())))
Str = Str.drop_front();
}
return fixItReplace(R, "%0", {Str});
}
InFlightDiagnostic &
InFlightDiagnostic::fixItReplaceChars(SourceLoc Start, SourceLoc End,
StringRef FormatString,
ArrayRef<DiagnosticArgument> Args) {
assert(IsActive && "Cannot modify an inactive diagnostic");
if (Engine && Start.isValid())
Engine->getActiveDiagnostic().addFixIt(
Diagnostic::FixIt(toCharSourceRange(Engine->SourceMgr, Start, End),
FormatString, Args));
return *this;
}
SourceLoc
DiagnosticEngine::getBestAddImportFixItLoc(const Decl *Member,
SourceFile *sourceFile) const {
auto &SM = SourceMgr;
SourceLoc bestLoc;
auto SF =
sourceFile ? sourceFile : Member->getDeclContext()->getParentSourceFile();
if (!SF) {
return bestLoc;
}
for (auto item : SF->getTopLevelItems()) {
// If we found an import declaration, we want to insert after it.
if (auto importDecl =
dyn_cast_or_null<ImportDecl>(item.dyn_cast<Decl *>())) {
SourceLoc loc = importDecl->getEndLoc();
if (loc.isValid()) {
bestLoc = Lexer::getLocForEndOfLine(SM, loc);
}
// Keep looking for more import declarations.
continue;
}
// If we got a location based on import declarations, we're done.
if (bestLoc.isValid())
break;
// For any other item, we want to insert before it.
SourceLoc loc = item.getStartLoc();
if (loc.isValid()) {
bestLoc = Lexer::getLocForStartOfLine(SM, loc);
break;
}
}
return bestLoc;
}
InFlightDiagnostic &InFlightDiagnostic::fixItAddImport(StringRef ModuleName) {
assert(IsActive && "Cannot modify an inactive diagnostic");
auto Member = Engine->ActiveDiagnostic->getDecl();
SourceLoc bestLoc = Engine->getBestAddImportFixItLoc(Member);
if (bestLoc.isValid()) {
llvm::SmallString<64> importText;
// @_spi imports.
if (Member->isSPI()) {
auto spiGroups = Member->getSPIGroups();
if (!spiGroups.empty()) {
importText += "@_spi(";
importText += spiGroups[0].str();
importText += ") ";
}
}
importText += "import ";
importText += ModuleName;
importText += "\n";
return fixItInsert(bestLoc, importText);
}
return *this;
}
InFlightDiagnostic &
InFlightDiagnostic::fixItInsertAttribute(SourceLoc L,
const DeclAttribute *Attr) {
return fixItInsert(L, "%0 ", {Attr});
}
InFlightDiagnostic &
InFlightDiagnostic::fixItAddAttribute(const DeclAttribute *Attr,
const ClosureExpr *E) {
ASSERT(!E->isImplicit());
SourceLoc insertionLoc;
if (auto *paramList = E->getParameters()) {
// HACK: Don't set insertion loc to param list start loc if it's equal to
// closure start loc (meaning it's implicit).
// FIXME: Don't set the start loc of an implicit param list, or put an
// isImplicit bit on ParameterList.
if (paramList->getStartLoc() != E->getStartLoc()) {
insertionLoc = paramList->getStartLoc();
}
}
if (insertionLoc.isInvalid()) {
insertionLoc = E->getInLoc();
}
if (insertionLoc.isValid()) {
return fixItInsert(insertionLoc, "%0 ", {Attr});
} else {
insertionLoc = E->getBody()->getLBraceLoc();
ASSERT(insertionLoc.isValid());
return fixItInsertAfter(insertionLoc, " %0 in ", {Attr});
}
}
InFlightDiagnostic &InFlightDiagnostic::fixItExchange(SourceRange R1,
SourceRange R2) {
assert(IsActive && "Cannot modify an inactive diagnostic");
auto &SM = Engine->SourceMgr;
// Convert from a token range to a CharSourceRange
auto charRange1 = toCharSourceRange(SM, R1);
auto charRange2 = toCharSourceRange(SM, R2);
// Extract source text.
auto text1 = SM.extractText(charRange1);
auto text2 = SM.extractText(charRange2);
Engine->getActiveDiagnostic().addFixIt(
Diagnostic::FixIt(charRange1, "%0", {text2}));
Engine->getActiveDiagnostic().addFixIt(
Diagnostic::FixIt(charRange2, "%0", {text1}));
return *this;
}
InFlightDiagnostic &
InFlightDiagnostic::limitBehavior(DiagnosticBehavior limit) {
Engine->getActiveDiagnostic().setBehaviorLimit(limit);
return *this;
}
InFlightDiagnostic &
InFlightDiagnostic::limitBehaviorUntilSwiftVersion(
DiagnosticBehavior limit, unsigned majorVersion) {
if (!Engine->languageVersion.isVersionAtLeast(majorVersion)) {
// If the behavior limit is a warning or less, wrap the diagnostic
// in a message that this will become an error in a later Swift
// version. We do this before limiting the behavior, because
// wrapIn will result in the behavior of the wrapping diagnostic.
if (limit >= DiagnosticBehavior::Warning) {
if (majorVersion > 6) {
wrapIn(diag::error_in_a_future_swift_lang_mode);
} else {
wrapIn(diag::error_in_swift_lang_mode, majorVersion);
}
}
limitBehavior(limit);
}
// Record all of the diagnostics that are going to be emitted.
if (majorVersion == 6 && limit != DiagnosticBehavior::Ignore) {
if (auto stats = Engine->statsReporter) {
++stats->getFrontendCounters().NumSwift6Errors;
}
}
return *this;
}
InFlightDiagnostic &
InFlightDiagnostic::warnUntilSwiftVersion(unsigned majorVersion) {
return limitBehaviorUntilSwiftVersion(DiagnosticBehavior::Warning,
majorVersion);
}
InFlightDiagnostic &
InFlightDiagnostic::warnInSwiftInterface(const DeclContext *context) {
if (context->isInSwiftinterface()) {
return limitBehavior(DiagnosticBehavior::Warning);
}
return *this;
}
InFlightDiagnostic &
InFlightDiagnostic::wrapIn(const Diagnostic &wrapper) {
// Save current active diagnostic into WrappedDiagnostics, ignoring state
// so we don't get a None return or influence future diagnostics.
