Files
swift-mirror/lib/SILGen/SILGenDecl.cpp
Allan Shortlidge cce02961f9 AST/SILGen: Make availability ranges stored by PoundAvailableInfo optional.
Rather than representing a missing availability range on `PoundAvailableInfo`
with a default-constructed `AvailabilityRange` (empty), store the ranges as
optionals instead. This allows an empty range to represent an availability
condition which is known to be false at compile time, which will be necessary
when generating SIL for `if #available` queries that check custom availability
domains.
2025-04-01 07:46:46 -07:00

2636 lines
98 KiB
C++

//===--- SILGenDecl.cpp - Implements Lowering of ASTs -> SIL for Decls ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "Initialization.h"
#include "LValue.h"
#include "RValue.h"
#include "SILGen.h"
#include "SILGenDynamicCast.h"
#include "Scope.h"
#include "SwitchEnumBuilder.h"
#include "swift/AST/ASTMangler.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/Module.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/Platform.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/ProfileCounter.h"
#include "swift/SIL/FormalLinkage.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILDebuggerClient.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILSymbolVisitor.h"
#include "swift/SIL/SILType.h"
#include "swift/SIL/TypeLowering.h"
#include "llvm/ADT/SmallString.h"
#include <iterator>
using namespace swift;
using namespace Lowering;
// Utility for emitting diagnostics.
template <typename... T, typename... U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&...args) {
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
void Initialization::_anchor() {}
void SILDebuggerClient::anchor() {}
static void copyOrInitPackExpansionInto(SILGenFunction &SGF,
SILLocation loc,
SILValue tupleAddr,
CanPackType formalPackType,
unsigned componentIndex,
CleanupHandle componentCleanup,
Initialization *expansionInit,
bool isInit) {
auto expansionTy = tupleAddr->getType().getTupleElementType(componentIndex);
assert(expansionTy.is<PackExpansionType>());
auto opening = SGF.createOpenedElementValueEnvironment(expansionTy);
auto openedEnv = opening.first;
auto eltTy = opening.second;
assert(expansionInit);
assert(expansionInit->canPerformPackExpansionInitialization());
// Exit the component-wide cleanup for the expansion component.
if (componentCleanup.isValid())
SGF.Cleanups.forwardCleanup(componentCleanup);
SGF.emitDynamicPackLoop(loc, formalPackType, componentIndex, openedEnv,
[&](SILValue indexWithinComponent,
SILValue packExpansionIndex,
SILValue packIndex) {
expansionInit->performPackExpansionInitialization(SGF, loc,
indexWithinComponent,
[&](Initialization *eltInit) {
// Project the current tuple element.
auto eltAddr =
SGF.B.createTuplePackElementAddr(loc, packIndex, tupleAddr, eltTy);
SILValue elt = eltAddr;
if (!eltTy.isAddressOnly(SGF.F)) {
elt = SGF.B.emitLoadValueOperation(loc, elt,
LoadOwnershipQualifier::Take);
}
// Enter a cleanup for the current element, which we need to consume
// on this iteration of the loop, and the remaining elements in the
// expansion component, which we need to destroy if we throw from
// the initialization.
CleanupHandle eltCleanup = CleanupHandle::invalid();
CleanupHandle tailCleanup = CleanupHandle::invalid();
if (componentCleanup.isValid()) {
eltCleanup = SGF.enterDestroyCleanup(elt);
tailCleanup = SGF.enterPartialDestroyRemainingTupleCleanup(tupleAddr,
formalPackType, componentIndex, indexWithinComponent);
}
ManagedValue eltMV;
if (eltCleanup == CleanupHandle::invalid()) {
eltMV = ManagedValue::forRValueWithoutOwnership(elt);
} else {
eltMV = ManagedValue::forOwnedRValue(elt, eltCleanup);
}
// Perform the initialization. If this doesn't consume the
// element value, that's fine, we'll just destroy it as part of
// leaving the iteration.
eltInit->copyOrInitValueInto(SGF, loc, eltMV, isInit);
eltInit->finishInitialization(SGF);
// Deactivate the tail cleanup before continuing the loop.
if (tailCleanup.isValid())
SGF.Cleanups.forwardCleanup(tailCleanup);
});
});
expansionInit->finishInitialization(SGF);
}
void TupleInitialization::copyOrInitValueInto(SILGenFunction &SGF,
SILLocation loc,
ManagedValue value, bool isInit) {
auto sourceType = value.getType().castTo<TupleType>();
assert(sourceType->getNumElements() == SubInitializations.size());
// We have to emit a different pattern when there are pack expansions.
// Fortunately, we can assume this doesn't happen with objects because
// tuples contain pack expansions are address-only.
auto containsPackExpansion = sourceType.containsPackExpansionType();
CanPackType formalPackType;
if (containsPackExpansion)
formalPackType = FormalTupleType.getInducedPackType();
// Process all values before initialization all at once to ensure
// all cleanups are setup on all tuple elements before a potential
// early exit.
SmallVector<ManagedValue, 8> destructuredValues;
// In the object case, destructure the tuple.
if (value.getType().isObject()) {
assert(!containsPackExpansion);
SGF.B.emitDestructureValueOperation(loc, value, destructuredValues);
} else {
// In the address case, we forward the underlying value and store it
// into memory and then create a +1 cleanup. since we assume here
// that we have a +1 value since we are forwarding into memory.
assert(value.isPlusOneOrTrivial(SGF) &&
"Can not store a +0 value into memory?!");
CleanupCloner cloner(SGF, value);
SILValue v = value.forward(SGF);
auto sourceSILType = value.getType();
for (auto i : range(sourceType->getNumElements())) {
SILType fieldTy = sourceSILType.getTupleElementType(i);
if (containsPackExpansion && fieldTy.is<PackExpansionType>()) {
destructuredValues.push_back(
cloner.cloneForTuplePackExpansionComponent(v, formalPackType, i));
continue;
}
SILValue elt;
if (containsPackExpansion) {
auto packIndex = SGF.B.createScalarPackIndex(loc, i, formalPackType);
elt = SGF.B.createTuplePackElementAddr(loc, packIndex, v, fieldTy);
} else {
elt = SGF.B.createTupleElementAddr(loc, v, i, fieldTy);
}
if (!fieldTy.isAddressOnly(SGF.F)) {
elt = SGF.B.emitLoadValueOperation(loc, elt,
LoadOwnershipQualifier::Take);
}
destructuredValues.push_back(cloner.clone(elt));
}
}
assert(destructuredValues.size() == SubInitializations.size());
for (auto i : indices(destructuredValues)) {
if (containsPackExpansion) {
bool isPackExpansion =
(destructuredValues[i].getValue() == value.getValue());
assert(isPackExpansion ==
isa<PackExpansionType>(sourceType.getElementType(i)));
if (isPackExpansion) {
auto packAddr = destructuredValues[i].getValue();
auto componentCleanup = destructuredValues[i].getCleanup();
copyOrInitPackExpansionInto(SGF, loc, packAddr, formalPackType,
i, componentCleanup,
SubInitializations[i].get(), isInit);
continue;
}
}
SubInitializations[i]->copyOrInitValueInto(SGF, loc, destructuredValues[i],
isInit);
SubInitializations[i]->finishInitialization(SGF);
}
}
void TupleInitialization::finishUninitialized(SILGenFunction &SGF) {
for (auto &subInit : SubInitializations) {
subInit->finishUninitialized(SGF);
}
}
namespace {
class CleanupClosureConstant : public Cleanup {
SILValue closure;
public:
CleanupClosureConstant(SILValue closure) : closure(closure) {}
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
SGF.B.emitDestroyValueOperation(l, closure);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "CleanupClosureConstant\n"
<< "State:" << getState() << "\n"
<< "closure:" << closure << "\n";
#endif
}
};
} // end anonymous namespace
SubstitutionMap SILGenFunction::getForwardingSubstitutionMap() {
return F.getForwardingSubstitutionMap();
}
void SILGenFunction::visitFuncDecl(FuncDecl *fd) {
// Generate the local function body.
SGM.emitFunction(fd);
}
MutableArrayRef<InitializationPtr>
SingleBufferInitialization::
splitIntoTupleElements(SILGenFunction &SGF, SILLocation loc, CanType type,
SmallVectorImpl<InitializationPtr> &buf) {
assert(SplitCleanups.empty() && "getting sub-initializations twice?");
auto address = getAddressForInPlaceInitialization(SGF, loc);
return splitSingleBufferIntoTupleElements(SGF, loc, type, address,
buf, SplitCleanups);
}
MutableArrayRef<InitializationPtr>
SingleBufferInitialization::
splitSingleBufferIntoTupleElements(SILGenFunction &SGF, SILLocation loc,
CanType type, SILValue baseAddr,
SmallVectorImpl<InitializationPtr> &buf,
TinyPtrVector<CleanupHandle::AsPointer> &splitCleanups) {
auto tupleType = cast<TupleType>(type);
// We can still split the initialization of a tuple with a pack
// expansion component (as long as the initializer is cooperative),
// but we have to emit a different code pattern.
bool hasExpansion = tupleType.containsPackExpansionType();
// If there's an expansion in the tuple, we'll need the induced pack
// type for the tuple elements below.
CanPackType inducedPackType;
if (hasExpansion) {
inducedPackType = tupleType.getInducedPackType();
}
// Destructure the buffer into per-element buffers.
for (auto i : indices(tupleType->getElementTypes())) {
// Project the element.
SILValue eltAddr;
// If this element is a pack expansion, we have to produce an
// Initialization that will drill appropriately to the right tuple
// element within a dynamic pack loop.
if (hasExpansion && isa<PackExpansionType>(tupleType.getElementType(i))) {
auto expansionInit =
TuplePackExpansionInitialization::create(SGF, baseAddr,
inducedPackType, i);
auto expansionCleanup = expansionInit->getExpansionCleanup();
if (expansionCleanup.isValid())
splitCleanups.push_back(expansionCleanup);
buf.emplace_back(expansionInit.release());
continue;
// If this element is scalar, but it's into a tuple with pack
// expansions, produce a structural pack index into the induced
// pack type and use that to project the right element.
} else if (hasExpansion) {
auto packIndex = SGF.B.createScalarPackIndex(loc, i, inducedPackType);
auto eltTy = baseAddr->getType().getTupleElementType(i);
eltAddr = SGF.B.createTuplePackElementAddr(loc, packIndex, baseAddr,
eltTy);
// Otherwise, we can just use simple projection.
} else {
eltAddr = SGF.B.createTupleElementAddr(loc, baseAddr, i);
}
// Create an initialization to initialize the element.
auto &eltTL = SGF.getTypeLowering(eltAddr->getType());
auto eltInit = SGF.useBufferAsTemporary(eltAddr, eltTL);
// Remember the element cleanup.
auto eltCleanup = eltInit->getInitializedCleanup();
if (eltCleanup.isValid())
splitCleanups.push_back(eltCleanup);
buf.emplace_back(eltInit.release());
}
return buf;
}
void SingleBufferInitialization::
copyOrInitValueIntoSingleBuffer(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit,
SILValue destAddr) {
// Emit an unchecked access around initialization of the local buffer to
// silence access marker verification.
//
// FIXME: This is not a good place for FormalEvaluationScope +
// UnenforcedFormalAccess. However, there's no way to identify the buffer
// initialization sequence after SILGen, and no easy way to wrap the
// Initialization in an access during top-level expression evaluation.
