Files
swift-mirror/lib/SILOptimizer/Mandatory/OSLogOptimization.cpp
Ravi Kandhadai cbf804e9f3 [SILOpt][OSLog] Skip constant folding StaticString in the
OSLogOptimization pass

The OSLogOptimization pass constant evaluates and folds SIL instructions
that are inlined from the construction of the string interpolations passed
to the log calls, which enables replacing the dynamic format string construction
with a static format string. In addition to folding constant strings, it also folds
constant integers and arrays whose elements are constants. This change makes it
skip folding static strings, since they are already efficiently represented.

rdar://146028438
2025-03-12 07:40:07 -07:00

1562 lines
68 KiB
C++

//===--- OSLogOptimizer.cpp - Optimizes calls to OS Log -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This pass implements SIL-level optimizations and diagnostics for the
/// os log APIs based on string interpolations. A mock version of the APIs
/// are available in the private module: OSLogTestHelper. This pass constant
/// evaluates the log calls along with the auto-generated calls to the custom
/// string interpolation methods, which processes the string interpolation
/// passed to the log calls, and folds the constants found during the
/// evaluation. The constants that are folded include the printf-style format
/// string that is constructed by the custom string interpolation methods from
/// the string interpolation, and the size and headers of the byte buffer into
/// which arguments are packed. This pass is closely tied to the implementation
/// of the log APIs.
///
/// Pass Dependencies: This pass depends on MandatoryInlining and Mandatory
/// Linking happening before this pass and ConstantPropagation happening after
/// this pass. This pass also uses `ConstExprStepEvaluator` defined in
/// `Utils/ConstExpr.cpp`.
///
/// Algorithm Overview:
///
/// This pass implements a function-level transformation that collects calls
/// to the initializer of the custom string interpolation type: OSLogMessage,
/// which are annotated with an @_semantics attribute, and performs the
/// following steps on each such call.
///
/// 1. Determines the range of instructions to constant evaluate.
/// The range starts from the first SIL instruction that begins the
/// construction of the custom string interpolation type: OSLogMessage to
/// the last transitive users of OSLogMessage. The log call which is marked
/// as @_transparent will be inlined into the caller before this pass
/// begins.
///
/// 2. Constant evaluates the range of instruction identified in Step 1 and
/// collects string and integer-valued instructions who values were found
/// to be constants. The evaluation uses 'ConsExprStepEvaluator' utility.
///
/// 3. After constant evaluation, the string and integer-value properties
/// of the custom string interpolation type: `OSLogInterpolation` must be
/// constants. This property is checked and any violations are diagnosed.
/// The errors discovered here may arise from the implementation of the
/// log APIs in the overlay or could be because of wrong usage of the
/// log APIs.
///
/// 4. The constant instructions that were found in step 2 are folded by
/// generating SIL code that produces the constants. This also removes
/// instructions that are dead after folding.
///
/// Code Overview:
///
/// The function 'OSLogOptimization::run' implements the overall driver for
/// steps 1 to 4. The function 'beginOfInterpolation' identifies the beginning of
/// interpolation (step 1) and the function 'getEndPointsOfDataDependentChain'
/// identifies the last transitive users of the OSLogMessage instance (step 1).
/// The function 'constantFold' is a driver for the steps 2 to 4. Step 2 is
/// implemented by the function 'collectConstants', step 3 by
/// 'detectAndDiagnoseErrors' and 'checkOSLogMessageIsConstant', and step 4 by
/// 'substituteConstants' and 'emitCodeForSymbolicValue'. The remaining
/// functions in the file implement the subtasks and utilities needed by the
/// above functions.
///
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/AST/Expr.h"
#include "swift/AST/Module.h"
#include "swift/AST/SemanticAttrs.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/OptimizationMode.h"
#include "swift/Demangling/Demangle.h"
#include "swift/Demangling/Demangler.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/CFG.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILConstants.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILLocation.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/TypeLowering.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/CompileTimeInterpolationUtils.h"
#include "swift/SILOptimizer/Utils/ConstExpr.h"
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
#include "swift/SILOptimizer/Utils/SILInliner.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/BreadthFirstIterator.h"
#include "llvm/ADT/MapVector.h"
using namespace swift;
using namespace Lowering;
template <typename... T, typename... U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&... args) {
// The lifetime of StringRef arguments will be extended as necessary by this
// utility. The copy happens in onTentativeDiagnosticFlush at the bottom of
// DiagnosticEngine.cpp, which is called when the destructor of the
// InFlightDiagnostic returned by diagnose runs.
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
namespace {
/// If the given instruction is a call to the compiler-intrinsic initializer
/// of String that accepts string literals, return the called function.
/// Otherwise, return nullptr.
static SILFunction *getStringMakeUTF8Init(SILInstruction *inst) {
auto *apply = dyn_cast<ApplyInst>(inst);
if (!apply)
return nullptr;
SILFunction *callee = apply->getCalleeFunction();
if (!callee || !callee->hasSemanticsAttr(semantics::STRING_MAKE_UTF8))
return nullptr;
return callee;
}
// A cache of string-related, SIL information that is needed to create and
// initialize strings from raw string literals. This information is
// extracted from instructions while they are constant evaluated. Though the
// information contained here can be constructed from scratch, extracting it
// from existing instructions is more efficient.
class StringSILInfo {
/// SILFunction corresponding to an intrinsic string initializer that
/// constructs a Swift String from a string literal.