DiagnosticState tempState;
Engine->state.swap(tempState);
llvm::SaveAndRestore<DiagnosticBehavior>
limit(Engine->getActiveDiagnostic().BehaviorLimit,
DiagnosticBehavior::Unspecified);
Engine->WrappedDiagnostics.push_back(*Engine->diagnosticInfoForDiagnostic(
Engine->getActiveDiagnostic(), /* includeDiagnosticName= */ false));
Engine->state.swap(tempState);
auto &wrapped = Engine->WrappedDiagnostics.back();
// Copy and update its arg list.
Engine->WrappedDiagnosticArgs.emplace_back(wrapped.FormatArgs);
wrapped.FormatArgs = Engine->WrappedDiagnosticArgs.back();
// Overwrite the ID and arguments with those from the wrapper.
Engine->getActiveDiagnostic().ID = wrapper.ID;
Engine->getActiveDiagnostic().Args = wrapper.Args;
// Intentionally keeping the original GroupID here
// Set the argument to the diagnostic being wrapped.
ASSERT(wrapper.getArgs().front().getKind() ==
DiagnosticArgumentKind::Diagnostic);
Engine->getActiveDiagnostic().Args.front() = &wrapped;
return *this;
}
void InFlightDiagnostic::flush() {
if (!IsActive)
return;
IsActive = false;
if (Engine)
Engine->flushActiveDiagnostic();
}
void Diagnostic::addChildNote(Diagnostic &&D) {
assert(storedDiagnosticInfos[(unsigned)D.ID].kind == DiagnosticKind::Note &&
"Only notes can have a parent.");
assert(storedDiagnosticInfos[(unsigned)ID].kind != DiagnosticKind::Note &&
"Notes can't have children.");
ChildNotes.push_back(std::move(D));
}
bool DiagnosticEngine::isDiagnosticPointsToFirstBadToken(DiagID ID) const {
return storedDiagnosticInfos[(unsigned) ID].pointsToFirstBadToken;
}
bool DiagnosticEngine::isAPIDigesterBreakageDiagnostic(DiagID ID) const {
return storedDiagnosticInfos[(unsigned)ID].isAPIDigesterBreakage;
}
bool DiagnosticEngine::isDeprecationDiagnostic(DiagID ID) const {
return storedDiagnosticInfos[(unsigned)ID].isDeprecation;
}
bool DiagnosticEngine::isNoUsageDiagnostic(DiagID ID) const {
return storedDiagnosticInfos[(unsigned)ID].isNoUsage;
}
bool DiagnosticEngine::finishProcessing() {
bool hadError = false;
for (auto &Consumer : Consumers) {
hadError |= Consumer->finishProcessing();
}
return hadError;
}
void DiagnosticEngine::setWarningsAsErrorsRules(
const std::vector<WarningAsErrorRule> &rules) {
std::vector<std::string> unknownGroups;
for (const auto &rule : rules) {
bool isEnabled = [&] {
switch (rule.getAction()) {
case WarningAsErrorRule::Action::Enable:
return true;
case WarningAsErrorRule::Action::Disable:
return false;
}
}();
auto target = rule.getTarget();
if (auto group = std::get_if<WarningAsErrorRule::TargetGroup>(&target)) {
auto name = std::string_view(group->name);
// Validate the group name and set the new behavior for each diagnostic
// associated with the group and all its subgroups.
if (auto groupID = getDiagGroupIDByName(name);
groupID && *groupID != DiagGroupID::no_group) {
getDiagGroupInfoByID(*groupID).traverseDepthFirst([&](auto group) {
state.setWarningsAsErrorsForDiagGroupID(*groupID, isEnabled);
for (DiagID diagID : group.diagnostics) {
state.setIgnoredDiagnostic(diagID, false);
}
});
} else {
unknownGroups.push_back(std::string(name));
}
} else if (std::holds_alternative<WarningAsErrorRule::TargetAll>(target)) {
state.setAllWarningsAsErrors(isEnabled);
} else {
llvm_unreachable("unhandled WarningAsErrorRule::Target");
}
}
for (const auto &unknownGroup : unknownGroups) {
diagnose(SourceLoc(), diag::unknown_warning_group, unknownGroup);
}
}
/// Skip forward to one of the given delimiters.
///
/// \param Text The text to search through, which will be updated to point
/// just after the delimiter.
///
/// \param Delim The first character delimiter to search for.
///
/// \param FoundDelim On return, true if the delimiter was found, or false
/// if the end of the string was reached.
///
/// \returns The string leading up to the delimiter, or the empty string
/// if no delimiter is found.
static StringRef
skipToDelimiter(StringRef &Text, char Delim, bool *FoundDelim = nullptr) {
unsigned Depth = 0;
if (FoundDelim)
*FoundDelim = false;
unsigned I = 0;
for (unsigned N = Text.size(); I != N; ++I) {
if (Text[I] == '{') {
++Depth;
continue;
}
if (Depth > 0) {
if (Text[I] == '}')
--Depth;
continue;
}
if (Text[I] == Delim) {
if (FoundDelim)
*FoundDelim = true;
break;
}
}
assert(Depth == 0 && "Unbalanced {} set in diagnostic text");
StringRef Result = Text.substr(0, I);
Text = Text.substr(I + 1);
return Result;
}
/// Handle the integer 'select' modifier. This is used like this:
/// %select{foo|bar|baz}2. This means that the integer argument "%2" has a
/// value from 0-2. If the value is 0, the diagnostic prints 'foo'.
/// If the value is 1, it prints 'bar'. If it has the value 2, it prints 'baz'.
/// This is very useful for certain classes of variant diagnostics.
static void formatSelectionArgument(StringRef ModifierArguments,
ArrayRef<DiagnosticArgument> Args,
unsigned SelectedIndex,
DiagnosticFormatOptions FormatOpts,
llvm::raw_ostream &Out) {
bool foundPipe = false;
do {
assert((!ModifierArguments.empty() || foundPipe) &&
"Index beyond bounds in %select modifier");
StringRef Text = skipToDelimiter(ModifierArguments, '|', &foundPipe);
if (SelectedIndex == 0) {
DiagnosticEngine::formatDiagnosticText(Out, Text, Args, FormatOpts);
break;
}
--SelectedIndex;
} while (true);
}
static bool isInterestingTypealias(Type type) {
// Dig out the typealias declaration, if there is one.