FormalEvaluationScope scope(SGF);
if (!isInit) {
assert(value.getValue() != destAddr && "copying in place?!");
SILValue accessAddr =
UnenforcedFormalAccess::enter(SGF, loc, destAddr, SILAccessKind::Modify);
value.copyInto(SGF, loc, accessAddr);
return;
}
// If we didn't evaluate into the initialization buffer, do so now.
if (value.getValue() != destAddr) {
SILValue accessAddr =
UnenforcedFormalAccess::enter(SGF, loc, destAddr, SILAccessKind::Modify);
value.forwardInto(SGF, loc, accessAddr);
} else {
// If we did evaluate into the initialization buffer, disable the
// cleanup.
value.forwardCleanup(SGF);
}
}
void SingleBufferInitialization::finishInitialization(SILGenFunction &SGF) {
// Forward all of the split element cleanups, assuming we made any.
for (CleanupHandle eltCleanup : SplitCleanups)
SGF.Cleanups.forwardCleanup(eltCleanup);
}
bool KnownAddressInitialization::isInPlaceInitializationOfGlobal() const {
return isa<GlobalAddrInst>(address);
}
bool TemporaryInitialization::isInPlaceInitializationOfGlobal() const {
return isa<GlobalAddrInst>(Addr);
}
void TemporaryInitialization::finishInitialization(SILGenFunction &SGF) {
SingleBufferInitialization::finishInitialization(SGF);
if (Cleanup.isValid())
SGF.Cleanups.setCleanupState(Cleanup, CleanupState::Active);
}
StoreBorrowInitialization::StoreBorrowInitialization(SILValue address)
: address(address) {
assert(isa<AllocStackInst>(address) ||
isa<MarkUnresolvedNonCopyableValueInst>(address) &&
"invalid destination for store_borrow initialization!?");
}
void StoreBorrowInitialization::copyOrInitValueInto(SILGenFunction &SGF,
SILLocation loc,
ManagedValue mv,
bool isInit) {
auto value = mv.getValue();
auto &lowering = SGF.getTypeLowering(value->getType());
if (lowering.isAddressOnly() && SGF.silConv.useLoweredAddresses()) {
llvm::report_fatal_error(
"Attempting to store_borrow an address-only value!?");
}
if (value->getType().isAddress()) {
value = SGF.emitManagedLoadBorrow(loc, value).getValue();
}
if (!isInit) {
value = lowering.emitCopyValue(SGF.B, loc, value);
}
storeBorrow = SGF.emitManagedStoreBorrow(loc, value, address);
}
SILValue StoreBorrowInitialization::getAddress() const {
if (storeBorrow) {
return storeBorrow.getValue();
}
return address;
}
ManagedValue StoreBorrowInitialization::getManagedAddress() const {
return storeBorrow;
}
namespace {
class ReleaseValueCleanup : public Cleanup {
SILValue v;
public:
ReleaseValueCleanup(SILValue v) : v(v) {}
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
if (v->getType().isAddress())
SGF.B.createDestroyAddr(l, v);
else
SGF.B.emitDestroyValueOperation(l, v);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "ReleaseValueCleanup\n"
<< "State:" << getState() << "\n"
<< "Value:" << v << "\n";
#endif
}
};
} // end anonymous namespace
namespace {
/// Cleanup to deallocate a now-uninitialized variable.
class DeallocStackCleanup : public Cleanup {
SILValue Addr;
public:
DeallocStackCleanup(SILValue addr) : Addr(addr) {}
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
SGF.B.createDeallocStack(l, Addr);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "DeallocStackCleanup\n"
<< "State:" << getState() << "\n"
<< "Addr:" << Addr << "\n";
#endif
}
};
} // end anonymous namespace
namespace {
/// Cleanup to destroy an initialized 'var' variable.
class DestroyLocalVariable : public Cleanup {
VarDecl *Var;
public:
DestroyLocalVariable(VarDecl *var) : Var(var) {}
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
SGF.destroyLocalVariable(l, Var);
}
void dump(SILGenFunction &SGF) const override {
#ifndef NDEBUG
llvm::errs() << "DestroyLocalVariable\n"
<< "State:" << getState() << "\n"
<< "Decl: ";
Var->print(llvm::errs());
llvm::errs() << "\n";
if (isActive()) {
auto &loc = SGF.VarLocs[Var];
assert((loc.box || loc.value) && "One of box or value should be set");
if (loc.box) {
llvm::errs() << "Box: " << loc.box << "\n";
} else {
llvm::errs() << "Value: " << loc.value << "\n";
}
}
llvm::errs() << "\n";
#endif
}
};
} // end anonymous namespace
namespace {
/// Cleanup to destroy an uninitialized local variable.
class DeallocateUninitializedLocalVariable : public Cleanup {
SILValue Box;
public:
DeallocateUninitializedLocalVariable(SILValue box) : Box(box) {}
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
auto box = Box;
if (SGF.getASTContext().SILOpts.supportsLexicalLifetimes(SGF.getModule())) {
if (auto *bbi = dyn_cast<BeginBorrowInst>(box)) {
SGF.B.createEndBorrow(l, bbi);
box = bbi->getOperand();
}
}
SGF.B.createDeallocBox(l, box);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "DeallocateUninitializedLocalVariable\n"
<< "State:" << getState() << "\n";
// TODO: Make sure we dump var.
llvm::errs() << "\n";
#endif
}
};
} // end anonymous namespace
namespace {
/// An initialization of a local 'var'.
class LocalVariableInitialization : public SingleBufferInitialization {
/// The local variable decl being initialized.
VarDecl *decl;
/// The alloc_box instruction.
SILValue Box;
/// The projected address.
SILValue Addr;
/// The cleanup we pushed to deallocate the local variable before it
/// gets initialized.
CleanupHandle DeallocCleanup;
/// The cleanup we pushed to destroy and deallocate the local variable.
CleanupHandle ReleaseCleanup;
bool DidFinish = false;
public:
/// Sets up an initialization for the allocated box. This pushes a
/// CleanupUninitializedBox cleanup that will be replaced when
/// initialization is completed.
LocalVariableInitialization(VarDecl *decl,
std::optional<MarkUninitializedInst::Kind> kind,
uint16_t ArgNo, bool generateDebugInfo,
SILGenFunction &SGF)
: decl(decl) {
assert(decl->getDeclContext()->isLocalContext() &&
"can't emit a local var for a non-local var decl");
assert(decl->hasStorage() && "can't emit storage for a computed variable");
assert(!SGF.VarLocs.count(decl) && "Already have an entry for this decl?");
// The box type's context is lowered in the minimal resilience domain.
auto instanceType = SGF.SGM.Types.getLoweredRValueType(
TypeExpansionContext::minimal(), decl->getTypeInContext());
bool isNoImplicitCopy = instanceType->is<SILMoveOnlyWrappedType>();
// If our instance type is not already @moveOnly wrapped, and it's a
// no-implicit-copy parameter, wrap it.
if (!isNoImplicitCopy && !instanceType->isNoncopyable()) {
if (auto *pd = dyn_cast<ParamDecl>(decl)) {
isNoImplicitCopy = pd->isNoImplicitCopy();
isNoImplicitCopy |= pd->getSpecifier() == ParamSpecifier::Consuming;
if (pd->isSelfParameter()) {
auto *dc = pd->getDeclContext();
if (auto *fn = dyn_cast<FuncDecl>(dc)) {
auto accessKind = fn->getSelfAccessKind();
isNoImplicitCopy |= accessKind == SelfAccessKind::Consuming;
}
}
if (isNoImplicitCopy)
instanceType = SILMoveOnlyWrappedType::get(instanceType);
}
}
const bool isCopyable = isNoImplicitCopy || !instanceType->isNoncopyable();
auto boxType = SGF.SGM.Types.getContextBoxTypeForCapture(
decl, instanceType, SGF.F.getGenericEnvironment(),
/*mutable=*/ isCopyable || !decl->isLet());
// The variable may have its lifetime extended by a closure, heap-allocate
// it using a box.
std::optional<SILDebugVariable> DbgVar;
if (generateDebugInfo)
DbgVar = SILDebugVariable(decl->isLet(), ArgNo);
Box = SGF.B.createAllocBox(
decl, boxType, DbgVar, DoesNotHaveDynamicLifetime,
/*reflection*/ false, DoesNotUseMoveableValueDebugInfo,
!generateDebugInfo);
// Mark the memory as uninitialized, so DI will track it for us.
if (kind)
Box = SGF.B.createMarkUninitialized(decl, Box, kind.value());
// If we have a reference binding, mark it.
if (decl->getIntroducer() == VarDecl::Introducer::InOut)
Box = SGF.B.createMarkUnresolvedReferenceBindingInst(
decl, Box, MarkUnresolvedReferenceBindingInst::Kind::InOut);
if (SGF.getASTContext().SILOpts.supportsLexicalLifetimes(SGF.getModule())) {
auto loweredType = SGF.getTypeLowering(decl->getTypeInContext()).getLoweredType();
auto lifetime = SGF.F.getLifetime(decl, loweredType);
// The box itself isn't lexical--neither a weak reference nor an unsafe
// pointer to a box can be formed; and the box doesn't synchronize on
// deinit.
//
// Only add a lexical lifetime to the box if the variable it stores
// requires one.
Box =
SGF.B.createBeginBorrow(decl, Box, IsLexical_t(lifetime.isLexical()),
DoesNotHavePointerEscape, IsFromVarDecl);
}
Addr = SGF.B.createProjectBox(decl, Box, 0);
// Push a cleanup to destroy the local variable. This has to be
// inactive until the variable is initialized.
SGF.Cleanups.pushCleanupInState<DestroyLocalVariable>(CleanupState::Dormant,
decl);
ReleaseCleanup = SGF.Cleanups.getTopCleanup();
// Push a cleanup to deallocate the local variable. This references the
// box directly since it might be activated before we update
// SGF.VarLocs.
SGF.Cleanups.pushCleanup<DeallocateUninitializedLocalVariable>(Box);
DeallocCleanup = SGF.Cleanups.getTopCleanup();
}
~LocalVariableInitialization() override {
assert(DidFinish && "did not call VarInit::finishInitialization!");
}
SILValue getAddress() const {
assert(Addr);
return Addr;
}
/// If we have an address, returns the address. Otherwise, if we only have a
/// box, lazily projects it out and returns it.
SILValue getAddressForInPlaceInitialization(SILGenFunction &SGF,
SILLocation loc) override {
if (!Addr && Box) {
auto pbi = SGF.B.createProjectBox(loc, Box, 0);
return pbi;
}
return getAddress();
}
bool isInPlaceInitializationOfGlobal() const override {
return dyn_cast_or_null<GlobalAddrInst>(Addr);
}
void finishUninitialized(SILGenFunction &SGF) override {
LocalVariableInitialization::finishInitialization(SGF);
}
void finishInitialization(SILGenFunction &SGF) override {
/// Remember that this is the memory location that we've emitted the
/// decl to.
assert(SGF.VarLocs.count(decl) == 0 && "Already emitted the local?");
SGF.VarLocs[decl] = SILGenFunction::VarLoc(Addr,
SILAccessEnforcement::Dynamic, Box);
SingleBufferInitialization::finishInitialization(SGF);
assert(!DidFinish &&
"called LocalVariableInitialization::finishInitialization twice!");
SGF.Cleanups.setCleanupState(DeallocCleanup, CleanupState::Dead);
SGF.Cleanups.setCleanupState(ReleaseCleanup, CleanupState::Active);
DidFinish = true;
}
};
} // end anonymous namespace
namespace {
static void deallocateAddressable(SILGenFunction &SGF,
SILLocation l,
const SILGenFunction::VarLoc::AddressableBuffer::State &state) {
SGF.B.createEndBorrow(l, state.storeBorrow);
SGF.B.createDeallocStack(l, state.allocStack);
if (state.reabstraction) {
SGF.B.createDestroyValue(l, state.reabstraction);
}
}
/// Cleanup to deallocate the addressable buffer for a parameter or let
/// binding.
class DeallocateLocalVariableAddressableBuffer : public Cleanup {
ValueDecl *vd;
public:
DeallocateLocalVariableAddressableBuffer(ValueDecl *vd) : vd(vd) {}
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
auto found = SGF.VarLocs.find(vd);
if (found == SGF.VarLocs.end()) {
return;
}
auto &loc = found->second;
if (auto &state = loc.addressableBuffer.state) {
// The addressable buffer was forced, so clean it up now.
deallocateAddressable(SGF, l, *state);
} else {
// Remember this insert location in case we need to force the addressable
// buffer later.