SILFunction *stringInitIntrinsic = nullptr;
/// SIL metatype of String.
SILType stringMetatype = SILType();
public:
/// Extract and cache the required string-related information from the
/// given instruction, if possible.
void extractStringInfoFromInstruction(SILInstruction *inst) {
// If the cache is already initialized do nothing.
if (stringInitIntrinsic)
return;
SILFunction *callee = getStringMakeUTF8Init(inst);
if (!callee)
return;
this->stringInitIntrinsic = callee;
MetatypeInst *stringMetatypeInst =
dyn_cast<MetatypeInst>(inst->getOperand(4)->getDefiningInstruction());
this->stringMetatype = stringMetatypeInst->getType();
}
bool isInitialized() { return stringInitIntrinsic != nullptr; }
SILFunction *getStringInitIntrinsic() const {
assert(stringInitIntrinsic);
return stringInitIntrinsic;
}
SILType getStringMetatype() const {
assert(stringMetatype);
return stringMetatype;
}
};
/// State needed for constant folding.
class FoldState {
public:
/// Storage for symbolic values constructed during interpretation.
SymbolicValueBumpAllocator allocator;
/// Evaluator for evaluating instructions one by one.
ConstExprStepEvaluator constantEvaluator;
/// Information needed for folding strings.
StringSILInfo stringInfo;
/// Instruction from where folding must begin.
SILInstruction *beginInstruction;
/// Instructions that mark the end points of constant evaluation.
llvm::SmallSetVector<SILInstruction *, 2> endInstructions;
private:
/// SIL values that were found to be constants during
/// constant evaluation.
SmallVector<SILValue, 4> constantSILValues;
public:
FoldState(SILFunction *fun, unsigned assertConfig, SILInstruction *beginInst,
ArrayRef<SILInstruction *> endInsts)
: constantEvaluator(allocator, fun, assertConfig),
beginInstruction(beginInst),
endInstructions(endInsts.begin(), endInsts.end()) {}
void addConstantSILValue(SILValue value) {
constantSILValues.push_back(value);
}
ArrayRef<SILValue> getConstantSILValues() {
return ArrayRef<SILValue>(constantSILValues);
}
};
/// Return true if and only if the given nominal type declaration is that of
/// a stdlib Int or stdlib Bool.
static bool isStdlibIntegerOrBoolDecl(NominalTypeDecl *numberDecl,
ASTContext &astCtx) {
return (numberDecl == astCtx.getIntDecl() ||
numberDecl == astCtx.getInt8Decl() ||
numberDecl == astCtx.getInt16Decl() ||
numberDecl == astCtx.getInt32Decl() ||
numberDecl == astCtx.getInt64Decl() ||
numberDecl == astCtx.getUIntDecl() ||
numberDecl == astCtx.getUInt8Decl() ||
numberDecl == astCtx.getUInt16Decl() ||
numberDecl == astCtx.getUInt32Decl() ||
numberDecl == astCtx.getUInt64Decl() ||
numberDecl == astCtx.getBoolDecl());
}
/// Return true if and only if the given SIL type represents a Stdlib or builtin
/// integer type or a Bool type.
static bool isIntegerOrBoolType(SILType silType, ASTContext &astContext) {
if (silType.is<BuiltinIntegerType>()) {
return true;
}
NominalTypeDecl *nominalDecl = silType.getNominalOrBoundGenericNominal();
return nominalDecl && isStdlibIntegerOrBoolDecl(nominalDecl, astContext);
}
/// Return true iff the given value is a stdlib Int or Bool and it not a direct
/// construction of Int or Bool.
static bool isFoldableIntOrBool(SILValue value, ASTContext &astContext) {
return isIntegerOrBoolType(value->getType(), astContext) &&
!isa<StructInst>(value);
}
/// Return true iff the given value is a string and is not an initialization
/// of an string from a string literal.
static bool isFoldableString(SILValue value, ASTContext &astContext) {
return value->getType().getASTType()->isString() &&
(!isa<ApplyInst>(value) ||
!getStringMakeUTF8Init(cast<ApplyInst>(value)));
}
/// Return true iff the given value is an array and is not an initialization
/// of an array from an array literal.
static bool isFoldableArray(SILValue value, ASTContext &astContext) {
if (!value->getType().getASTType()->isArray())
return false;
// If value is an initialization of an array from a literal or an empty array
// initializer, it need not be folded. Arrays constructed from literals use a
// function with semantics: "array.uninitialized_intrinsic" that returns
// a pair, where the first element of the pair is the array.