TypeAliasDecl *aliasDecl = nullptr;
if (auto aliasTy = dyn_cast<TypeAliasType>(type.getPointer()))
aliasDecl = aliasTy->getDecl();
else
return false;
if (type->isVoid())
return false;
// The 'Swift.AnyObject' typealias is not 'interesting'.
if (aliasDecl->getName() ==
aliasDecl->getASTContext().getIdentifier("AnyObject") &&
(aliasDecl->getParentModule()->isStdlibModule() ||
aliasDecl->getParentModule()->isBuiltinModule())) {
return false;
}
// Compatibility aliases are only interesting insofar as their underlying
// types are interesting.
if (aliasDecl->isCompatibilityAlias()) {
auto underlyingTy = aliasDecl->getUnderlyingType();
return isInterestingTypealias(underlyingTy);
}
// Builtin types are never interesting typealiases.
if (type->is<BuiltinType>()) return false;
return true;
}
/// Walks the type recursively desugaring types to display, but skipping
/// `GenericTypeParamType` because we would lose association with its original
/// declaration and end up presenting the parameter in τ_0_0 format on
/// diagnostic.
static Type getAkaTypeForDisplay(Type type) {
return type.transformRec([&](TypeBase *visitTy) -> std::optional<Type> {
if (isa<SugarType>(visitTy) &&
!isa<GenericTypeParamType>(visitTy))
return getAkaTypeForDisplay(visitTy->getDesugaredType());
return std::nullopt;
});
}
/// Decide whether to show the desugared type or not. We filter out some
/// cases to avoid too much noise.
static bool shouldShowAKA(Type type, StringRef typeName) {
// Canonical types are already desugared.
if (type->isCanonical())
return false;
// Only show 'aka' if there's a typealias involved; other kinds of sugar
// are easy enough for people to read on their own.
if (!type.findIf(isInterestingTypealias))
return false;
// If they are textually the same, don't show them. This can happen when
// they are actually different types, because they exist in different scopes
// (e.g. everyone names their type parameters 'T').
if (typeName == getAkaTypeForDisplay(type).getString())
return false;
return true;
}
/// If a type is part of an argument list which includes another, distinct type
/// with the same string representation, it should be qualified during
/// formatting.
static bool typeSpellingIsAmbiguous(Type type,
ArrayRef<DiagnosticArgument> Args,
PrintOptions &PO) {
for (auto arg : Args) {
if (arg.getKind() == DiagnosticArgumentKind::Type) {
auto argType = arg.getAsType();
if (argType && argType.getPointer() != type.getPointer() &&
argType.getString(PO) == type.getString(PO)) {
// Currently, existential types are spelled the same way
// as protocols and compositions. We can remove this once
// existenials are printed with 'any'.
if (type->is<ExistentialType>() || argType->isExistentialType()) {
auto constraint = type;
if (auto existential = type->getAs<ExistentialType>())
constraint = existential->getConstraintType();
auto argConstraint = argType;
if (auto existential = argType->getAs<ExistentialType>())
argConstraint = existential->getConstraintType();
if (constraint.getPointer() != argConstraint.getPointer())
return true;
continue;
}
return true;
}
}
}
return false;
}
void swift::printClangDeclName(const clang::NamedDecl *ND,
llvm::raw_ostream &os) {
ND->getNameForDiagnostic(os, ND->getASTContext().getPrintingPolicy(), false);
}
void swift::printClangTypeName(const clang::Type *Ty, llvm::raw_ostream &os) {
clang::QualType::print(Ty, clang::Qualifiers(), os,
clang::PrintingPolicy{clang::LangOptions()}, "");
}
/// Format a single diagnostic argument and write it to the given
/// stream.
static void formatDiagnosticArgument(StringRef Modifier,
StringRef ModifierArguments,
ArrayRef<DiagnosticArgument> Args,
unsigned ArgIndex,
DiagnosticFormatOptions FormatOpts,
llvm::raw_ostream &Out) {
const DiagnosticArgument &Arg = Args[ArgIndex];
switch (Arg.getKind()) {
case DiagnosticArgumentKind::Integer:
if (Modifier == "select") {
assert(Arg.getAsInteger() >= 0 && "Negative selection index");
formatSelectionArgument(ModifierArguments, Args, Arg.getAsInteger(),
FormatOpts, Out);
} else if (Modifier == "s") {
if (Arg.getAsInteger() != 1)
Out << 's';
} else {
assert(Modifier.empty() && "Improper modifier for integer argument");
Out << Arg.getAsInteger();
}
break;
case DiagnosticArgumentKind::Unsigned:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args, Arg.getAsUnsigned(),
FormatOpts, Out);
} else if (Modifier == "s") {
if (Arg.getAsUnsigned() != 1)
Out << 's';
} else {
assert(Modifier.empty() && "Improper modifier for unsigned argument");
Out << Arg.getAsUnsigned();
}
break;
case DiagnosticArgumentKind::String:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
Arg.getAsString().empty() ? 0 : 1, FormatOpts,
Out);
} else {
assert(Modifier.empty() && "Improper modifier for string argument");
Out << Arg.getAsString();
}
break;
case DiagnosticArgumentKind::Identifier:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
Arg.getAsIdentifier() ? 1 : 0, FormatOpts,
Out);
} else {
assert(Modifier.empty() && "Improper modifier for identifier argument");
Out << FormatOpts.OpeningQuotationMark;
Arg.getAsIdentifier().printPretty(Out);
Out << FormatOpts.ClosingQuotationMark;
}
break;
case DiagnosticArgumentKind::ObjCSelector:
assert(Modifier.empty() && "Improper modifier for selector argument");
Out << FormatOpts.OpeningQuotationMark << Arg.getAsObjCSelector()
<< FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::Decl: {
auto D = Arg.getAsDecl();
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args, D ? 1 : 0, FormatOpts,
Out);
break;
}
// Parse info out of modifier
bool includeKind = false;
bool includeName = true;
bool baseNameOnly = false;
if (Modifier == "kind") {
includeKind = true;
} else if (Modifier == "base") {
baseNameOnly = true;
} else if (Modifier == "kindbase") {
includeKind = true;
baseNameOnly = true;
} else if (Modifier == "kindonly") {
includeName = false;
} else {
assert(Modifier.empty() && "Improper modifier for ValueDecl argument");
}
if (includeName) {
if (auto accessor = dyn_cast<AccessorDecl>(D)) {
// If it's an accessor, describe that and then switch to discussing its
// storage declaration.