SILInstruction *marker = SGF.B.createTuple(l, {});
loc.addressableBuffer.cleanupPoints.emplace_back(marker);
}
}
void dump(SILGenFunction &SGF) const override {
#ifndef NDEBUG
llvm::errs() << "DeallocateLocalVariableAddressableBuffer\n"
<< "State:" << getState() << "\n"
<< "Decl: ";
vd->print(llvm::errs());
llvm::errs() << "\n";
#endif
}
};
/// Initialize a writeback buffer that receives the value of a 'let'
/// declaration.
class LetValueInitialization : public Initialization {
/// The VarDecl for the let decl.
VarDecl *vd;
/// The address of the buffer used for the binding, if this is an address-only
/// let.
SILValue address;
/// The cleanup we pushed to destroy the local variable.
CleanupHandle DestroyCleanup;
/// Cleanups we introduced when splitting.
TinyPtrVector<CleanupHandle::AsPointer> SplitCleanups;
bool DidFinish = false;
public:
LetValueInitialization(VarDecl *vd, SILGenFunction &SGF) : vd(vd) {
const TypeLowering *lowering = nullptr;
if (vd->isNoImplicitCopy()) {
lowering = &SGF.getTypeLowering(
SILMoveOnlyWrappedType::get(vd->getTypeInContext()->getCanonicalType()));
} else {
lowering = &SGF.getTypeLowering(vd->getTypeInContext());
}
// Decide whether we need a temporary stack buffer to evaluate this 'let'.
// There are four cases we need to handle here: parameters, initialized (or
// bound) decls, uninitialized ones, and async let declarations.
bool needsTemporaryBuffer;
bool isUninitialized = false;
assert(!isa<ParamDecl>(vd)
&& "should not bind function params on this path");
if (vd->getParentPatternBinding() &&
!vd->getParentExecutableInitializer()) {
// If this is a let-value without an initializer, then we need a temporary
// buffer. DI will make sure it is only assigned to once.
needsTemporaryBuffer = true;
isUninitialized = true;
} else if (vd->isAsyncLet()) {
// If this is an async let, treat it like a let-value without an
// initializer. The initializer runs concurrently in a child task,
// and value will be initialized at the point the variable in the
// async let is used.
needsTemporaryBuffer = true;
isUninitialized = true;
} else {
// If this is a let with an initializer or bound value, we only need a
// buffer if the type is address only or is noncopyable.
//
// For noncopyable types, we always need to box them.
needsTemporaryBuffer =
(lowering->isAddressOnly() && SGF.silConv.useLoweredAddresses()) ||
lowering->getLoweredType().isMoveOnly(/*orWrapped=*/false);
}
// Make sure that we have a non-address only type when binding a
// @_noImplicitCopy let.
if (lowering->isAddressOnly() && vd->isNoImplicitCopy()) {
auto d = diag::noimplicitcopy_used_on_generic_or_existential;
diagnose(SGF.getASTContext(), vd->getLoc(), d);
}
if (needsTemporaryBuffer) {
bool lexicalLifetimesEnabled =
SGF.getASTContext().SILOpts.supportsLexicalLifetimes(SGF.getModule());
auto lifetime = SGF.F.getLifetime(vd, lowering->getLoweredType());
auto isLexical =
IsLexical_t(lexicalLifetimesEnabled && lifetime.isLexical());
address = SGF.emitTemporaryAllocation(vd, lowering->getLoweredType(),
DoesNotHaveDynamicLifetime,
isLexical, IsFromVarDecl);
if (isUninitialized)
address = SGF.B.createMarkUninitializedVar(vd, address);
DestroyCleanup = SGF.enterDormantTemporaryCleanup(address, *lowering);
SGF.VarLocs[vd] = SILGenFunction::VarLoc(address,
SILAccessEnforcement::Unknown);
}
// Push a cleanup to destroy the let declaration. This has to be
// inactive until the variable is initialized: if control flow exits the
// before the value is bound, we don't want to destroy the value.
//
// Cleanups are required for all lexically scoped variables to delimite
// the variable scope, even if the cleanup does nothing.
SGF.Cleanups.pushCleanupInState<DestroyLocalVariable>(
CleanupState::Dormant, vd);
DestroyCleanup = SGF.Cleanups.getTopCleanup();
// If the binding has an addressable buffer forced, it should be cleaned
// up at this scope.
SGF.enterLocalVariableAddressableBufferScope(vd);
}
~LetValueInitialization() override {
assert(DidFinish && "did not call LetValueInit::finishInitialization!");
}
bool hasAddress() const { return (bool)address; }
bool canPerformInPlaceInitialization() const override {
return hasAddress();
}
bool isInPlaceInitializationOfGlobal() const override {
return isa<GlobalAddrInst>(address);
}
SILValue getAddressForInPlaceInitialization(SILGenFunction &SGF,
SILLocation loc) override {
// Emit into the buffer that 'let's produce for address-only values if
// we have it.
assert(hasAddress());
return address;
}
/// Return true if we can get the addresses of elements with the
/// 'getSubInitializationsForTuple' method.
///
/// Let-value initializations cannot be broken into constituent pieces if a
/// scalar value needs to be bound. If there is an address in play, then we
/// can initialize the address elements of the tuple though.
bool canSplitIntoTupleElements() const override {
return hasAddress();
}
MutableArrayRef<InitializationPtr>
splitIntoTupleElements(SILGenFunction &SGF, SILLocation loc, CanType type,
SmallVectorImpl<InitializationPtr> &buf) override {
assert(SplitCleanups.empty());
auto address = getAddressForInPlaceInitialization(SGF, loc);
return SingleBufferInitialization
::splitSingleBufferIntoTupleElements(SGF, loc, type, address, buf,
SplitCleanups);
}
/// This is a helper method for bindValue that creates a scopes operation for
/// the lexical variable lifetime and handles any changes to the value needed
/// for move-only values.
SILValue getValueForLexicalLifetimeBinding(SILGenFunction &SGF,
SILLocation PrologueLoc,
SILValue value, bool wasPlusOne) {
// TODO: emitPatternBindingInitialization creates fake local variables for
// metatypes within function_conversion expressions that operate on static
// functions. Creating SIL local variables for all these is impractical and
// undesirable. We need a better way of representing these "capture_list"
// locals in a way that doesn't produce SIL locals. For now, bypassing
// metatypes mostly avoids the issue, but it's not robust and doesn't allow
// SIL-level analysis of real metatype variables.
if (isa<MetatypeType>(value->getType().getASTType())) {
return value;
}
// Preprocess an owned moveonly value that had a cleanup. Even if we are
// only performing a borrow for our lexical lifetime, this ensures that
// defs see this initialization as consuming this value.
if (value->getOwnershipKind() == OwnershipKind::Owned &&
value->getType().isMoveOnlyWrapped()) {
assert(wasPlusOne);
// NOTE: If our type is trivial when not wrapped in a
// SILMoveOnlyWrappedType, this will return a trivial value. We rely
// on the checker to determine if this is an acceptable use of the
// value.
value =
SGF.B.createOwnedMoveOnlyWrapperToCopyableValue(PrologueLoc, value);
}
auto isLexical =
IsLexical_t(SGF.F.getLifetime(vd, value->getType()).isLexical());
switch (value->getOwnershipKind()) {
case OwnershipKind::None:
case OwnershipKind::Owned:
value = SGF.B.createMoveValue(PrologueLoc, value, isLexical,
DoesNotHavePointerEscape, IsFromVarDecl);
break;
case OwnershipKind::Guaranteed:
value = SGF.B.createBeginBorrow(PrologueLoc, value, isLexical,
DoesNotHavePointerEscape, IsFromVarDecl);
break;
case OwnershipKind::Unowned:
case OwnershipKind::Any:
llvm_unreachable("unexpected ownership");
}
if (vd->isNoImplicitCopy()) {
value =
SGF.B.createOwnedCopyableToMoveOnlyWrapperValue(PrologueLoc, value);
// fall-through to the owned move-only case...
}
if (value->getType().isMoveOnly(/*orWrapped=*/true)
&& value->getOwnershipKind() == OwnershipKind::Owned) {
value = SGF.B.createMarkUnresolvedNonCopyableValueInst(
PrologueLoc, value,
MarkUnresolvedNonCopyableValueInst::CheckKind::
ConsumableAndAssignable);
}
return value;
}
void bindValue(SILValue value, SILGenFunction &SGF, bool wasPlusOne,
SILLocation loc) {
assert(!SGF.VarLocs.count(vd) && "Already emitted this vardecl?");
// If we're binding an address to this let value, then we can use it as an
// address later. This happens when binding an address only parameter to
// an argument, for example.
if (value->getType().isAddress())
address = value;
if (SGF.getASTContext().SILOpts.supportsLexicalLifetimes(SGF.getModule()))
value = getValueForLexicalLifetimeBinding(SGF, loc, value, wasPlusOne);
SGF.VarLocs[vd] = SILGenFunction::VarLoc(value,
SILAccessEnforcement::Unknown);
// Emit a debug_value[_addr] instruction to record the start of this value's
// lifetime, if permitted to do so.
if (!EmitDebugValueOnInit)
return;
// Use the scope from loc and diagnostic location from vd.
RegularLocation PrologueLoc(vd);
PrologueLoc.markAsPrologue();
SILDebugVariable DbgVar(vd->getName().str(), vd->isLet(), /*ArgNo=*/0);
SGF.B.emitDebugDescription(PrologueLoc, value, DbgVar);
}
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override {
// If this let value has an address, we can handle it just like a single
// buffer value.
if (hasAddress()) {
return SingleBufferInitialization::
copyOrInitValueIntoSingleBuffer(SGF, loc, value, isInit, address);
}
// Otherwise, we bind the value.
if (isInit) {
// Disable the rvalue expression cleanup, since the let value
// initialization has a cleanup that lives for the entire scope of the
// let declaration.
bool isPlusOne = value.isPlusOne(SGF);
bindValue(value.forward(SGF), SGF, isPlusOne, loc);
} else {
// Disable the expression cleanup of the copy, since the let value
// initialization has a cleanup that lives for the entire scope of the
// let declaration.
bindValue(value.copyUnmanaged(SGF, loc).forward(SGF), SGF, true, loc);
}
}
void finishUninitialized(SILGenFunction &SGF) override {
LetValueInitialization::finishInitialization(SGF);
}
void finishInitialization(SILGenFunction &SGF) override {
assert(!DidFinish &&
"called LetValueInit::finishInitialization twice!");
assert(SGF.VarLocs.count(vd) && "Didn't bind a value to this let!");
// Deactivate any cleanups we made when splitting the tuple.
for (auto cleanup : SplitCleanups)
SGF.Cleanups.forwardCleanup(cleanup);
// Activate the destroy cleanup.
if (DestroyCleanup != CleanupHandle::invalid()) {
SGF.Cleanups.setCleanupState(DestroyCleanup, CleanupState::Active);
}
DidFinish = true;
}
};
} // end anonymous namespace
namespace {
/// Initialize a variable of reference-storage type.
class ReferenceStorageInitialization : public Initialization {
InitializationPtr VarInit;
public:
ReferenceStorageInitialization(InitializationPtr &&subInit)
: VarInit(std::move(subInit)) {
assert(VarInit->canPerformInPlaceInitialization());
}
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override {
auto address = VarInit->getAddressForInPlaceInitialization(SGF, loc);
// If this is not an initialization, copy the value before we translateIt,
// translation expects a +1 value.
if (isInit)
value.forwardInto(SGF, loc, address);
else
value.copyInto(SGF, loc, address);
}
void finishUninitialized(SILGenFunction &SGF) override {
ReferenceStorageInitialization::finishInitialization(SGF);
}
void finishInitialization(SILGenFunction &SGF) override {
VarInit->finishInitialization(SGF);
}
};
} // end anonymous namespace
namespace {
/// Abstract base class for refutable pattern initializations.
class RefutablePatternInitialization : public Initialization {
/// This is the label to jump to if the pattern fails to match.