SILInstruction *definingInst = value->getDefiningInstruction();
if (!definingInst)
return true;
SILInstruction *constructorInst = definingInst;
if (isa<DestructureTupleInst>(definingInst) ||
isa<TupleExtractInst>(definingInst)) {
constructorInst = definingInst->getOperand(0)->getDefiningInstruction();
}
if (!constructorInst || !isa<ApplyInst>(constructorInst))
return true;
SILFunction *callee = cast<ApplyInst>(constructorInst)->getCalleeFunction();
return !callee ||
(!callee->hasSemanticsAttr(semantics::ARRAY_INIT_EMPTY) &&
!callee->hasSemanticsAttr(semantics::ARRAY_UNINITIALIZED_INTRINSIC) &&
!callee->hasSemanticsAttr(semantics::ARRAY_FINALIZE_INTRINSIC));
}
/// Return true iff the given value is a closure but is not a creation of a
/// closure e.g., through partial_apply or thin_to_thick_function or
/// convert_function.
static bool isFoldableClosure(SILValue value) {
return value->getType().is<SILFunctionType>() &&
(!isa<FunctionRefInst>(value) && !isa<PartialApplyInst>(value) &&
!isa<ThinToThickFunctionInst>(value) &&
!isa<ConvertFunctionInst>(value));
}
/// Check whether a SILValue is foldable. String, integer, array and
/// function values are foldable with the following exceptions:
/// - Addresses cannot be folded.
/// - Literals need not be folded.
/// - Results of ownership instructions like load_borrow/copy_value need not
/// be folded
/// - Constructors such as \c struct Int or \c string.init() need not be folded.
static bool isSILValueFoldable(SILValue value) {
SILInstruction *definingInst = value->getDefiningInstruction();
if (!definingInst)
return false;
ASTContext &astContext = definingInst->getFunction()->getASTContext();
SILType silType = value->getType();
return (!silType.isAddress() && !isa<LiteralInst>(definingInst) &&
!isa<LoadBorrowInst>(definingInst) &&
!isa<BeginBorrowInst>(definingInst) &&
!isa<MoveValueInst>(definingInst) &&
!isa<CopyValueInst>(definingInst) &&
(isFoldableIntOrBool(value, astContext) ||
isFoldableString(value, astContext) ||
isFoldableArray(value, astContext) || isFoldableClosure(value)));
}
/// Diagnose traps and instruction-limit exceeded errors. These have customized
/// error messages. \returns true if the given error is diagnosed. Otherwise,
/// returns false.
static bool diagnoseSpecialErrors(SILInstruction *unevaluableInst,
SymbolicValue errorInfo) {
SourceLoc sourceLoc = unevaluableInst->getLoc().getSourceLoc();
ASTContext &ctx = unevaluableInst->getFunction()->getASTContext();
UnknownReason unknownReason = errorInfo.getUnknownReason();
if (unknownReason.getKind() == UnknownReason::Trap) {
// We have an assertion failure or fatal error.
diagnose(ctx, sourceLoc, diag::oslog_constant_eval_trap,
unknownReason.getTrapMessage());
return true;
}
if (unknownReason.getKind() == UnknownReason::TooManyInstructions) {
// This should not normally happen. But could be because of extensions
// defined by users, or very rarely due to unknown bugs in the os_log API
// implementation. These errors may get hidden during testing as it is input
// specific.
diagnose(ctx, sourceLoc, diag::oslog_too_many_instructions);
return true;
}
return false;
}
/// Diagnose failure during evaluation of a call to a constant-evaluable
/// function that is not a specially-handled error. These are errors that
/// happen within 'appendInterpolation' calls, which must be constant
/// evaluable by the definition of APIs.
static void diagnoseErrorInConstantEvaluableFunction(ApplyInst *call,
SymbolicValue errorInfo) {
SILFunction *callee = call->getCalleeFunction();
assert(callee);
SILLocation loc = call->getLoc();
SourceLoc sourceLoc = loc.getSourceLoc();
ASTContext &astContext = callee->getASTContext();
// Here, we know very little about what actually went wrong. It could be due
// to bugs in the library implementation or in extensions created by users.
// Emit a general message here and some diagnostic notes.
std::string demangledCalleeName = Demangle::demangleSymbolAsString(
callee->getName(),
Demangle::DemangleOptions::SimplifiedUIDemangleOptions());
diagnose(astContext, sourceLoc, diag::oslog_invalid_log_message);
diagnose(astContext, sourceLoc, diag::oslog_const_evaluable_fun_error,
demangledCalleeName);
errorInfo.emitUnknownDiagnosticNotes(loc);
}
/// Detect and emit diagnostics for errors found during evaluation. Errors
/// can happen due to bugs in the implementation of the os log API, or
/// due to incorrect use of the os log API.
static bool detectAndDiagnoseErrors(SymbolicValue errorInfo,
SILInstruction *unevaluableInst) {
// TODO: fix the globalStrinTableBuiltin error after emitting diagnostics.
SILFunction *parentFun = unevaluableInst->getFunction();
ASTContext &astContext = parentFun->getASTContext();
if (diagnoseSpecialErrors(unevaluableInst, errorInfo))
return true;
// If evaluation of any constant_evaluable function call fails, point
// to that failed function along with a reason.
ApplyInst *call = dyn_cast<ApplyInst>(unevaluableInst);
if (call) {
SILFunction *callee = call->getCalleeFunction();
if (callee && isConstantEvaluable(callee)) {
diagnoseErrorInConstantEvaluableFunction(call, errorInfo);
return true; // abort evaluation.