Out << Decl::getDescriptiveKindName(D->getDescriptiveKind()) << " for ";
D = accessor->getStorage();
} else if (auto ext = dyn_cast<ExtensionDecl>(D)) {
// If it's an extension with a valid bound type declaration, describe
// the extension itself then switch to discussing the bound
// declaration.
if (auto *nominal = ext->getSelfNominalTypeDecl()) {
Out << Decl::getDescriptiveKindName(D->getDescriptiveKind())
<< " of ";
D = nominal;
}
}
}
// Figure out the name we want to print.
DeclName name;
if (includeName) {
if (auto MD = dyn_cast<ModuleDecl>(D))
name = MD->getPublicModuleName(/*onlyIfImported=*/true);
else if (auto VD = dyn_cast<ValueDecl>(D))
name = VD->getName();
else if (auto PGD = dyn_cast<PrecedenceGroupDecl>(D))
name = PGD->getName();
else if (auto OD = dyn_cast<OperatorDecl>(D))
name = OD->getName();
else if (auto MMD = dyn_cast<MissingMemberDecl>(D))
name = MMD->getName();
if (baseNameOnly && name)
name = name.getBaseName();
}
// If the declaration is anonymous or we asked for a descriptive kind, print
// it.
if (!name || includeKind) {
Out << Decl::getDescriptiveKindName(D->getDescriptiveKind());
if (name)
Out << " ";
}
// Print the name.
if (name) {
Out << FormatOpts.OpeningQuotationMark;
name.printPretty(Out);
Out << FormatOpts.ClosingQuotationMark;
}
break;
}
case DiagnosticArgumentKind::FullyQualifiedType:
case DiagnosticArgumentKind::Type:
case DiagnosticArgumentKind::WitnessType: {
std::optional<DiagnosticFormatOptions> TypeFormatOpts;
if (Modifier == "noformat") {
TypeFormatOpts.emplace(DiagnosticFormatOptions::formatForFixIts());
} else {
assert(Modifier.empty() && "Improper modifier for Type argument");
TypeFormatOpts.emplace(FormatOpts);
}
// Strip extraneous parentheses; they add no value.
Type type;
bool needsQualification = false;
// Compute the appropriate print options for this argument.
auto printOptions = PrintOptions::forDiagnosticArguments();
if (Arg.getKind() == DiagnosticArgumentKind::Type) {
type = Arg.getAsType();
if (type->getASTContext().TypeCheckerOpts.PrintFullConvention)
printOptions.PrintFunctionRepresentationAttrs =
PrintOptions::FunctionRepresentationMode::Full;
needsQualification = typeSpellingIsAmbiguous(type, Args, printOptions);
} else if (Arg.getKind() == DiagnosticArgumentKind::FullyQualifiedType) {
type = Arg.getAsFullyQualifiedType().getType();
if (type->getASTContext().TypeCheckerOpts.PrintFullConvention)
printOptions.PrintFunctionRepresentationAttrs =
PrintOptions::FunctionRepresentationMode::Full;
needsQualification = true;
} else {
assert(Arg.getKind() == DiagnosticArgumentKind::WitnessType);
type = Arg.getAsWitnessType().getType();
printOptions.PrintGenericRequirements = false;
printOptions.PrintInverseRequirements = false;
needsQualification = typeSpellingIsAmbiguous(type, Args, printOptions);
}
// If a type has an unresolved type, print it with syntax sugar removed for
// clarity. For example, print `Array<_>` instead of `[_]`.
if (type->hasUnresolvedType()) {
type = type->getWithoutSyntaxSugar();
}
if (needsQualification &&
isa<OpaqueTypeArchetypeType>(type.getPointer()) &&
cast<ArchetypeType>(type.getPointer())->isRoot()) {
auto opaqueTypeDecl = type->castTo<OpaqueTypeArchetypeType>()->getDecl();
llvm::SmallString<256> NamingDeclText;
llvm::raw_svector_ostream OutNaming(NamingDeclText);
auto namingDecl = opaqueTypeDecl->getNamingDecl();
if (namingDecl->getDeclContext()->isTypeContext()) {
auto selfTy = namingDecl->getDeclContext()->getSelfInterfaceType();
selfTy->print(OutNaming);
OutNaming << '.';
}
namingDecl->getName().printPretty(OutNaming);
auto descriptiveKind = opaqueTypeDecl->getDescriptiveKind();
Out << llvm::format(TypeFormatOpts->OpaqueResultFormatString.c_str(),
type->getString(printOptions).c_str(),
Decl::getDescriptiveKindName(descriptiveKind).data(),
NamingDeclText.c_str());
} else {
printOptions.FullyQualifiedTypes = needsQualification;
std::string typeName = type->getString(printOptions);
if (shouldShowAKA(type, typeName)) {
llvm::SmallString<256> AkaText;
llvm::raw_svector_ostream OutAka(AkaText);
getAkaTypeForDisplay(type)->print(OutAka, printOptions);
Out << llvm::format(TypeFormatOpts->AKAFormatString.c_str(),
typeName.c_str(), AkaText.c_str());
} else {
Out << TypeFormatOpts->OpeningQuotationMark << typeName
<< TypeFormatOpts->ClosingQuotationMark;
}
}
break;
}
case DiagnosticArgumentKind::TypeRepr:
assert(Modifier.empty() && "Improper modifier for TypeRepr argument");
assert(Arg.getAsTypeRepr() && "TypeRepr argument is null");
Out << FormatOpts.OpeningQuotationMark << Arg.getAsTypeRepr()
<< FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::DescriptivePatternKind:
assert(Modifier.empty() &&
"Improper modifier for DescriptivePatternKind argument");
Out << Pattern::getDescriptivePatternKindName(
Arg.getAsDescriptivePatternKind());
break;
case DiagnosticArgumentKind::SelfAccessKind:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
unsigned(Arg.getAsSelfAccessKind()),
FormatOpts, Out);
} else {
assert(Modifier.empty() &&
"Improper modifier for SelfAccessKind argument");
Out << Arg.getAsSelfAccessKind();
}
break;