JumpDest failureDest;
public:
RefutablePatternInitialization(JumpDest failureDest)
: failureDest(failureDest) {
assert(failureDest.isValid() &&
"Refutable patterns can only exist in failable conditions");
}
JumpDest getFailureDest() const { return failureDest; }
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override = 0;
void bindVariable(SILLocation loc, VarDecl *var, ManagedValue value,
CanType formalValueType, SILGenFunction &SGF) {
// Initialize the variable value.
InitializationPtr init = SGF.emitInitializationForVarDecl(var, var->isLet());
RValue(SGF, loc, formalValueType, value).forwardInto(SGF, loc, init.get());
}
};
} // end anonymous namespace
namespace {
class ExprPatternInitialization : public RefutablePatternInitialization {
ExprPattern *P;
public:
ExprPatternInitialization(ExprPattern *P, JumpDest patternFailDest)
: RefutablePatternInitialization(patternFailDest), P(P) {}
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override;
};
} // end anonymous namespace
void ExprPatternInitialization::
copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) {
assert(isInit && "Only initialization is supported for refutable patterns");
FullExpr scope(SGF.Cleanups, CleanupLocation(P));
bindVariable(P, P->getMatchVar(), value,
P->getType()->getCanonicalType(), SGF);
// Emit the match test.
SILValue testBool;
{
FullExpr scope(SGF.Cleanups, CleanupLocation(P->getMatchExpr()));
testBool = SGF.emitRValueAsSingleValue(P->getMatchExpr()).
getUnmanagedValue();
}
assert(testBool->getType().getASTType()->isBool());
auto i1Value = SGF.emitUnwrapIntegerResult(loc, testBool);
SILBasicBlock *contBB = SGF.B.splitBlockForFallthrough();
auto falseBB = SGF.Cleanups.emitBlockForCleanups(getFailureDest(), loc);
SGF.B.createCondBranch(loc, i1Value, contBB, falseBB);
SGF.B.setInsertionPoint(contBB);
}
namespace {
class EnumElementPatternInitialization : public RefutablePatternInitialization {
EnumElementDecl *ElementDecl;
InitializationPtr subInitialization;
public:
EnumElementPatternInitialization(EnumElementDecl *ElementDecl,
InitializationPtr &&subInitialization,
JumpDest patternFailDest)
: RefutablePatternInitialization(patternFailDest), ElementDecl(ElementDecl),
subInitialization(std::move(subInitialization)) {}
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override {
assert(isInit && "Only initialization is supported for refutable patterns");
emitEnumMatch(value, ElementDecl, subInitialization.get(), getFailureDest(),
loc, SGF);
}
static void emitEnumMatch(ManagedValue value, EnumElementDecl *ElementDecl,
Initialization *subInit, JumpDest FailureDest,
SILLocation loc, SILGenFunction &SGF);
void finishInitialization(SILGenFunction &SGF) override {
if (subInitialization.get())
subInitialization->finishInitialization(SGF);
}
};
} // end anonymous namespace
/// If \p elt belongs to an enum that has exactly two cases and that can be
/// exhaustively switched, return the other case. Otherwise, return nullptr.
static EnumElementDecl *getOppositeBinaryDecl(const SILGenFunction &SGF,
const EnumElementDecl *elt) {
const EnumDecl *enumDecl = elt->getParentEnum();
if (!enumDecl->isEffectivelyExhaustive(SGF.SGM.SwiftModule,
SGF.F.getResilienceExpansion())) {
return nullptr;
}
EnumDecl::ElementRange range = enumDecl->getAllElements();
auto iter = range.begin();
if (iter == range.end())
return nullptr;
bool seenDecl = false;
EnumElementDecl *result = nullptr;
if (*iter == elt) {
seenDecl = true;
} else {
result = *iter;
}
++iter;
if (iter == range.end())
return nullptr;
if (seenDecl) {
assert(!result);
result = *iter;
} else {
if (elt != *iter)
return nullptr;
seenDecl = true;
}
++iter;
// If we reach this point, we saw the decl we were looking for and one other
// case. If we have any additional cases, then we do not have a binary enum.
if (iter != range.end())
return nullptr;
// This is always true since we have already returned earlier nullptr if we
// did not see the decl at all.
assert(seenDecl);
return result;
}
void EnumElementPatternInitialization::emitEnumMatch(
ManagedValue value, EnumElementDecl *eltDecl, Initialization *subInit,
JumpDest failureDest, SILLocation loc, SILGenFunction &SGF) {
// Create all of the blocks early so we can maintain a consistent ordering
// (and update less tests). Break this at your fingers parallel.
//
// *NOTE* This needs to be in reverse order to preserve the textual SIL.
auto *contBlock = SGF.createBasicBlock();
auto *someBlock = SGF.createBasicBlock();
auto *defaultBlock = SGF.createBasicBlock();
auto *originalBlock = SGF.B.getInsertionBB();
SwitchEnumBuilder switchBuilder(SGF.B, loc, value);
// Handle the none case.
//
// *NOTE*: Since we are performing an initialization here, it is *VERY*
// important that we emit the negative case first. The reason why is that
// currently the initialization has a dormant cleanup in a scope that may be
// after the failureDest depth. Once we run the positive case, this
// initialization will be enabled. Thus if we run the negative case /after/
// the positive case, a cleanup will be emitted for the initialization on the
// negative path... but the actual initialization happened on the positive
// path, causing a use (the destroy on the negative path) to be created that
// does not dominate its definition (in the positive path).
auto handler = [&SGF, &loc, &failureDest](ManagedValue mv,
SwitchCaseFullExpr &&expr) {
expr.exit();
SGF.Cleanups.emitBranchAndCleanups(failureDest, loc);
};
// If we have a binary enum, do not emit a true default case. This ensures
// that we do not emit a destroy_value on a .None.
bool inferredBinaryEnum = false;
if (auto *otherDecl = getOppositeBinaryDecl(SGF, eltDecl)) {
inferredBinaryEnum = true;
switchBuilder.addCase(otherDecl, defaultBlock, nullptr, handler);
} else {
switchBuilder.addDefaultCase(
defaultBlock, nullptr, handler,
SwitchEnumBuilder::DefaultDispatchTime::BeforeNormalCases);
}
// Always insert the some case at the front of the list. In the default case,
// this will not matter, but in the case where we have a binary enum, we want
// to preserve the old ordering of .some/.none. to make it easier to update
// tests.
switchBuilder.addCase(
eltDecl, someBlock, contBlock,
[&SGF, &loc, &eltDecl, &subInit, &value](ManagedValue mv,
SwitchCaseFullExpr &&expr) {
// If the enum case has no bound value, we're done.
if (!eltDecl->hasAssociatedValues()) {
assert(
subInit == nullptr &&
"Cannot have a subinit when there is no value to match against");
expr.exitAndBranch(loc);
return;
}
if (subInit == nullptr) {
// If there is no subinitialization, then we are done matching. Don't
// bother projecting out the any elements value only to ignore it.
expr.exitAndBranch(loc);
return;
}
// Otherwise, the bound value for the enum case is available.
SILType eltTy = value.getType().getEnumElementType(
eltDecl, SGF.SGM.M, SGF.getTypeExpansionContext());
auto &eltTL = SGF.getTypeLowering(eltTy);
if (mv.getType().isAddress()) {
// If the enum is address-only, take from the enum we have and load it
// if
// the element value is loadable.
assert((eltTL.isTrivial() || mv.hasCleanup()) &&
"must be able to consume value");
mv = SGF.B.createUncheckedTakeEnumDataAddr(loc, mv, eltDecl, eltTy);
// Load a loadable data value.
if (eltTL.isLoadable())
mv = SGF.B.createLoadTake(loc, mv);
}
// If the payload is indirect, project it out of the box.
if (eltDecl->isIndirect() || eltDecl->getParentEnum()->isIndirect()) {
ManagedValue boxedValue = SGF.B.createProjectBox(loc, mv, 0);
auto &boxedTL = SGF.getTypeLowering(boxedValue.getType());
// We must treat the boxed value as +0 since it may be shared. Copy it
// if nontrivial.
//
// NOTE: The APIs that we are using here will ensure that if we have
// a trivial value, the load_borrow will become a load [trivial] and
// the copies will be "automagically" elided.
if (boxedTL.isLoadable() || !SGF.silConv.useLoweredAddresses()) {
UnenforcedAccess access;
SILValue accessAddress = access.beginAccess(
SGF, loc, boxedValue.getValue(), SILAccessKind::Read);
auto mvAccessAddress =
ManagedValue::forBorrowedAddressRValue(accessAddress);
{
Scope loadScope(SGF, loc);
ManagedValue borrowedVal =
SGF.B.createLoadBorrow(loc, mvAccessAddress);
mv = loadScope.popPreservingValue(
borrowedVal.copyUnmanaged(SGF, loc));
}
access.endAccess(SGF);
} else {
// If we do not have a loadable value, just do a copy of the
// boxedValue.
mv = boxedValue.copyUnmanaged(SGF, loc);
}
}
// Reabstract to the substituted type, if needed.
CanType substEltTy =
value.getType()
.getASTType()
->getTypeOfMember(eltDecl,
eltDecl->getPayloadInterfaceType())
->getCanonicalType();
AbstractionPattern origEltTy =
(eltDecl == SGF.getASTContext().getOptionalSomeDecl()
? AbstractionPattern(substEltTy)
: SGF.SGM.M.Types.getAbstractionPattern(eltDecl));
mv = SGF.emitOrigToSubstValue(loc, mv, origEltTy, substEltTy);
// Pass the +1 value down into the sub initialization.
subInit->copyOrInitValueInto(SGF, loc, mv, /*is an init*/ true);
expr.exitAndBranch(loc);
});
std::move(switchBuilder).emit();
// If we inferred a binary enum, put the asked for case first so we preserve
// the current code structure. This just ensures that less test updates are
// needed.
if (inferredBinaryEnum) {
if (auto *switchEnum =
dyn_cast<SwitchEnumInst>(originalBlock->getTerminator())) {
switchEnum->swapCase(0, 1);
} else {
auto *switchEnumAddr =
cast<SwitchEnumAddrInst>(originalBlock->getTerminator());
switchEnumAddr->swapCase(0, 1);
}
}
// Reset the insertion point to the end of contBlock.
SGF.B.setInsertionPoint(contBlock);
}
namespace {
class IsPatternInitialization : public RefutablePatternInitialization {
IsPattern *pattern;
InitializationPtr subInitialization;
public:
IsPatternInitialization(IsPattern *pattern,
InitializationPtr &&subInitialization,
JumpDest patternFailDest)
: RefutablePatternInitialization(patternFailDest), pattern(pattern),
subInitialization(std::move(subInitialization)) {}
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override;
void finishInitialization(SILGenFunction &SGF) override {
if (subInitialization.get())
subInitialization->finishInitialization(SGF);
}
};
} // end anonymous namespace
void IsPatternInitialization::
copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) {
assert(isInit && "Only initialization is supported for refutable patterns");
// Try to perform the cast to the destination type, producing an optional that
// indicates whether we succeeded.
auto destType = OptionalType::get(pattern->getCastType());
value =
emitConditionalCheckedCast(SGF, loc, value, pattern->getType(), destType,
pattern->getCastKind(), SGFContext(),
ProfileCounter(), ProfileCounter())
.getAsSingleValue(SGF, loc);
// Now that we have our result as an optional, we can use an enum projection
// to do all the work.