}
}
// Every other error must happen in the top-level code containing the string
// interpolation construction and body of the log methods. If we have a
// fail-stop error, point to the error and abort evaluation. Otherwise, just
// ignore the error and continue evaluation as this error might not affect the
// constant value of the OSLogMessage instance.
if (isFailStopError(errorInfo)) {
SILLocation loc = unevaluableInst->getLoc();
diagnose(astContext, loc.getSourceLoc(), diag::oslog_invalid_log_message);
errorInfo.emitUnknownDiagnosticNotes(loc);
return true;
}
return false;
}
/// Given a 'foldState', constant evaluate instructions from
/// 'foldState.beginInstruction' until an instruction in
/// 'foldState.endInstructions' is seen. Add foldable, constant-valued
/// instructions discovered during the evaluation to
/// 'foldState.constantSILValues'.
/// \returns error information if the evaluation failed.
static std::optional<SymbolicValue> collectConstants(FoldState &foldState) {
ConstExprStepEvaluator &constantEvaluator = foldState.constantEvaluator;
SILBasicBlock::iterator currI = foldState.beginInstruction->getIterator();
auto &endInstructions = foldState.endInstructions;
// The loop will break when it sees a return instruction or an instruction in
// endInstructions or when the next instruction to evaluate cannot be
// determined (which may happened due to non-constant branches).
while (true) {
SILInstruction *currInst = &(*currI);
if (endInstructions.count(currInst))
break;
// Initialize string info from this instruction if possible.
foldState.stringInfo.extractStringInfoFromInstruction(currInst);
std::optional<SymbolicValue> errorInfo = std::nullopt;
std::optional<SILBasicBlock::iterator> nextI = std::nullopt;
std::tie(nextI, errorInfo) = evaluateOrSkip(constantEvaluator, currI);
// If the evaluation of this instruction failed, check whether it should be
// diagnosed and reported. If so, abort evaluation. Otherwise, continue
// evaluation if possible as this error could be due to an instruction that
// doesn't affect the OSLogMessage value.
if (errorInfo && detectAndDiagnoseErrors(errorInfo.value(), currInst)) {
return errorInfo;
}
if (!nextI) {
// We cannot find the next instruction to continue evaluation, and we
// haven't seen any reportable errors during evaluation. Therefore,
// consider this the end point of evaluation.
return std::nullopt; // No error.
}
// Set the next instruction to continue evaluation from.
currI = nextI.value();
// If the instruction results are foldable and if we found a constant value
// for the results, record it.
for (SILValue instructionResult : currInst->getResults()) {
if (!isSILValueFoldable(instructionResult))
continue;
std::optional<SymbolicValue> constantVal =
constantEvaluator.lookupConstValue(instructionResult);
if (constantVal.has_value()) {
foldState.addConstantSILValue(instructionResult);
}
}
}
return std::nullopt; // No error.
}
/// Generate SIL code to create an array of constant size from the given
/// SILValues \p elements. This function creates the same sequence of SIL
/// instructions that would be generated for initializing an array from an array
/// literal of the form [element1, element2, ..., elementn].
///
/// \param elements SILValues that the array should contain
/// \param arrayType the type of the array that must be created.
/// \param builder SILBuilder that provides the context for emitting the code
/// for the array.
/// \param loc SILLocation to use in the emitted instructions.
/// \return the SILValue of the array that is created with the given \c
/// elements.
static SILValue emitCodeForConstantArray(ArrayRef<SILValue> elements,
CanType arrayType, SILBuilder &builder,
SILLocation loc) {
ASTContext &astContext = builder.getASTContext();
assert(arrayType->isArray());
SILModule &module = builder.getModule();
// Create a SILValue for the number of elements.
unsigned numElements = elements.size();
SILValue numElementsSIL = builder.createIntegerLiteral(
loc, SILType::getBuiltinWordType(astContext), numElements);
// Find the SILFunction that corresponds to _allocateUninitializedArray.
FuncDecl *arrayAllocateDecl = astContext.getAllocateUninitializedArray();
assert(arrayAllocateDecl);
std::string allocatorMangledName =
SILDeclRef(arrayAllocateDecl, SILDeclRef::Kind::Func).mangle();
SILFunction *arrayAllocateFun =
module.loadFunction(allocatorMangledName,
SILModule::LinkingMode::LinkNormal);
assert(arrayAllocateFun);
SILFunction *arrayFinalizeFun = nullptr;
if (numElements != 0) {
if (FuncDecl *arrayFinalizeDecl = astContext.getFinalizeUninitializedArray()) {
std::string finalizeMangledName =
SILDeclRef(arrayFinalizeDecl, SILDeclRef::Kind::Func).mangle();
arrayFinalizeFun =
module.loadFunction(finalizeMangledName,
SILModule::LinkingMode::LinkNormal);
assert(arrayFinalizeFun);
}
}
// Call the _allocateUninitializedArray function with numElementsSIL. The
// call returns a two-element tuple, where the first element is the newly
// created array and the second element is a pointer to the internal storage
// of the array.