case DiagnosticArgumentKind::ReferenceOwnership:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
unsigned(Arg.getAsReferenceOwnership()),
FormatOpts, Out);
} else {
assert(Modifier.empty() &&
"Improper modifier for ReferenceOwnership argument");
Out << Arg.getAsReferenceOwnership();
}
break;
case DiagnosticArgumentKind::StaticSpellingKind:
if (Modifier == "select") {
formatSelectionArgument(ModifierArguments, Args,
unsigned(Arg.getAsStaticSpellingKind()),
FormatOpts, Out);
} else {
assert(Modifier.empty() &&
"Improper modifier for StaticSpellingKind argument");
Out << Arg.getAsStaticSpellingKind();
}
break;
case DiagnosticArgumentKind::DescriptiveDeclKind:
assert(Modifier.empty() &&
"Improper modifier for DescriptiveDeclKind argument");
Out << Decl::getDescriptiveKindName(Arg.getAsDescriptiveDeclKind());
break;
case DiagnosticArgumentKind::DescriptiveStmtKind:
assert(Modifier.empty() && "Improper modifier for StmtKind argument");
Out << Stmt::getDescriptiveKindName(Arg.getAsDescriptiveStmtKind());
break;
case DiagnosticArgumentKind::DeclAttribute: {
auto *const attr = Arg.getAsDeclAttribute();
const auto printAttrName = [&] {
if (auto *custom = dyn_cast<CustomAttr>(attr)) {
custom->getTypeRepr()->print(Out);
} else {
Out << attr->getAttrName();
}
};
assert(Modifier.empty() &&
"Improper modifier for DeclAttribute argument");
if (Arg.getAsDeclAttribute()->isDeclModifier()) {
Out << FormatOpts.OpeningQuotationMark;
printAttrName();
Out << FormatOpts.ClosingQuotationMark;
} else {
Out << '@';
printAttrName();
}
break;
}
case DiagnosticArgumentKind::TypeAttribute: {
bool useAtStyle = true;
if (Modifier == "kind") {
useAtStyle = false;
} else {
ASSERT(Modifier.empty() &&
"Improper modifier for TypeAttribute argument");
}
if (!useAtStyle) {
Out << "attribute ";
}
Out << FormatOpts.OpeningQuotationMark;
if (useAtStyle) {
Out << '@';
}
Out << Arg.getAsTypeAttribute()->getAttrName();
Out << FormatOpts.ClosingQuotationMark;
break;
}
case DiagnosticArgumentKind::AvailabilityDomain:
assert(Modifier.empty() &&
"Improper modifier for AvailabilityDomain argument");
Out << Arg.getAsAvailabilityDomain().getNameForDiagnostics();
break;
case DiagnosticArgumentKind::AvailabilityRange:
assert(Modifier.empty() &&
"Improper modifier for AvailabilityRange argument");
Out << Arg.getAsAvailabilityRange().getRawMinimumVersion().getAsString();
break;
case DiagnosticArgumentKind::VersionTuple:
assert(Modifier.empty() &&
"Improper modifier for VersionTuple argument");
Out << Arg.getAsVersionTuple().getAsString();
break;
case DiagnosticArgumentKind::LayoutConstraint:
assert(Modifier.empty() && "Improper modifier for LayoutConstraint argument");
Out << FormatOpts.OpeningQuotationMark << Arg.getAsLayoutConstraint()
<< FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::ActorIsolation: {
assert((Modifier.empty() || Modifier == "noun") &&
"Improper modifier for ActorIsolation argument");
auto isolation = Arg.getAsActorIsolation();
isolation.printForDiagnostics(Out, FormatOpts.OpeningQuotationMark,
/*asNoun*/ Modifier == "noun");
break;
}
case DiagnosticArgumentKind::IsolationSource: {
assert(Modifier.empty() && "Improper modifier for IsolationSource argument");
auto isolation = Arg.getAsIsolationSource();
isolation.printForDiagnostics(Out, FormatOpts.OpeningQuotationMark);
break;
}
case DiagnosticArgumentKind::Diagnostic: {
assert(Modifier.empty() && "Improper modifier for Diagnostic argument");
auto diagArg = Arg.getAsDiagnostic();
DiagnosticEngine::formatDiagnosticText(Out, diagArg->FormatString,
diagArg->FormatArgs);
break;
}
case DiagnosticArgumentKind::ClangDecl:
assert(Modifier.empty() && "Improper modifier for ClangDecl argument");
Out << FormatOpts.OpeningQuotationMark;
printClangDeclName(Arg.getAsClangDecl(), Out);
Out << FormatOpts.ClosingQuotationMark;
break;
case DiagnosticArgumentKind::ClangType:
assert(Modifier.empty() && "Improper modifier for ClangDecl argument");
Out << FormatOpts.OpeningQuotationMark;
printClangTypeName(Arg.getAsClangType(), Out);
Out << FormatOpts.ClosingQuotationMark;
break;
}
}
/// Format the given diagnostic text and place the result in the given
/// buffer.
void DiagnosticEngine::formatDiagnosticText(
llvm::raw_ostream &Out, StringRef InText, ArrayRef<DiagnosticArgument> Args,
DiagnosticFormatOptions FormatOpts) {
while (!InText.empty()) {
size_t Percent = InText.find('%');
if (Percent == StringRef::npos) {
// Write the rest of the string; we're done.
Out.write(InText.data(), InText.size());
break;
}
// Write the string up to (but not including) the %, then drop that text
// (including the %).
Out.write(InText.data(), Percent);
InText = InText.substr(Percent + 1);
// '%%' -> '%'.
if (InText[0] == '%') {
Out.write('%');
InText = InText.substr(1);
continue;
}
// Parse an optional modifier.
StringRef Modifier;
{
size_t Length = InText.find_if_not(isalpha);
Modifier = InText.substr(0, Length);
InText = InText.substr(Length);
}
if (Modifier == "error") {
Out << StringRef("<<INTERNAL ERROR: encountered %error in diagnostic text>>");
continue;
}
// Parse the optional argument list for a modifier, which is brace-enclosed.