EnumElementPatternInitialization::
emitEnumMatch(value, SGF.getASTContext().getOptionalSomeDecl(),
subInitialization.get(), getFailureDest(), loc, SGF);
}
namespace {
class BoolPatternInitialization : public RefutablePatternInitialization {
BoolPattern *pattern;
public:
BoolPatternInitialization(BoolPattern *pattern,
JumpDest patternFailDest)
: RefutablePatternInitialization(patternFailDest), pattern(pattern) {}
void copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) override;
};
} // end anonymous namespace
void BoolPatternInitialization::
copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) {
assert(isInit && "Only initialization is supported for refutable patterns");
// Extract the i1 from the Bool struct.
auto i1Value = SGF.emitUnwrapIntegerResult(loc, value.forward(SGF));
// Branch on the boolean based on whether we're testing for true or false.
SILBasicBlock *trueBB = SGF.B.splitBlockForFallthrough();
auto contBB = trueBB;
auto falseBB = SGF.Cleanups.emitBlockForCleanups(getFailureDest(), loc);
if (!pattern->getValue())
std::swap(trueBB, falseBB);
SGF.B.createCondBranch(loc, i1Value, trueBB, falseBB);
SGF.B.setInsertionPoint(contBB);
}
namespace {
/// InitializationForPattern - A visitor for traversing a pattern, generating
/// SIL code to allocate the declared variables, and generating an
/// Initialization representing the needed initializations.
///
/// It is important that any Initialization created for a pattern that might
/// not have an immediate initializer implement finishUninitialized. Note
/// that this only applies to irrefutable patterns.
struct InitializationForPattern
: public PatternVisitor<InitializationForPattern, InitializationPtr>
{
SILGenFunction &SGF;
/// This is the place that should be jumped to if the pattern fails to match.
/// This is invalid for irrefutable pattern initializations.
JumpDest patternFailDest;
bool generateDebugInfo = true;
InitializationForPattern(SILGenFunction &SGF, JumpDest patternFailDest,
bool generateDebugInfo)
: SGF(SGF), patternFailDest(patternFailDest),
generateDebugInfo(generateDebugInfo) {}
// Paren, Typed, and Var patterns are noops, just look through them.
InitializationPtr visitParenPattern(ParenPattern *P) {
return visit(P->getSubPattern());
}
InitializationPtr visitTypedPattern(TypedPattern *P) {
return visit(P->getSubPattern());
}
InitializationPtr visitBindingPattern(BindingPattern *P) {
return visit(P->getSubPattern());
}
// AnyPatterns (i.e, _) don't require any storage. Any value bound here will
// just be dropped.
InitializationPtr visitAnyPattern(AnyPattern *P) {
return InitializationPtr(new BlackHoleInitialization());
}
// Bind to a named pattern by creating a memory location and initializing it
// with the initial value.
InitializationPtr visitNamedPattern(NamedPattern *P) {
if (!P->getDecl()->hasName()) {
// Unnamed parameters don't require any storage. Any value bound here will
// just be dropped.
return InitializationPtr(new BlackHoleInitialization());
}
return SGF.emitInitializationForVarDecl(P->getDecl(), P->getDecl()->isLet(),
generateDebugInfo);
}
// Bind a tuple pattern by aggregating the component variables into a
// TupleInitialization.
InitializationPtr visitTuplePattern(TuplePattern *P) {
TupleInitialization *init = new TupleInitialization(
cast<TupleType>(P->getType()->getCanonicalType()));
for (auto &elt : P->getElements())
init->SubInitializations.push_back(visit(elt.getPattern()));
return InitializationPtr(init);
}
InitializationPtr visitEnumElementPattern(EnumElementPattern *P) {
InitializationPtr subInit;
if (auto *subP = P->getSubPattern())
subInit = visit(subP);
auto *res = new EnumElementPatternInitialization(P->getElementDecl(),
std::move(subInit),
patternFailDest);
return InitializationPtr(res);
}
InitializationPtr visitOptionalSomePattern(OptionalSomePattern *P) {
InitializationPtr subInit = visit(P->getSubPattern());
auto *res = new EnumElementPatternInitialization(P->getElementDecl(),
std::move(subInit),
patternFailDest);
return InitializationPtr(res);
}
InitializationPtr visitIsPattern(IsPattern *P) {
InitializationPtr subInit;
if (auto *subP = P->getSubPattern())
subInit = visit(subP);
return InitializationPtr(new IsPatternInitialization(P, std::move(subInit),
patternFailDest));
}
InitializationPtr visitBoolPattern(BoolPattern *P) {
return InitializationPtr(new BoolPatternInitialization(P, patternFailDest));
}
InitializationPtr visitExprPattern(ExprPattern *P) {
return InitializationPtr(new ExprPatternInitialization(P, patternFailDest));
}
};
} // end anonymous namespace
InitializationPtr
SILGenFunction::emitInitializationForVarDecl(VarDecl *vd, bool forceImmutable,
bool generateDebugInfo) {
// If this is a computed variable, we don't need to do anything here.
// We'll generate the getter and setter when we see their FuncDecls.
if (!vd->hasStorage())
return InitializationPtr(new BlackHoleInitialization());
if (vd->isDebuggerVar()) {
DebuggerClient *DebugClient = SGM.SwiftModule->getDebugClient();
assert(DebugClient && "Debugger variables with no debugger client");
SILDebuggerClient *SILDebugClient = DebugClient->getAsSILDebuggerClient();
assert(SILDebugClient && "Debugger client doesn't support SIL");
SILValue SV = SILDebugClient->emitLValueForVariable(vd, B);
VarLocs[vd] = VarLoc(SV, SILAccessEnforcement::Dynamic);
return InitializationPtr(new KnownAddressInitialization(SV));
}
CanType varType = vd->getTypeInContext()->getCanonicalType();
assert(!isa<InOutType>(varType) && "local variables should never be inout");
// If this is a 'let' initialization for a copyable non-global, set up a let
// binding, which stores the initialization value into VarLocs directly.
if (forceImmutable && vd->getDeclContext()->isLocalContext() &&
!isa<ReferenceStorageType>(varType) && !varType->isNoncopyable())
return InitializationPtr(new LetValueInitialization(vd, *this));
// If the variable has no initial value, emit a mark_uninitialized instruction
// so that DI tracks and enforces validity of it.
bool isUninitialized =
vd->getParentPatternBinding() && !vd->getParentExecutableInitializer();
// If this is a global variable, initialize it without allocations or
// cleanups.
InitializationPtr Result;
if (!vd->getDeclContext()->isLocalContext()) {
auto *silG = SGM.getSILGlobalVariable(vd, NotForDefinition);
RegularLocation loc(vd);
loc.markAutoGenerated();
B.createAllocGlobal(loc, silG);
SILValue addr = B.createGlobalAddr(loc, silG, /*dependencyToken=*/ SILValue());
if (isUninitialized)
addr = B.createMarkUninitializedVar(loc, addr);
VarLocs[vd] = VarLoc(addr, SILAccessEnforcement::Dynamic);
Result = InitializationPtr(new KnownAddressInitialization(addr));
} else {
std::optional<MarkUninitializedInst::Kind> uninitKind;
if (isUninitialized) {
uninitKind = MarkUninitializedInst::Kind::Var;
}
Result = emitLocalVariableWithCleanup(vd, uninitKind, /*argno*/ 0,
generateDebugInfo);
}
// If we're initializing a weak or unowned variable, this requires a change in
// type.
if (isa<ReferenceStorageType>(varType))
Result = InitializationPtr(new
ReferenceStorageInitialization(std::move(Result)));
return Result;
}
void SILGenFunction::emitPatternBinding(PatternBindingDecl *PBD, unsigned idx,
bool generateDebugInfo) {
auto &C = PBD->getASTContext();
// If this is an async let, create a child task to compute the initializer
// value.
if (PBD->isAsyncLet()) {
// Look through the implicit await (if present), try (if present), and
// call to reach the autoclosure that computes the value.
auto *init = PBD->getExecutableInit(idx);
if (auto awaitExpr = dyn_cast<AwaitExpr>(init))
init = awaitExpr->getSubExpr();
if (auto tryExpr = dyn_cast<TryExpr>(init))
init = tryExpr->getSubExpr();
init = cast<CallExpr>(init)->getFn();
auto initClosure = cast<AutoClosureExpr>(init);
bool isThrowing = init->getType()->castTo<AnyFunctionType>()->isThrowing();
// Allocate space to receive the child task's result.
auto initLoweredTy = getLoweredType(AbstractionPattern::getOpaque(),
PBD->getPattern(idx)->getType());
SILLocation loc(PBD);
SILValue resultBuf = emitTemporaryAllocation(loc, initLoweredTy);
SILValue resultBufPtr = B.createAddressToPointer(loc, resultBuf,
SILType::getPrimitiveObjectType(C.TheRawPointerType),
/*needsStackProtection=*/ false);
// Emit the closure for the child task.
// Prepare the opaque `AsyncLet` representation.
SILValue alet;
{
// Currently we don't pass any task options here, so just grab a 'nil'.
// If we can statically detect some option needs to be passed, e.g.
// an executor preference, we'd construct the appropriate option here and
// pass it to the async let start.
auto options = B.createManagedOptionalNone(
loc, SILType::getOptionalType(SILType::getRawPointerType(C)));
alet = emitAsyncLetStart(
loc,
options.forward(*this), // options is B.createManagedOptionalNone
initClosure,
resultBufPtr
).forward(*this);
}
// Push a cleanup to destroy the AsyncLet along with the task and child record.
enterAsyncLetCleanup(alet, resultBufPtr);
// Save the child task so we can await it as needed.
AsyncLetChildTasks[{PBD, idx}] = {alet, resultBufPtr, isThrowing};
return;
}
auto initialization = emitPatternBindingInitialization(
PBD->getPattern(idx), JumpDest::invalid(), generateDebugInfo);
auto getWrappedValueExpr = [&](VarDecl *var) -> Expr * {
if (auto *orig = var->getOriginalWrappedProperty()) {
auto initInfo = orig->getPropertyWrapperInitializerInfo();
if (auto *placeholder = initInfo.getWrappedValuePlaceholder()) {
return placeholder->getOriginalWrappedValue();
}
}
return nullptr;
};
auto *initExpr = PBD->getExecutableInit(idx);
// If we do not have an explicit initialization expression, just mark the
// initialization as unfinished for DI to resolve.
if (!initExpr) {
return initialization->finishUninitialized(*this);
}
// Otherwise, an initial value expression was specified by the decl... emit it
// into the initialization.
FullExpr Scope(Cleanups, CleanupLocation(initExpr));
auto *singleVar = PBD->getSingleVar();
bool isLocalSingleVar =
singleVar && singleVar->getDeclContext()->isLocalContext();
if (isLocalSingleVar) {
if (auto *orig = singleVar->getOriginalWrappedProperty()) {
if (auto *initExpr = getWrappedValueExpr(singleVar)) {
auto value = emitRValue(initExpr);
emitApplyOfPropertyWrapperBackingInitializer(
PBD, orig, getForwardingSubstitutionMap(), std::move(value))
.forwardInto(*this, SILLocation(PBD), initialization.get());
return;
}
}
}
emitExprInto(initExpr, initialization.get());
}
void SILGenFunction::visitPatternBindingDecl(PatternBindingDecl *PBD,
bool generateDebugInfo) {
// Allocate the variables and build up an Initialization over their
// allocated storage.
for (unsigned i : range(PBD->getNumPatternEntries())) {
emitPatternBinding(PBD, i, generateDebugInfo);
}
}
void SILGenFunction::visitVarDecl(VarDecl *D) {
// We handle emitting the variable storage when we see the pattern binding.