SubstitutionMap subMap = arrayType->getContextSubstitutionMap();
FunctionRefInst *arrayAllocateRef =
builder.createFunctionRef(loc, arrayAllocateFun);
ApplyInst *applyInst = builder.createApply(
loc, arrayAllocateRef, subMap, ArrayRef<SILValue>(numElementsSIL));
// Extract the elements of the tuple returned by the call to the allocator.
DestructureTupleInst *destructureInst =
builder.createDestructureTuple(loc, applyInst);
SILValue arraySIL = destructureInst->getResults()[0];
SILValue storagePointerSIL = destructureInst->getResults()[1];
storagePointerSIL = builder.createMarkDependence(
loc, storagePointerSIL, arraySIL, MarkDependenceKind::Escaping);
if (elements.empty()) {
// Nothing more to be done if we are creating an empty array.
return arraySIL;
}
// Convert the pointer to the storage to an address. The elements will be
// stored into offsets from this address.
SILType elementSILType = elements[0]->getType();
PointerToAddressInst *storageAddr = builder.createPointerToAddress(
loc, storagePointerSIL, elementSILType.getAddressType(),
/*isStrict*/ true,
/*isInvariant*/ false);
// Iterate over the elements and store them into the storage address
// after offsetting it appropriately.
// Create a TypeLowering for emitting stores. Note that TypeLowering
// provides a utility for emitting stores for storing trivial and
// non-trivial values, and also handles OSSA and non-OSSA.
const TypeLowering &elementTypeLowering =
builder.getTypeLowering(elementSILType);
unsigned elementIndex = 0;
for (SILValue elementSIL : elements) {
// Compute the address where the element must be stored.
SILValue currentStorageAddr;
if (elementIndex != 0) {
SILValue indexSIL = builder.createIntegerLiteral(
loc, SILType::getBuiltinWordType(astContext), elementIndex);
currentStorageAddr = builder.createIndexAddr(loc, storageAddr, indexSIL,
/*needsStackProtection=*/ false);
} else {
currentStorageAddr = storageAddr;
}
// Store the generated element into the currentStorageAddr. This is an
// initializing store and therefore there is no need to free any existing
// element.
elementTypeLowering.emitStore(builder, loc, elementSIL, currentStorageAddr,
StoreOwnershipQualifier::Init);
++elementIndex;
}
if (arrayFinalizeFun) {
FunctionRefInst *arrayFinalizeRef =
builder.createFunctionRef(loc, arrayFinalizeFun);
arraySIL = builder.createApply(loc, arrayFinalizeRef, subMap,
ArrayRef<SILValue>(arraySIL));
}
return arraySIL;
}
/// Given a SILValue \p value, return the instruction immediately following the
/// definition of the value. That is, if the value is defined by an
/// instruction, return the instruction following the definition. Otherwise, if
/// the value is a basic block parameter, return the first instruction of the
/// basic block.
SILInstruction *getInstructionFollowingValueDefinition(SILValue value) {
SILInstruction *definingInst = value->getDefiningInstruction();
if (definingInst) {
return &*std::next(definingInst->getIterator());
}
// Here value must be a basic block argument.
SILBasicBlock *bb = value->getParentBlock();
return &*bb->begin();
}
/// Given a SILValue \p value, create a copy of the value using copy_value in
/// OSSA or retain in non-OSSA, if \p value is a non-trivial type. Otherwise, if
/// \p value is a trivial type, return the value itself.
SILValue makeOwnedCopyOfSILValue(SILValue value, SILFunction &fun) {
SILType type = value->getType();
if (type.isTrivial(fun) || type.isAddress())
return value;
SILInstruction *instAfterValueDefinition =
getInstructionFollowingValueDefinition(value);
SILLocation copyLoc = instAfterValueDefinition->getLoc();
SILBuilderWithScope builder(instAfterValueDefinition);
const TypeLowering &typeLowering = builder.getTypeLowering(type);
SILValue copy = typeLowering.emitCopyValue(builder, copyLoc, value);
return copy;
}
/// Generate SIL code that computes the constant given by the symbolic value
/// `symVal`. Note that strings and struct-typed constant values will require
/// multiple instructions to be emitted.
/// \param symVal symbolic value for which SIL code needs to be emitted.
/// \param expectedType the expected type of the instruction that would be
/// computing the symbolic value `symVal`. The type is accepted as a
/// parameter as some symbolic values like integer constants can inhabit more
/// than one type.
/// \param builder SILBuilder that provides the context for emitting the code
/// for the symbolic value
/// \param loc SILLocation to use in the emitted instructions.
/// \param stringInfo String.init and metatype information for generating code
/// for string literals.
static SILValue emitCodeForSymbolicValue(SymbolicValue symVal,
Type expectedType, SILBuilder &builder,
SILLocation &loc,
StringSILInfo &stringInfo) {
ASTContext &astContext = expectedType->getASTContext();
switch (symVal.getKind()) {
case SymbolicValue::String: {
assert(expectedType->isString());
StringRef stringVal = symVal.getStringValue();
StringLiteralInst *stringLitInst = builder.createStringLiteral(
loc, stringVal, StringLiteralInst::Encoding::UTF8_OSLOG);
// Create a builtin word for the size of the string
IntegerLiteralInst *sizeInst = builder.createIntegerLiteral(
loc, SILType::getBuiltinWordType(astContext), stringVal.size());
// Set isAscii to false.