StringRef ModifierArguments;
if (InText[0] == '{') {
InText = InText.substr(1);
ModifierArguments = skipToDelimiter(InText, '}');
}
// Find the digit sequence, and parse it into an argument index.
size_t Length = InText.find_if_not(isdigit);
unsigned ArgIndex;
bool IndexParseFailed = InText.substr(0, Length).getAsInteger(10, ArgIndex);
if (IndexParseFailed) {
Out << StringRef("<<INTERNAL ERROR: unparseable argument index in diagnostic text>>");
continue;
}
InText = InText.substr(Length);
if (ArgIndex >= Args.size()) {
Out << StringRef("<<INTERNAL ERROR: out-of-range argument index in diagnostic text>>");
continue;
}
// Convert the argument to a string.
formatDiagnosticArgument(Modifier, ModifierArguments, Args, ArgIndex,
FormatOpts, Out);
}
}
static DiagnosticKind toDiagnosticKind(DiagnosticBehavior behavior) {
switch (behavior) {
case DiagnosticBehavior::Unspecified:
llvm_unreachable("unspecified behavior");
case DiagnosticBehavior::Ignore:
llvm_unreachable("trying to map an ignored diagnostic");
case DiagnosticBehavior::Error:
case DiagnosticBehavior::Fatal:
return DiagnosticKind::Error;
case DiagnosticBehavior::Note:
return DiagnosticKind::Note;
case DiagnosticBehavior::Warning:
return DiagnosticKind::Warning;
case DiagnosticBehavior::Remark:
return DiagnosticKind::Remark;
}
llvm_unreachable("Unhandled DiagnosticKind in switch.");
}
static
DiagnosticBehavior toDiagnosticBehavior(DiagnosticKind kind, bool isFatal) {
switch (kind) {
case DiagnosticKind::Note:
return DiagnosticBehavior::Note;
case DiagnosticKind::Error:
return isFatal ? DiagnosticBehavior::Fatal : DiagnosticBehavior::Error;
case DiagnosticKind::Warning:
return DiagnosticBehavior::Warning;
case DiagnosticKind::Remark:
return DiagnosticBehavior::Remark;
}
llvm_unreachable("Unhandled DiagnosticKind in switch.");
}
// A special option only for compiler writers that causes Diagnostics to assert
// when a failure diagnostic is emitted. Intended for use in the debugger.
llvm::cl::opt<bool> AssertOnError("swift-diagnostics-assert-on-error",
llvm::cl::init(false));
// A special option only for compiler writers that causes Diagnostics to assert
// when a warning diagnostic is emitted. Intended for use in the debugger.
llvm::cl::opt<bool> AssertOnWarning("swift-diagnostics-assert-on-warning",
llvm::cl::init(false));
DiagnosticBehavior DiagnosticState::determineBehavior(const Diagnostic &diag) {
// We determine how to handle a diagnostic based on the following rules
// 1) Map the diagnostic to its "intended" behavior, applying the behavior
// limit for this particular emission
// 2) If current state dictates a certain behavior, follow that
// 3) If the user ignored this specific diagnostic, follow that
// 4) If the user substituted a different behavior for this behavior, apply
// that change
// 5) Update current state for use during the next diagnostic
// 1) Map the diagnostic to its "intended" behavior, applying the behavior
// limit for this particular emission
auto diagInfo = storedDiagnosticInfos[(unsigned)diag.getID()];
DiagnosticBehavior lvl =
std::max(toDiagnosticBehavior(diagInfo.kind, diagInfo.isFatal),
diag.getBehaviorLimit());
assert(lvl != DiagnosticBehavior::Unspecified);
// 2) If current state dictates a certain behavior, follow that
// Notes relating to ignored diagnostics should also be ignored
if (previousBehavior == DiagnosticBehavior::Ignore
&& lvl == DiagnosticBehavior::Note)
lvl = DiagnosticBehavior::Ignore;
// Suppress diagnostics when in a fatal state, except for follow-on notes
if (fatalErrorOccurred)
if (!showDiagnosticsAfterFatalError && lvl != DiagnosticBehavior::Note)
lvl = DiagnosticBehavior::Ignore;
// 3) If the user ignored this specific diagnostic, follow that
if (ignoredDiagnostics[(unsigned)diag.getID()])
lvl = DiagnosticBehavior::Ignore;
// 4) If the user substituted a different behavior for this behavior, apply
// that change
if (lvl == DiagnosticBehavior::Warning) {
if (getWarningsAsErrorsForDiagGroupID(diag.getGroupID()))
lvl = DiagnosticBehavior::Error;
if (suppressWarnings)
lvl = DiagnosticBehavior::Ignore;
}
if (lvl == DiagnosticBehavior::Remark) {
if (suppressRemarks)
lvl = DiagnosticBehavior::Ignore;
}
// 5) Update current state for use during the next diagnostic
if (lvl == DiagnosticBehavior::Fatal) {
fatalErrorOccurred = true;
anyErrorOccurred = true;
} else if (lvl == DiagnosticBehavior::Error) {
anyErrorOccurred = true;
}
ASSERT((!AssertOnError || !anyErrorOccurred) && "We emitted an error?!");
ASSERT((!AssertOnWarning || (lvl != DiagnosticBehavior::Warning)) &&
"We emitted a warning?!");
previousBehavior = lvl;
return lvl;
}
void DiagnosticEngine::flushActiveDiagnostic() {
assert(ActiveDiagnostic && "No active diagnostic to flush");
handleDiagnostic(std::move(*ActiveDiagnostic));
ActiveDiagnostic.reset();
}
void DiagnosticEngine::handleDiagnostic(Diagnostic &&diag) {
if (TransactionCount == 0) {
emitDiagnostic(diag);
WrappedDiagnostics.clear();
WrappedDiagnosticArgs.clear();
} else {
onTentativeDiagnosticFlush(diag);
TentativeDiagnostics.emplace_back(std::move(diag));
}
}
void DiagnosticEngine::clearTentativeDiagnostics() {
TentativeDiagnostics.clear();
WrappedDiagnostics.clear();
WrappedDiagnosticArgs.clear();
}
void DiagnosticEngine::emitTentativeDiagnostics() {
for (auto &diag : TentativeDiagnostics) {
emitDiagnostic(diag);
}
clearTentativeDiagnostics();
}
void DiagnosticEngine::forwardTentativeDiagnosticsTo(
DiagnosticEngine &targetEngine) {
for (auto &diag : TentativeDiagnostics) {
targetEngine.handleDiagnostic(std::move(diag));
}
clearTentativeDiagnostics();
}
std::optional<DiagnosticInfo>
DiagnosticEngine::diagnosticInfoForDiagnostic(const Diagnostic &diagnostic,
bool includeDiagnosticName) {
auto behavior = state.determineBehavior(diagnostic);
if (behavior == DiagnosticBehavior::Ignore)
return std::nullopt;
// Figure out the source location.