// Avoid request evaluator overhead in the common case where there's
// no wrapper.
if (D->getAttrs().hasAttribute<CustomAttr>()) {
// Emit the property wrapper backing initializer if necessary.
auto initInfo = D->getPropertyWrapperInitializerInfo();
if (initInfo.hasInitFromWrappedValue())
SGM.emitPropertyWrapperBackingInitializer(D);
}
// Emit lazy and property wrapper backing storage.
D->visitAuxiliaryDecls([&](VarDecl *var) {
if (auto *patternBinding = var->getParentPatternBinding())
visitPatternBindingDecl(patternBinding);
visit(var);
});
// Emit the variable's accessors.
SGM.visitEmittedAccessors(D, [&](AccessorDecl *accessor) {
SGM.emitFunction(accessor);
});
}
void SILGenFunction::visitMacroExpansionDecl(MacroExpansionDecl *D) {
D->forEachExpandedNode([&](ASTNode node) {
if (auto *expr = node.dyn_cast<Expr *>())
emitIgnoredExpr(expr);
else if (auto *stmt = node.dyn_cast<Stmt *>())
emitStmt(stmt);
else
visit(node.get<Decl *>());
});
}
/// Emit literals for the major, minor, and subminor components of the version
/// and return a tuple of SILValues for them.
static std::tuple<SILValue, SILValue, SILValue>
emitVersionLiterals(SILLocation loc, SILGenBuilder &B, ASTContext &ctx,
llvm::VersionTuple Vers) {
unsigned major = Vers.getMajor();
unsigned minor =
(Vers.getMinor().has_value() ? Vers.getMinor().value() : 0);
unsigned subminor =
(Vers.getSubminor().has_value() ? Vers.getSubminor().value() : 0);
SILType wordType = SILType::getBuiltinWordType(ctx);
SILValue majorValue = B.createIntegerLiteral(loc, wordType, major);
SILValue minorValue = B.createIntegerLiteral(loc, wordType, minor);
SILValue subminorValue = B.createIntegerLiteral(loc, wordType, subminor);
return std::make_tuple(majorValue, minorValue, subminorValue);
}
/// Emit a check that returns 1 if the running OS version is in
/// the specified version range and 0 otherwise. The returned SILValue
/// (which has type Builtin.Int1) represents the result of this check.
SILValue SILGenFunction::emitOSVersionRangeCheck(SILLocation loc,
const VersionRange &range,
bool forTargetVariant) {
// Emit constants for the checked version range.
SILValue majorValue;
SILValue minorValue;
SILValue subminorValue;
std::tie(majorValue, minorValue, subminorValue) =
emitVersionLiterals(loc, B, getASTContext(), range.getLowerEndpoint());
// Emit call to _stdlib_isOSVersionAtLeast(major, minor, patch)
FuncDecl *versionQueryDecl =
getASTContext().getIsOSVersionAtLeastDecl();
// When targeting macCatalyst, the version number will be an iOS version number
// and so we call a variant of the query function that understands iOS
// versions.
if (forTargetVariant)
versionQueryDecl = getASTContext().getIsVariantOSVersionAtLeastDecl();
assert(versionQueryDecl);
auto silDeclRef = SILDeclRef(versionQueryDecl);
SILValue availabilityGTEFn = emitGlobalFunctionRef(
loc, silDeclRef, getConstantInfo(getTypeExpansionContext(), silDeclRef));
SILValue args[] = {majorValue, minorValue, subminorValue};
return B.createApply(loc, availabilityGTEFn, SubstitutionMap(), args);
}
SILValue SILGenFunction::emitOSVersionOrVariantVersionRangeCheck(
SILLocation loc, const VersionRange &targetRange,
const VersionRange &variantRange) {
SILValue targetMajorValue;
SILValue targetMinorValue;
SILValue targetSubminorValue;
const llvm::VersionTuple &targetVersion = targetRange.getLowerEndpoint();
std::tie(targetMajorValue, targetMinorValue, targetSubminorValue) =
emitVersionLiterals(loc, B, getASTContext(), targetVersion);
SILValue variantMajorValue;
SILValue variantMinorValue;
SILValue variantSubminorValue;
const llvm::VersionTuple &variantVersion = variantRange.getLowerEndpoint();
std::tie(variantMajorValue, variantMinorValue, variantSubminorValue) =
emitVersionLiterals(loc, B, getASTContext(), variantVersion);
FuncDecl *versionQueryDecl =
getASTContext().getIsOSVersionAtLeastOrVariantVersionAtLeast();
assert(versionQueryDecl);
auto silDeclRef = SILDeclRef(versionQueryDecl);
SILValue availabilityGTEFn = emitGlobalFunctionRef(
loc, silDeclRef, getConstantInfo(getTypeExpansionContext(), silDeclRef));
SILValue args[] = {
targetMajorValue,
targetMinorValue,
targetSubminorValue,
variantMajorValue,
variantMinorValue,
variantSubminorValue
};
return B.createApply(loc, availabilityGTEFn, SubstitutionMap(), args);
}
SILValue SILGenFunction::emitZipperedOSVersionRangeCheck(
SILLocation loc, const VersionRange &targetRange,
const VersionRange &variantRange) {
assert(getASTContext().LangOpts.TargetVariant);
VersionRange OSVersion = targetRange;
VersionRange VariantOSVersion = variantRange;
// We're building zippered, so we need to pass both macOS and iOS
// versions to the runtime version range check. At run time
// that check will determine what kind of process this code is loaded
// into. In a macOS process it will use the macOS version; in an
// macCatalyst process it will use the iOS version.
llvm::Triple VariantTriple = *getASTContext().LangOpts.TargetVariant;
llvm::Triple TargetTriple = getASTContext().LangOpts.Target;
// From perspective of the driver and most of the frontend,
// -target and -target-variant are symmetric. That is, the user
// can pass either:
// -target x86_64-apple-macosx10.15 \
// -target-variant x86_64-apple-ios13.1-macabi
// or:
// -target x86_64-apple-ios13.1-macabi \
// -target-variant x86_64-apple-macosx10.15
//
// However, the runtime availability-checking entry points need
// to compare against an actual running OS version and so can't be
// symmetric. Here we standardize on "target" means macOS version
// and "targetVariant" means iOS version.
if (tripleIsMacCatalystEnvironment(TargetTriple)) {
assert(VariantTriple.isMacOSX());
// Normalize so that "variant" always means iOS version.
std::swap(OSVersion, VariantOSVersion);
std::swap(TargetTriple, VariantTriple);
}
// If there is no check for either the target platform
// or the target-variant platform then the condition is
// trivially true.
if (OSVersion.isAll() && VariantOSVersion.isAll()) {
SILType i1 = SILType::getBuiltinIntegerType(1, getASTContext());
return B.createIntegerLiteral(loc, i1, true);
}
// The variant-only availability-checking entrypoint is not part
// of the Swift 5.0 ABI. It is only available in macOS 10.15 and above.
bool isVariantEntrypointAvailable = !TargetTriple.isMacOSXVersionLT(10, 15);
// If there is no check for the target but there is for the
// variant, then we only need to emit code for the variant check.
if (isVariantEntrypointAvailable && OSVersion.isAll() &&
!VariantOSVersion.isAll())
return emitOSVersionRangeCheck(loc, VariantOSVersion,
/*forVariant*/ true);
// Similarly, if there is a check for the target but not for the
// target variant then we only to emit code for the target check.
if (!OSVersion.isAll() && VariantOSVersion.isAll())
return emitOSVersionRangeCheck(loc, OSVersion,
/*forVariant*/ false);
if (!isVariantEntrypointAvailable ||
(!OSVersion.isAll() && !VariantOSVersion.isAll())) {
// If the variant-only entrypoint isn't available (as is the
// case pre-macOS 10.15) we need to use the zippered entrypoint
// (which is part of the Swift 5.0 ABI) even when the macOS version
// is '*' (all).
// In this case, use the minimum macOS deployment version from
// the target triple. This ensures the check always passes on macOS.
if (!isVariantEntrypointAvailable && OSVersion.isAll()) {
assert(TargetTriple.isMacOSX());
llvm::VersionTuple macosVersion;
TargetTriple.getMacOSXVersion(macosVersion);
OSVersion = VersionRange::allGTE(macosVersion);
}
return emitOSVersionOrVariantVersionRangeCheck(loc, OSVersion,
VariantOSVersion);
}
llvm_unreachable("Unhandled zippered configuration");
}
/// Emit the boolean test and/or pattern bindings indicated by the specified
/// stmt condition. If the condition fails, control flow is transferred to the
/// specified JumpDest. The insertion point is left in the block where the
/// condition has matched and any bound variables are in scope.
///
void SILGenFunction::emitStmtCondition(StmtCondition Cond, JumpDest FalseDest,
SILLocation loc,
ProfileCounter NumTrueTaken,
ProfileCounter NumFalseTaken) {
assert(B.hasValidInsertionPoint() &&
"emitting condition at unreachable point");
for (const auto &elt : Cond) {
SILLocation booleanTestLoc = loc;
SILValue booleanTestValue;
switch (elt.getKind()) {
case StmtConditionElement::CK_PatternBinding: {
// Begin a new binding scope, which is popped when the next innermost debug
// scope ends. The cleanup location loc isn't the perfect source location
// but it's close enough.
B.getSILGenFunction().enterDebugScope(loc, /*isBindingScope=*/true);
InitializationPtr initialization =
emitPatternBindingInitialization(elt.getPattern(), FalseDest);
// Emit the initial value into the initialization.
FullExpr Scope(Cleanups, CleanupLocation(elt.getInitializer()));
emitExprInto(elt.getInitializer(), initialization.get(), loc);
// Pattern bindings handle their own tests, we don't need a boolean test.
continue;
}
case StmtConditionElement::CK_Boolean: { // Handle boolean conditions.
auto *expr = elt.getBoolean();
// Evaluate the condition as an i1 value (guaranteed by Sema).
FullExpr Scope(Cleanups, CleanupLocation(expr));
booleanTestValue = emitRValue(expr).forwardAsSingleValue(*this, expr);
booleanTestValue = emitUnwrapIntegerResult(expr, booleanTestValue);
booleanTestLoc = expr;
break;
}
case StmtConditionElement::CK_Availability: {
// Check the running OS version to determine whether it is in the range
// specified by elt.