IntegerLiteralInst *isAscii = builder.createIntegerLiteral(
loc, SILType::getBuiltinIntegerType(1, astContext), 0);
// Create a metatype inst.
MetatypeInst *metatypeInst =
builder.createMetatype(loc, stringInfo.getStringMetatype());
auto args = SmallVector<SILValue, 4>();
args.push_back(stringLitInst);
args.push_back(sizeInst);
args.push_back(isAscii);
args.push_back(metatypeInst);
FunctionRefInst *stringInitRef =
builder.createFunctionRef(loc, stringInfo.getStringInitIntrinsic());
ApplyInst *applyInst = builder.createApply(
loc, stringInitRef, SubstitutionMap(), ArrayRef<SILValue>(args));
return applyInst;
}
case SymbolicValue::Integer: { // Builtin integer types.
APInt resInt = symVal.getIntegerValue();
assert(expectedType->is<BuiltinIntegerType>());
SILType builtinIntType =
SILType::getPrimitiveObjectType(expectedType->getCanonicalType());
IntegerLiteralInst *intLiteralInst =
builder.createIntegerLiteral(loc, builtinIntType, resInt);
return intLiteralInst;
}
case SymbolicValue::Aggregate: {
// Support only stdlib integer or bool structs.
StructDecl *structDecl = expectedType->getStructOrBoundGenericStruct();
assert(structDecl);
assert(isStdlibIntegerOrBoolDecl(structDecl, astContext));
assert(symVal.getAggregateType()->isEqual(expectedType) &&
"aggregate symbolic value's type and expected type do not match");
VarDecl *propertyDecl = structDecl->getStoredProperties().front();
Type propertyType = expectedType->getTypeOfMember(propertyDecl);
SymbolicValue propertyVal = symVal.lookThroughSingleElementAggregates();
SILValue newPropertySIL = emitCodeForSymbolicValue(
propertyVal, propertyType, builder, loc, stringInfo);
// The lowered SIL type of an integer/bool type is just the primitive
// object type containing the Swift type.
SILType aggregateType =
SILType::getPrimitiveObjectType(expectedType->getCanonicalType());
StructInst *newStructInst = builder.createStruct(
loc, aggregateType, ArrayRef<SILValue>(newPropertySIL));
return newStructInst;
}
case SymbolicValue::Array: {
assert(expectedType->isEqual(symVal.getArrayType()));
CanType elementType;
ArrayRef<SymbolicValue> arrayElements =
symVal.getStorageOfArray().getStoredElements(elementType);
auto elementSILType = builder.getModule().Types
.getLoweredType(AbstractionPattern::getOpaque(), elementType,
TypeExpansionContext(builder.getFunction()));
// Emit code for the symbolic values corresponding to the array elements.
SmallVector<SILValue, 8> elementSILValues;
for (SymbolicValue elementSymVal : arrayElements) {
SILValue elementSIL = emitCodeForSymbolicValue(elementSymVal,
elementSILType.getASTType(),
builder, loc, stringInfo);
elementSILValues.push_back(elementSIL);
}
SILValue arraySIL = emitCodeForConstantArray(
elementSILValues, expectedType->getCanonicalType(), builder, loc);
return arraySIL;
}
case SymbolicValue::Closure: {
assert(expectedType->is<AnyFunctionType>() ||
expectedType->is<SILFunctionType>());
SILModule &module = builder.getModule();
SymbolicClosure *closure = symVal.getClosure();
SILValue resultVal;
// If the closure was created in the context of this function where the code
// is generated, reuse the original closure value (after extending its
// lifetime by copying).
SingleValueInstruction *originalClosureInst = closure->getClosureInst();
SILFunction &fun = builder.getFunction();
if (originalClosureInst->getFunction() == &fun) {
// Copy the closure, since the returned value must be owned and the
// closure's lifetime must be extended until this point.
resultVal = makeOwnedCopyOfSILValue(originalClosureInst, fun);
} else {
// If the closure captures a value that is not a constant, it should only
// come from the caller of the log call. It should be handled by the then
// case and we should never reach here. Assert this.
assert(closure->hasOnlyConstantCaptures() &&
"closure with non-constant captures not defined in this function");
SubstitutionMap callSubstMap = closure->getCallSubstitutionMap();
ArrayRef<SymbolicClosureArgument> captures = closure->getCaptures();
// Recursively emit code for all captured values which must be mapped to a
// symbolic value.
SmallVector<SILValue, 4> capturedSILVals;
for (SymbolicClosureArgument capture : captures) {
SILValue captureOperand = capture.first;
std::optional<SymbolicValue> captureSymVal = capture.second;
assert(captureSymVal);
// Note that the captured operand type may have generic parameters which
// has to be substituted with the substitution map that was inferred by
// the constant evaluator at the partial-apply site.