SourceLoc loc = diagnostic.getLoc();
if (loc.isInvalid() && diagnostic.getDecl()) {
const Decl *decl = diagnostic.getDecl();
// If a declaration was provided instead of a location, and that declaration
// has a location we can point to, use that location.
loc = decl->getLoc();
// If the location of the decl is invalid still, try to pretty-print the
// declaration into a buffer and capture the source location there.
if (loc.isInvalid()) {
loc = evaluateOrDefault(
decl->getASTContext().evaluator, PrettyPrintDeclRequest{decl},
SourceLoc());
}
}
auto groupID = diagnostic.getGroupID();
StringRef Category;
if (auto wrapped = diagnostic.getWrappedDiagnostic())
Category = wrapped.value()->Category;
else if (isAPIDigesterBreakageDiagnostic(diagnostic.getID()))
Category = "api-digester-breaking-change";
else if (isNoUsageDiagnostic(diagnostic.getID()))
Category = "no-usage";
else if (groupID != DiagGroupID::no_group)
Category = getDiagGroupInfoByID(groupID).name;
else if (isDeprecationDiagnostic(diagnostic.getID()))
Category = "deprecation";
auto fixIts = diagnostic.getFixIts();
if (loc.isValid()) {
// If the diagnostic is being emitted in a generated buffer, drop the
// fix-its, as the user will have no way of applying them.
auto bufferID = SourceMgr.findBufferContainingLoc(loc);
if (auto generatedInfo = SourceMgr.getGeneratedSourceInfo(bufferID)) {
switch (generatedInfo->kind) {
#define MACRO_ROLE(Name, Description) \
case GeneratedSourceInfo::Name##MacroExpansion:
#include "swift/Basic/MacroRoles.def"
case GeneratedSourceInfo::PrettyPrinted:
case GeneratedSourceInfo::DefaultArgument:
case GeneratedSourceInfo::AttributeFromClang:
fixIts = {};
break;
case GeneratedSourceInfo::ReplacedFunctionBody:
// A replaced function body is for user-written code, so fix-its are
// still valid.
break;
}
}
}
auto formatString =
getFormatStringForDiagnostic(diagnostic, includeDiagnosticName);
return DiagnosticInfo(diagnostic.getID(), loc, toDiagnosticKind(behavior),
formatString, diagnostic.getArgs(), Category,
getDefaultDiagnosticLoc(),
/*child note info*/ {}, diagnostic.getRanges(), fixIts,
diagnostic.isChildNote());
}
static DeclName
getGeneratedSourceInfoMacroName(const GeneratedSourceInfo &info) {
ASTNode expansionNode = ASTNode::getFromOpaqueValue(info.astNode);
switch (info.kind) {
#define MACRO_ROLE(Name, Description) \
case GeneratedSourceInfo::Name##MacroExpansion:
#include "swift/Basic/MacroRoles.def"
{
if (auto customAttr = info.attachedMacroCustomAttr) {
// FIXME: How will we handle deserialized custom attributes like this?
auto declRefType = cast<DeclRefTypeRepr>(customAttr->getTypeRepr());
return declRefType->getNameRef().getFullName();
}
if (auto expansionExpr = dyn_cast_or_null<MacroExpansionExpr>(
expansionNode.dyn_cast<Expr *>())) {
return expansionExpr->getMacroName().getFullName();
}
auto expansionDecl =
cast<MacroExpansionDecl>(expansionNode.get<Decl *>());
return expansionDecl->getMacroName().getFullName();
}
case GeneratedSourceInfo::PrettyPrinted:
case GeneratedSourceInfo::ReplacedFunctionBody:
case GeneratedSourceInfo::DefaultArgument:
case GeneratedSourceInfo::AttributeFromClang:
return DeclName();
}
}
std::vector<Diagnostic>
DiagnosticEngine::getGeneratedSourceBufferNotes(SourceLoc loc) {
// The set of child notes we're building up.
std::vector<Diagnostic> childNotes;
// If the location is invalid, there's nothing to do.
if (loc.isInvalid())
return childNotes;
// If we already emitted these notes for a prior part of the diagnostic,
// don't do so again.
auto currentBufferID = SourceMgr.findBufferContainingLoc(loc);
SourceLoc currentLoc = loc;
do {
auto generatedInfo = SourceMgr.getGeneratedSourceInfo(currentBufferID);
if (!generatedInfo)
return childNotes;
ASTNode expansionNode =
ASTNode::getFromOpaqueValue(generatedInfo->astNode);
switch (generatedInfo->kind) {
#define MACRO_ROLE(Name, Description) \
case GeneratedSourceInfo::Name##MacroExpansion:
#include "swift/Basic/MacroRoles.def"
{
DeclName macroName = getGeneratedSourceInfoMacroName(*generatedInfo);
// If it was an expansion of an attached macro, increase the range to
// include the decl's attributes. Also add the name of the decl the macro
// is attached to.
CustomAttr *attachedAttr = generatedInfo->attachedMacroCustomAttr;
Decl *attachedDecl =
attachedAttr ? expansionNode.dyn_cast<Decl *>() : nullptr;
SourceRange origRange = attachedDecl
? attachedDecl->getSourceRangeIncludingAttrs()
: expansionNode.getSourceRange();
Diagnostic expansionNote(diag::in_macro_expansion, macroName,
attachedDecl);
if (attachedAttr) {
expansionNote.setLoc(attachedAttr->getLocation());
} else {
expansionNote.setLoc(origRange.Start);
}
expansionNote.addRange(
Lexer::getCharSourceRangeFromSourceRange(SourceMgr, origRange));
expansionNote.setIsChildNote(true);
childNotes.push_back(std::move(expansionNote));
break;
}
case GeneratedSourceInfo::PrettyPrinted:
break;
case GeneratedSourceInfo::DefaultArgument:
case GeneratedSourceInfo::ReplacedFunctionBody:
case GeneratedSourceInfo::AttributeFromClang:
return childNotes;
}
// Walk up the stack.
currentLoc = expansionNode.getStartLoc();
if (currentLoc.isInvalid())
return childNotes;
currentBufferID = SourceMgr.findBufferContainingLoc(currentLoc);
} while (true);
}
void DiagnosticEngine::emitDiagnostic(const Diagnostic &diagnostic) {
ArrayRef<Diagnostic> childNotes = diagnostic.getChildNotes();
std::vector<Diagnostic> extendedChildNotes;
if (auto info =
diagnosticInfoForDiagnostic(diagnostic,
/* includeDiagnosticName= */ true)) {
// If the diagnostic location is within a buffer containing generated
// source code, add child notes showing where the generation occurred.