PoundAvailableInfo *availability = elt.getAvailability();
// Creates a boolean literal for availability conditions that have been
// evaluated at compile time. Automatically inverts the value for
// `#unavailable` queries.
auto createBooleanTestLiteral = [&](bool value) {
SILType i1 = SILType::getBuiltinIntegerType(1, getASTContext());
if (availability->isUnavailability())
value = !value;
return B.createIntegerLiteral(loc, i1, value);
};
auto versionRange = availability->getAvailableRange();
// The OS version might be left empty if availability checking was
// disabled. Treat it as always-true in that case.
assert(versionRange.has_value() ||
getASTContext().LangOpts.DisableAvailabilityChecking);
if (getASTContext().LangOpts.TargetVariant &&
!getASTContext().LangOpts.DisableAvailabilityChecking) {
// We're building zippered, so we need to pass both macOS and iOS
// versions to the the runtime version range check. At run time
// that check will determine what kind of process this code is loaded
// into. In a macOS process it will use the macOS version; in an
// macCatalyst process it will use the iOS version.
auto variantVersionRange =
elt.getAvailability()->getVariantAvailableRange();
assert(variantVersionRange.has_value());
if (versionRange && variantVersionRange) {
booleanTestValue = emitZipperedOSVersionRangeCheck(
loc, *versionRange, *variantVersionRange);
} else {
// Type checking did not fill in versions so as a fallback treat this
// condition as trivially true.
booleanTestValue = createBooleanTestLiteral(true);
}
break;
}
if (!versionRange) {
// Type checking did not fill in version so as a fallback treat this
// condition as trivially true.
booleanTestValue = createBooleanTestLiteral(true);
} else if (versionRange->isAll()) {
booleanTestValue = createBooleanTestLiteral(true);
} else if (versionRange->isEmpty()) {
booleanTestValue = createBooleanTestLiteral(false);
} else {
bool isMacCatalyst =
tripleIsMacCatalystEnvironment(getASTContext().LangOpts.Target);
booleanTestValue =
emitOSVersionRangeCheck(loc, versionRange.value(), isMacCatalyst);
if (availability->isUnavailability()) {
// If this is an unavailability check, invert the result
// by emitting a call to Builtin.xor_Int1(lhs, -1).
SILType i1 = SILType::getBuiltinIntegerType(1, getASTContext());
SILValue minusOne = B.createIntegerLiteral(loc, i1, -1);
booleanTestValue =
B.createBuiltinBinaryFunction(loc, "xor", i1, i1,
{booleanTestValue, minusOne});
}
}
break;
}
case StmtConditionElement::CK_HasSymbol: {
auto info = elt.getHasSymbolInfo();
if (info->isInvalid()) {
// This condition may have referenced a decl that isn't valid in some
// way but for developer convenience wasn't treated as an error. Just
// emit a 'true' condition value.
SILType i1 = SILType::getBuiltinIntegerType(1, getASTContext());
booleanTestValue = B.createIntegerLiteral(loc, i1, 1);
break;
}
auto expr = info->getSymbolExpr();
auto declRef = info->getReferencedDecl();
assert(declRef);
auto decl = declRef.getDecl();
booleanTestValue = B.createHasSymbol(expr, decl);
booleanTestValue = emitUnwrapIntegerResult(expr, booleanTestValue);
booleanTestLoc = expr;
// Ensure that function declarations for each function associated with
// the decl are emitted so that they can be referenced during IRGen.
enumerateFunctionsForHasSymbol(
getModule(), decl, [this](SILDeclRef declRef) {
(void)SGM.getFunction(declRef, NotForDefinition);
});
break;
}
}
// Now that we have a boolean test as a Builtin.i1, emit the branch.
assert(booleanTestValue->getType().
castTo<BuiltinIntegerType>()->isFixedWidth(1) &&
"Sema forces conditions to have Builtin.i1 type");
// Just branch on the condition. On failure, we unwind any active cleanups,
// on success we fall through to a new block.
auto FailBB = Cleanups.emitBlockForCleanups(FalseDest, loc);
SILBasicBlock *ContBB = createBasicBlock();
B.createCondBranch(booleanTestLoc, booleanTestValue, ContBB, FailBB,
NumTrueTaken, NumFalseTaken);
// Finally, emit the continue block and keep emitting the rest of the
// condition.
B.emitBlock(ContBB);
}
}
InitializationPtr SILGenFunction::emitPatternBindingInitialization(
Pattern *P, JumpDest failureDest, bool generateDebugInfo) {
auto init =
InitializationForPattern(*this, failureDest, generateDebugInfo).visit(P);
init->setEmitDebugValueOnInit(generateDebugInfo);
return init;
}
/// Enter a cleanup to deallocate the given location.
CleanupHandle SILGenFunction::enterDeallocStackCleanup(SILValue temp) {
assert(temp->getType().isAddress() && "dealloc must have an address type");
Cleanups.pushCleanup<DeallocStackCleanup>(temp);
return Cleanups.getTopCleanup();
}
CleanupHandle SILGenFunction::enterDestroyCleanup(SILValue valueOrAddr) {
Cleanups.pushCleanup<ReleaseValueCleanup>(valueOrAddr);
return Cleanups.getTopCleanup();
}
namespace {
class EndLifetimeCleanup : public Cleanup {
SILValue v;
public:
EndLifetimeCleanup(SILValue v) : v(v) {}
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
SGF.B.createEndLifetime(l, v);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "EndLifetimeCleanup\n"
<< "State:" << getState() << "\n"
<< "Value:" << v << "\n";
#endif
}
};
} // end anonymous namespace
ManagedValue SILGenFunction::emitManagedRValueWithEndLifetimeCleanup(
SILValue value) {
Cleanups.pushCleanup<EndLifetimeCleanup>(value);
return ManagedValue::forUnmanagedOwnedValue(value);
}
namespace {
/// A cleanup that deinitializes an opaque existential container
/// before a value has been stored into it, or after its value was taken.
class DeinitExistentialCleanup: public Cleanup {
SILValue existentialAddr;
CanType concreteFormalType;
ExistentialRepresentation repr;
public:
DeinitExistentialCleanup(SILValue existentialAddr,
CanType concreteFormalType,
ExistentialRepresentation repr)
: existentialAddr(existentialAddr),
concreteFormalType(concreteFormalType),
repr(repr) {}
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
switch (repr) {
case ExistentialRepresentation::None:
case ExistentialRepresentation::Class:
case ExistentialRepresentation::Metatype:
llvm_unreachable("cannot cleanup existential");
case ExistentialRepresentation::Opaque:
if (SGF.silConv.useLoweredAddresses()) {
SGF.B.createDeinitExistentialAddr(l, existentialAddr);
} else {
SGF.B.createDeinitExistentialValue(l, existentialAddr);
}
break;
case ExistentialRepresentation::Boxed:
auto box = SGF.B.createLoad(l, existentialAddr,
LoadOwnershipQualifier::Take);
SGF.B.createDeallocExistentialBox(l, concreteFormalType, box);
break;
}
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "DeinitExistentialCleanup\n"
<< "State:" << getState() << "\n"
<< "Value:" << existentialAddr << "\n";
#endif
}
};
} // end anonymous namespace
/// Enter a cleanup to emit a DeinitExistentialAddr or DeinitExistentialBox
/// of the specified value.
CleanupHandle SILGenFunction::enterDeinitExistentialCleanup(
CleanupState state,
SILValue addr,
CanType concreteFormalType,
ExistentialRepresentation repr) {
assert(addr->getType().isAddress());
Cleanups.pushCleanupInState<DeinitExistentialCleanup>(state, addr,
concreteFormalType, repr);
return Cleanups.getTopCleanup();
}
namespace {
/// A cleanup that cancels an asynchronous task.
class CancelAsyncTaskCleanup: public Cleanup {
SILValue task;
public:
CancelAsyncTaskCleanup(SILValue task) : task(task) { }
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
SILValue borrowedTask = SGF.B.createBeginBorrow(l, task);
SGF.emitCancelAsyncTask(l, borrowedTask);
SGF.B.createEndBorrow(l, borrowedTask);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "CancelAsyncTaskCleanup\n"
<< "Task:" << task << "\n";
#endif
}
};
} // end anonymous namespace
CleanupHandle SILGenFunction::enterCancelAsyncTaskCleanup(SILValue task) {
Cleanups.pushCleanupInState<CancelAsyncTaskCleanup>(
CleanupState::Active, task);
return Cleanups.getTopCleanup();
}
namespace {
/// A cleanup that destroys the AsyncLet along with the child task and record.
class AsyncLetCleanup: public Cleanup {
SILValue alet;
SILValue resultBuf;
public:
AsyncLetCleanup(SILValue alet, SILValue resultBuf)
: alet(alet), resultBuf(resultBuf) { }
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
SGF.emitFinishAsyncLet(l, alet, resultBuf);
}
void dump(SILGenFunction &) const override {
#ifndef NDEBUG
llvm::errs() << "AsyncLetCleanup\n"
<< "AsyncLet:" << alet << "\n"
<< "result buffer:" << resultBuf << "\n";
#endif
}
};
} // end anonymous namespace
CleanupHandle SILGenFunction::enterAsyncLetCleanup(SILValue alet,
SILValue resultBuf) {
Cleanups.pushCleanupInState<AsyncLetCleanup>(
CleanupState::Active, alet, resultBuf);
return Cleanups.getTopCleanup();
}
/// Create a LocalVariableInitialization for the uninitialized var.
InitializationPtr SILGenFunction::emitLocalVariableWithCleanup(
VarDecl *vd, std::optional<MarkUninitializedInst::Kind> kind,
unsigned ArgNo, bool generateDebugInfo) {
return InitializationPtr(new LocalVariableInitialization(
vd, kind, ArgNo, generateDebugInfo, *this));
}
/// Create an Initialization for an uninitialized temporary.
std::unique_ptr<TemporaryInitialization>
SILGenFunction::emitTemporary(SILLocation loc, const TypeLowering &tempTL) {
SILValue addr = emitTemporaryAllocation(loc, tempTL.getLoweredType());
if (addr->getType().isMoveOnly())
addr = B.createMarkUnresolvedNonCopyableValueInst(
loc, addr,
MarkUnresolvedNonCopyableValueInst::CheckKind::ConsumableAndAssignable);
return useBufferAsTemporary(addr, tempTL);
}
std::unique_ptr<TemporaryInitialization>
SILGenFunction::emitFormalAccessTemporary(SILLocation loc,
const TypeLowering &tempTL) {
SILValue addr = emitTemporaryAllocation(loc, tempTL.getLoweredType());
if (addr->getType().isMoveOnly())
addr = B.createMarkUnresolvedNonCopyableValueInst(
loc, addr,
MarkUnresolvedNonCopyableValueInst::CheckKind::ConsumableAndAssignable);
CleanupHandle cleanup =
enterDormantFormalAccessTemporaryCleanup(addr, loc, tempTL);
return std::unique_ptr<TemporaryInitialization>(
new TemporaryInitialization(addr, cleanup));
}
/// Create an Initialization for an uninitialized buffer.