SILType operandType = captureOperand->getType();
SILType captureType = operandType.subst(module, callSubstMap);
SILValue captureSILVal = emitCodeForSymbolicValue(
captureSymVal.value(), captureType.getASTType(), builder, loc,
stringInfo);
capturedSILVals.push_back(captureSILVal);
}
FunctionRefInst *functionRef =
builder.createFunctionRef(loc, closure->getTarget());
SILType closureType = closure->getClosureType();
ParameterConvention convention =
closureType.getAs<SILFunctionType>()->getCalleeConvention();
resultVal = builder.createPartialApply(loc, functionRef, callSubstMap,
capturedSILVals, convention);
}
// If the expected type is a SILFunctionType convert the closure to the
// expected type using a convert_function instruction. Otherwise, if the
// expected type is AnyFunctionType, nothing needs to be done.
// Note that we cannot assert the lowering in the latter case, as that
// utility doesn't exist yet.
auto resultType = resultVal->getType().castTo<SILFunctionType>();
CanType expectedCanType = expectedType->getCanonicalType();
if (auto expectedFnType = dyn_cast<SILFunctionType>(expectedCanType)) {
assert(expectedFnType->getUnsubstitutedType(module)
== resultType->getUnsubstitutedType(module));
// Convert to the expected type if necessary.
if (expectedFnType != resultType) {
auto convert = builder.createConvertFunction(
loc, resultVal, SILType::getPrimitiveObjectType(expectedFnType),
false);
return convert;
}
}
return resultVal;
}
default: {
llvm_unreachable("Symbolic value kind is not supported");
}
}
}
/// Collect the end points of the instructions that are data dependent on \c
/// value. A instruction is data dependent on \c value if its result may
/// transitively depends on \c value. Note that data dependencies through
/// addresses are not tracked by this function.
///
/// \param value SILValue that is not an address.
/// \param fun SILFunction that defines \c value.
/// \param endUsers buffer for storing the found end points of the data
/// dependence chain.
static void
getEndPointsOfDataDependentChain(SingleValueInstruction *value, SILFunction *fun,
SmallVectorImpl<SILInstruction *> &endUsers) {
assert(!value->getType().isAddress());
SmallVector<SILInstruction *, 16> transitiveUsers;
// Get transitive users of value, ignoring use-def chain going through
// branches. These transitive users define the end points of the constant
// evaluation. Igoring use-def chains through branches causes constant
// evaluation to miss some constant folding opportunities. This can be
// relaxed in the future, if necessary.
getTransitiveUsers(value, transitiveUsers);
// Compute the lifetime frontier of all the transitive uses which are the
// instructions following the last uses. Every exit from the last uses will
// have a lifetime frontier.
SILInstruction *valueDefinition = value->getDefiningInstruction();
SILInstruction *def =
valueDefinition ? valueDefinition : &(value->getParentBlock()->front());
ValueLifetimeAnalysis lifetimeAnalysis(def, transitiveUsers);
ValueLifetimeAnalysis::Frontier frontier;
bool hasCriticalEdges = lifetimeAnalysis.computeFrontier(
frontier, ValueLifetimeAnalysis::DontModifyCFG);
endUsers.append(frontier.begin(), frontier.end());
if (!hasCriticalEdges)
return;
// If there are some lifetime frontiers on the critical edges, take the
// first instruction of the target of the critical edge as the frontier. This
// will suffice as every exit from the visitedUsers must go through one of
// them.
for (auto edgeIndexPair : lifetimeAnalysis.getCriticalEdges()) {
SILBasicBlock *targetBB =
edgeIndexPair.first->getSuccessors()[edgeIndexPair.second];
endUsers.push_back(&targetBB->front());
}
}
/// Given a guaranteed SILValue \p value, return a borrow-scope introducing
/// value, if there is exactly one such introducing value. Otherwise, return
/// None. There can be multiple borrow scopes for a SILValue iff it is derived
/// from a guaranteed basic block parameter representing a phi node.
static std::optional<BorrowedValue>
getUniqueBorrowScopeIntroducingValue(SILValue value) {
assert(value->getOwnershipKind() == OwnershipKind::Guaranteed &&
"parameter must be a guaranteed value");
return getSingleBorrowIntroducingValue(value);
}
/// Replace all uses of \c originalVal by \c foldedVal and adjust lifetimes of
/// original and folded values by emitting required destroy/release instructions
/// at the right places. Note that this function does not remove any
/// instruction.
///
/// \param originalVal the SIL value that is replaced.
/// \param foldedVal the SIL value that replaces the \c originalVal.
/// \param fun the SIL function containing the \c foldedVal and \c originalVal
static void replaceAllUsesAndFixLifetimes(SILValue foldedVal,
SILValue originalVal,
SILFunction *fun) {
SILInstruction *originalInst = originalVal->getDefiningInstruction();
SILInstruction *foldedInst = foldedVal->getDefiningInstruction();
assert(originalInst &&
"cannot constant fold function or basic block parameter");
assert(!isa<TermInst>(originalInst) &&
"cannot constant fold a terminator instruction");
assert(foldedInst && "constant value does not have a defining instruction");
if (originalVal->getType().isTrivial(*fun)) {
assert(foldedVal->getType().isTrivial(*fun));
// Just replace originalVal by foldedVal.
originalVal->replaceAllUsesWith(foldedVal);
return;
}
assert(!foldedVal->getType().isTrivial(*fun));
assert(fun->hasOwnership());
assert(foldedVal->getOwnershipKind() == OwnershipKind::Owned &&
"constant value must have owned ownership kind");
if (originalVal->getOwnershipKind() == OwnershipKind::Owned) {
originalVal->replaceAllUsesWith(foldedVal);
// Destroy originalVal, which is now unused, immediately after its
// definition. Note that originalVal's destroys are now transferred to
// foldedVal.