// We need to avoid doing this if this is itself a child note, as otherwise
// we'd end up doubling up on notes.
if (!info->IsChildNote) {
extendedChildNotes = getGeneratedSourceBufferNotes(info->Loc);
}
if (!extendedChildNotes.empty()) {
extendedChildNotes.insert(extendedChildNotes.end(),
childNotes.begin(), childNotes.end());
childNotes = extendedChildNotes;
}
SmallVector<DiagnosticInfo, 1> childInfo;
for (unsigned i : indices(childNotes)) {
auto child =
diagnosticInfoForDiagnostic(childNotes[i],
/* includeDiagnosticName= */ true);
assert(child);
assert(child->Kind == DiagnosticKind::Note &&
"Expected child diagnostics to all be notes?!");
childInfo.push_back(*child);
}
TinyPtrVector<DiagnosticInfo *> childInfoPtrs;
for (unsigned i : indices(childInfo)) {
childInfoPtrs.push_back(&childInfo[i]);
}
info->ChildDiagnosticInfo = childInfoPtrs;
// Capture information about the diagnostic group and its documentation
// URL.
auto groupID = diagnostic.getGroupID();
if (groupID != DiagGroupID::no_group) {
const auto &diagGroup = getDiagGroupInfoByID(groupID);
std::string docURL(getDiagnosticDocumentationPath());
if (!docURL.empty() && docURL.back() != '/')
docURL += "/";
docURL += diagGroup.documentationFile;
info->CategoryDocumentationURL = std::move(docURL);
}
for (auto &consumer : Consumers) {
consumer->handleDiagnostic(SourceMgr, *info);
}
}
// For compatibility with DiagnosticConsumers which don't know about child
// notes. These can be ignored by consumers which do take advantage of the
// grouping.
for (auto &childNote : childNotes)
emitDiagnostic(childNote);
}
DiagnosticKind DiagnosticEngine::declaredDiagnosticKindFor(const DiagID id) {
return storedDiagnosticInfos[(unsigned)id].kind;
}
llvm::StringRef DiagnosticEngine::getFormatStringForDiagnostic(DiagID id) {
llvm::StringRef message = diagnosticStrings[(unsigned)id];
if (auto localizationProducer = localization.get()) {
message = localizationProducer->getMessageOr(id, message);
}
return message;
}
llvm::StringRef
DiagnosticEngine::getFormatStringForDiagnostic(const Diagnostic &diagnostic,
bool includeDiagnosticName) {
auto diagID = diagnostic.getID();
auto message = getFormatStringForDiagnostic(diagID);
if (!includeDiagnosticName) {
return message;
}
auto formatMessageWithName = [&](StringRef message, StringRef name) {
const int additionalCharsLength = 3; // ' ', '[', ']'
std::string messageWithName;
messageWithName.reserve(message.size() + name.size() +
additionalCharsLength);
messageWithName += message;
messageWithName += " [";
messageWithName += name;
messageWithName += "]";
return DiagnosticStringsSaver.save(messageWithName);
};
switch (printDiagnosticNamesMode) {
case PrintDiagnosticNamesMode::None:
case PrintDiagnosticNamesMode::Group:
break;
case PrintDiagnosticNamesMode::Identifier: {
auto userFacingID = diagID;
// If this diagnostic wraps another one, use the ID of the wrapped
// diagnostic.
if (auto wrapped = diagnostic.getWrappedDiagnostic()) {
userFacingID = wrapped.value()->ID;
}
message =
formatMessageWithName(message, diagnosticIDStringFor(userFacingID));
break;
}
}
return message;
}
llvm::StringRef
DiagnosticEngine::diagnosticIDStringFor(const DiagID id) {
return diagnosticIDStrings[(unsigned)id];
}
const char *InFlightDiagnostic::fixItStringFor(const FixItID id) {
return fixItStrings[(unsigned)id];
}
void DiagnosticEngine::setBufferIndirectlyCausingDiagnosticToInput(
SourceLoc loc) {
// If in the future, nested BufferIndirectlyCausingDiagnosticRAII need be
// supported, the compiler will need a stack for
// bufferIndirectlyCausingDiagnostic.
assert(bufferIndirectlyCausingDiagnostic.isInvalid() &&
"Buffer should not already be set.");
bufferIndirectlyCausingDiagnostic = loc;
assert(bufferIndirectlyCausingDiagnostic.isValid() &&
"Buffer must be valid for previous assertion to work.");
}
void DiagnosticEngine::resetBufferIndirectlyCausingDiagnostic() {
bufferIndirectlyCausingDiagnostic = SourceLoc();
}
DiagnosticSuppression::DiagnosticSuppression(DiagnosticEngine &diags)
: diags(diags)
{
consumers = diags.takeConsumers();
}
DiagnosticSuppression::~DiagnosticSuppression() {
for (auto consumer : consumers)
diags.addConsumer(*consumer);
}
bool DiagnosticSuppression::isEnabled(const DiagnosticEngine &diags) {
return diags.getConsumers().empty();
}
BufferIndirectlyCausingDiagnosticRAII::BufferIndirectlyCausingDiagnosticRAII(
const SourceFile &SF)
: Diags(SF.getASTContext().Diags) {
auto id = SF.getBufferID();
auto loc = SF.getASTContext().SourceMgr.getLocForBufferStart(id);
if (loc.isValid())
Diags.setBufferIndirectlyCausingDiagnosticToInput(loc);
}
void DiagnosticEngine::onTentativeDiagnosticFlush(Diagnostic &diagnostic) {
for (auto &argument : diagnostic.Args) {
if (argument.getKind() != DiagnosticArgumentKind::String)
continue;
auto content = argument.getAsString();
if (content.empty())
continue;
auto I = TransactionStrings.insert(content).first;
argument = DiagnosticArgument(StringRef(I->getKeyData()));
}
}
EncodedDiagnosticMessage::EncodedDiagnosticMessage(StringRef S)
: Message(Lexer::getEncodedStringSegment(S, Buf, /*IsFirstSegment=*/true,
/*IsLastSegment=*/true,
/*IndentToStrip=*/~0U)) {}