std::unique_ptr<TemporaryInitialization>
SILGenFunction::useBufferAsTemporary(SILValue addr,
const TypeLowering &tempTL) {
CleanupHandle cleanup = enterDormantTemporaryCleanup(addr, tempTL);
return std::unique_ptr<TemporaryInitialization>(
new TemporaryInitialization(addr, cleanup));
}
CleanupHandle
SILGenFunction::enterDormantTemporaryCleanup(SILValue addr,
const TypeLowering &tempTL) {
if (tempTL.isTrivial())
return CleanupHandle::invalid();
Cleanups.pushCleanupInState<ReleaseValueCleanup>(CleanupState::Dormant, addr);
return Cleanups.getCleanupsDepth();
}
namespace {
struct FormalAccessReleaseValueCleanup final : Cleanup {
FormalEvaluationContext::stable_iterator Depth;
FormalAccessReleaseValueCleanup() : Cleanup(), Depth() {
setIsFormalAccess();
}
void setState(SILGenFunction &SGF, CleanupState newState) override {
if (newState == CleanupState::Dead) {
getEvaluation(SGF).setFinished();
}
Cleanup::setState(SGF, newState);
}
void emit(SILGenFunction &SGF, CleanupLocation l,
ForUnwind_t forUnwind) override {
getEvaluation(SGF).finish(SGF);
}
void dump(SILGenFunction &SGF) const override {
#ifndef NDEBUG
llvm::errs() << "FormalAccessReleaseValueCleanup "
<< "State:" << getState() << "\n"
<< "Value:" << getValue(SGF) << "\n";
#endif
}
OwnedFormalAccess &getEvaluation(SILGenFunction &SGF) const {
auto &evaluation = *SGF.FormalEvalContext.find(Depth);
assert(evaluation.getKind() == FormalAccess::Owned);
return static_cast<OwnedFormalAccess &>(evaluation);
}
SILValue getValue(SILGenFunction &SGF) const {
return getEvaluation(SGF).getValue();
}
};
} // end anonymous namespace
ManagedValue
SILGenFunction::emitFormalAccessManagedBufferWithCleanup(SILLocation loc,
SILValue addr) {
assert(isInFormalEvaluationScope() && "Must be in formal evaluation scope");
auto &lowering = getTypeLowering(addr->getType());
if (lowering.isTrivial())
return ManagedValue::forTrivialAddressRValue(addr);
auto &cleanup = Cleanups.pushCleanup<FormalAccessReleaseValueCleanup>();
CleanupHandle handle = Cleanups.getTopCleanup();
FormalEvalContext.push<OwnedFormalAccess>(loc, handle, addr);
cleanup.Depth = FormalEvalContext.stable_begin();
return ManagedValue::forOwnedAddressRValue(addr, handle);
}
ManagedValue
SILGenFunction::emitFormalAccessManagedRValueWithCleanup(SILLocation loc,
SILValue value) {
assert(isInFormalEvaluationScope() && "Must be in formal evaluation scope");
auto &lowering = getTypeLowering(value->getType());
if (lowering.isTrivial())
return ManagedValue::forRValueWithoutOwnership(value);
auto &cleanup = Cleanups.pushCleanup<FormalAccessReleaseValueCleanup>();
CleanupHandle handle = Cleanups.getTopCleanup();
FormalEvalContext.push<OwnedFormalAccess>(loc, handle, value);
cleanup.Depth = FormalEvalContext.stable_begin();
return ManagedValue::forOwnedRValue(value, handle);
}
CleanupHandle SILGenFunction::enterDormantFormalAccessTemporaryCleanup(
SILValue addr, SILLocation loc, const TypeLowering &tempTL) {
assert(isInFormalEvaluationScope() && "Must be in formal evaluation scope");
if (tempTL.isTrivial())
return CleanupHandle::invalid();
auto &cleanup = Cleanups.pushCleanup<FormalAccessReleaseValueCleanup>();
CleanupHandle handle = Cleanups.getTopCleanup();
Cleanups.setCleanupState(handle, CleanupState::Dormant);
FormalEvalContext.push<OwnedFormalAccess>(loc, handle, addr);
cleanup.Depth = FormalEvalContext.stable_begin();
return handle;
}
void SILGenFunction::destroyLocalVariable(SILLocation silLoc, VarDecl *vd) {
assert(vd->getDeclContext()->isLocalContext() &&
"can't emit a local var for a non-local var decl");
assert(vd->hasStorage() && "can't emit storage for a computed variable");
assert(VarLocs.count(vd) && "var decl wasn't emitted?!");
auto emitEndBorrow = [this, silLoc](SILValue value){
if (value->getOwnershipKind() == OwnershipKind::None) {
B.createExtendLifetime(silLoc, value);
} else {
B.createEndBorrow(silLoc, value);
}
};
auto emitDestroy = [this, silLoc](SILValue value){
if (value->getOwnershipKind() == OwnershipKind::None) {
B.createExtendLifetime(silLoc, value);
} else {
B.emitDestroyValueOperation(silLoc, value);
}
};
// For a heap variable, the box is responsible for the value. We just need
// to give up our retain count on it.
if (auto boxValue = VarLocs[vd].box) {
if (!getASTContext().SILOpts.supportsLexicalLifetimes(getModule())) {
emitDestroy(boxValue);
return;
}
if (auto *bbi = dyn_cast<BeginBorrowInst>(boxValue)) {
emitEndBorrow(bbi);
boxValue = bbi->getOperand();
}
emitDestroy(boxValue);
return;
}
// For 'let' bindings, we emit a release_value or destroy_addr, depending on
// whether we have an address or not.
SILValue Val = VarLocs[vd].value;
if (Val->getType().isAddress()) {
B.createDestroyAddr(silLoc, Val);
return;
}
if (!getASTContext().SILOpts.supportsLexicalLifetimes(getModule())) {
emitDestroy(Val);
return;
}
// If no variable scope was emitted, then we might not have a defining
// instruction.
if (!Val.getDefiningInstruction()) {
emitDestroy(Val);
return;
}
// This handles any case where we copy + begin_borrow or copyable_to_moveonly
// + begin_borrow. In either case we just need to end the lifetime of the
// begin_borrow's operand.
if (auto *bbi = dyn_cast<BeginBorrowInst>(Val.getDefiningInstruction())) {
emitEndBorrow(bbi);
emitDestroy(bbi->getOperand());
return;
}
if (auto *mvi = dyn_cast<MoveValueInst>(Val.getDefiningInstruction())) {
emitDestroy(mvi);
return;
}
// Handle BeginBorrow and MoveValue before bailing-out on trivial values.
if (Val->getOwnershipKind() == OwnershipKind::None) {
return;
}
if (auto *mark = dyn_cast<MarkUnresolvedNonCopyableValueInst>(
Val.getDefiningInstruction())) {
if (mark->hasMoveCheckerKind()) {
if (auto *cvi = dyn_cast<CopyValueInst>(mark->getOperand())) {
if (auto *bbi = dyn_cast<BeginBorrowInst>(cvi->getOperand())) {
emitDestroy(mark);
emitEndBorrow(bbi);
emitDestroy(bbi->getOperand());
return;
}
}
if (auto *copyToMove = dyn_cast<CopyableToMoveOnlyWrapperValueInst>(
mark->getOperand())) {
if (copyToMove->getOperand()->isFromVarDecl()) {
emitDestroy(mark);
return;
}
}
if (auto *cvi = dyn_cast<ExplicitCopyValueInst>(mark->getOperand())) {
if (auto *bbi = dyn_cast<BeginBorrowInst>(cvi->getOperand())) {
emitDestroy(mark);
emitEndBorrow(bbi);
emitDestroy(bbi->getOperand());
return;
}
}
// Handle trivial arguments.
if (isa<MoveValueInst>(mark->getOperand())) {
emitDestroy(mark);
return;
}
}
}
llvm_unreachable("unhandled case");
}
void
SILGenFunction::enterLocalVariableAddressableBufferScope(VarDecl *decl) {
auto marker = B.createTuple(decl, {});
AddressableBuffers[decl] = marker;
Cleanups.pushCleanup<DeallocateLocalVariableAddressableBuffer>(decl);
}
SILValue
SILGenFunction::getLocalVariableAddressableBuffer(VarDecl *decl,
SILLocation curLoc,
ValueOwnership ownership) {
auto foundVarLoc = VarLocs.find(decl);
if (foundVarLoc == VarLocs.end()) {
return SILValue();
}
auto value = foundVarLoc->second.value;
auto access = foundVarLoc->second.access;
auto *state = foundVarLoc->second.addressableBuffer.state.get();
SILType fullyAbstractedTy = getLoweredType(AbstractionPattern::getOpaque(),
decl->getTypeInContext()->getRValueType());
// Check whether the bound value is inherently suitable for addressability.
// It must already be in memory and fully abstracted.
if (value->getType().isAddress()
&& fullyAbstractedTy.getASTType() == value->getType().getASTType()) {
SILValue address = value;
// Begin an access if the address is mutable.
if (access != SILAccessEnforcement::Unknown) {
address = B.emitBeginAccess(curLoc, address,
ownership == ValueOwnership::InOut ? SILAccessKind::Modify
: SILAccessKind::Read,
access);
}
return address;
}
// We can't retroactively introduce a reabstracted representation for a
// mutable binding (since we would now have two mutable memory locations
// representing the same value).
if (access != SILAccessEnforcement::Unknown) {
return SILValue();
}
assert(ownership == ValueOwnership::Shared);
// Check whether the in-memory representation has already been forced.
if (state) {
return state->storeBorrow;
}
// Otherwise, force the addressable representation.
SILValue reabstraction, allocStack, storeBorrow;
{
SavedInsertionPointRAII save(B);
auto insertPoint = AddressableBuffers[decl].insertPoint;
B.setInsertionPoint(insertPoint);
auto allocStackTy = fullyAbstractedTy;
if (value->getType().isMoveOnlyWrapped()) {
allocStackTy = allocStackTy.addingMoveOnlyWrapper();
}
allocStack = B.createAllocStack(decl,
allocStackTy,
std::nullopt,
DoesNotHaveDynamicLifetime,
IsNotLexical,
IsNotFromVarDecl,
DoesNotUseMoveableValueDebugInfo,
/*skipVarDeclAssert*/ true);
}
{
SavedInsertionPointRAII save(B);
if (isa<ParamDecl>(decl)) {
B.setInsertionPoint(allocStack->getNextInstruction());
} else {
B.setInsertionPoint(value->getNextInstruction());
}
auto declarationLoc = value->getDefiningInsertionPoint()->getLoc();
// Reabstract if necessary.
auto newValue = value;
reabstraction = SILValue();
if (newValue->getType().getASTType() != fullyAbstractedTy.getASTType()){
auto reabstracted = emitSubstToOrigValue(curLoc,
ManagedValue::forBorrowedRValue(value),
AbstractionPattern::getOpaque(),
decl->getTypeInContext()->getCanonicalType(),
SGFContext());
reabstraction = reabstracted.forward(*this);
newValue = reabstraction;
}
storeBorrow = B.createStoreBorrow(declarationLoc, newValue, allocStack);
}
// Record the addressable representation.
auto &addressableBuffer = VarLocs[decl].addressableBuffer;
addressableBuffer.state
= std::make_unique<VarLoc::AddressableBuffer::State>(reabstraction,
allocStack,
storeBorrow);
auto *newState = addressableBuffer.state.get();
// Emit cleanups on any paths where we previously would have cleaned up
// the addressable representation if it had been forced earlier.
decltype(addressableBuffer.cleanupPoints) cleanupPoints;
cleanupPoints.swap(addressableBuffer.cleanupPoints);
for (SILInstruction *cleanupPoint : cleanupPoints) {
SavedInsertionPointRAII insertCleanup(B, cleanupPoint);
deallocateAddressable(*this, cleanupPoint->getLoc(), *newState);
cleanupPoint->eraseFromParent();
}
return storeBorrow;
}
void BlackHoleInitialization::performPackExpansionInitialization(
SILGenFunction &SGF,
SILLocation loc,
SILValue indexWithinComponent,
llvm::function_ref<void(Initialization *into)> fn) {
BlackHoleInitialization subInit;
fn(&subInit);
}
void BlackHoleInitialization::copyOrInitValueInto(SILGenFunction &SGF, SILLocation loc,
ManagedValue value, bool isInit) {
// If we do not have a noncopyable type, just insert an ignored use.
if (!value.getType().isMoveOnly()) {
SGF.B.createIgnoredUse(loc, value.getValue());
return;
}
// If we have a noncopyable type, we need to do a little more work to satisfy
// the move checkers. If we have an address, then this will create a new
// temporary allocation which will trigger the move checker...
value = value.ensurePlusOne(SGF, loc);
if (value.getType().isAddress()) {
SGF.B.createIgnoredUse(loc, value.getValue());
return;
}
// If we have an object though, we need to insert an extra move_value to make
// sure the object checker behaves correctly.
value = SGF.B.createMoveValue(loc, value);
SGF.B.createIgnoredUse(loc, value.getValue());
}
SILGenFunction::VarLoc::AddressableBuffer::~AddressableBuffer() {
for (auto cleanupPoint : cleanupPoints) {
cleanupPoint->eraseFromParent();
}
}