SILInstruction *insertionPoint = &(*std::next(originalInst->getIterator()));
SILBuilderWithScope builder(insertionPoint);
SILLocation loc = insertionPoint->getLoc();
builder.emitDestroyValueOperation(loc, originalVal);
return;
}
// Here, originalVal is guaranteed. It must belong to a borrow scope that
// begins at a scope introducing instruction e.g. begin_borrow or load_borrow.
// The foldedVal should also have been inserted at the beginning of the scope.
// Therefore, create a borrow of foldedVal at the beginning of the scope and
// use the borrow in place of the originalVal. Also, end the borrow and
// destroy foldedVal at the end of the borrow scope.
assert(originalVal->getOwnershipKind() == OwnershipKind::Guaranteed);
// FIXME: getUniqueBorrowScopeIntroducingValue may look though various storage
// casts. There's no reason to think that it's valid to replace uses of
// originalVal with a new borrow of the "introducing value". All casts
// potentially need to be cloned.
std::optional<BorrowedValue> originalScopeBegin =
getUniqueBorrowScopeIntroducingValue(originalVal);
assert(originalScopeBegin &&
"value without a unique borrow scope should not have been folded");
SILInstruction *scopeBeginInst =
originalScopeBegin->value->getDefiningInstruction();
assert(scopeBeginInst);
SILBuilderWithScope builder(scopeBeginInst);
SILValue borrow =
builder.emitBeginBorrowOperation(scopeBeginInst->getLoc(), foldedVal);
originalVal->replaceAllUsesWith(borrow);
SmallVector<SILInstruction *, 4> scopeEndingInsts;
originalScopeBegin->getLocalScopeEndingInstructions(scopeEndingInsts);
for (SILInstruction *scopeEndingInst : scopeEndingInsts) {
SILBuilderWithScope builder(scopeEndingInst);
builder.emitEndBorrowOperation(scopeEndingInst->getLoc(), borrow);
builder.emitDestroyValueOperation(scopeEndingInst->getLoc(), foldedVal);
}
return;
}
/// Given a fold state with constant-valued instructions, substitute the
/// instructions with the constant values. The constant values could be strings
/// or Stdlib integer-struct values or builtin integers.
static void substituteConstants(FoldState &foldState) {
ConstExprStepEvaluator &evaluator = foldState.constantEvaluator;
// Instructions that are possibly dead since their results are folded.
SmallVector<SILInstruction *, 8> possiblyDeadInsts;
for (SILValue constantSILValue : foldState.getConstantSILValues()) {
SymbolicValue constantSymbolicVal =
evaluator.lookupConstValue(constantSILValue).value();
CanType instType = constantSILValue->getType().getASTType();
// If the SymbolicValue is a string but the instruction that is folded is
// not String typed, we are tracking a StaticString which is represented as
// a raw pointer. Skip folding StaticString as they are already efficiently
// represented.
if (constantSymbolicVal.getKind() == SymbolicValue::String &&
!instType->isString())
continue;
// Make sure that the symbolic value tracked in the foldState is a constant.
// In the case of ArraySymbolicValue, the array storage could be a non-constant
// if some instruction in the array initialization sequence was not evaluated
// and skipped.
if (!constantSymbolicVal.containsOnlyConstants()) {
assert(constantSymbolicVal.getKind() != SymbolicValue::String && "encountered non-constant string symbolic value");
continue;
}
SILInstruction *definingInst = constantSILValue->getDefiningInstruction();
assert(definingInst);
SILFunction *fun = definingInst->getFunction();
// Find an insertion point for inserting the new constant value. If we are
// folding a value like struct_extract within a borrow scope, we need to
// insert the constant value at the beginning of the borrow scope. This
// is because the borrowed value is expected to be alive during its entire
// borrow scope and could be stored into memory and accessed indirectly
// without a copy e.g. using store_borrow within the borrow scope. On the
// other hand, if we are folding an owned value, we can insert the constant
// value at the point where the owned value is defined.
SILInstruction *insertionPoint = definingInst;
if (constantSILValue->getOwnershipKind() == OwnershipKind::Guaranteed) {
std::optional<BorrowedValue> borrowIntroducer =
getUniqueBorrowScopeIntroducingValue(constantSILValue);
if (!borrowIntroducer) {
// This case happens only if constantSILValue is derived from a
// guaranteed basic block parameter. This is unlikely because the values
// that have to be folded should just be a struct-extract of an owned
// instance of OSLogMessage.
continue;
}
insertionPoint = borrowIntroducer->value->getDefiningInstruction();
assert(insertionPoint && "borrow scope beginning is a parameter");
}
SILBuilderWithScope builder(insertionPoint);
SILLocation loc = insertionPoint->getLoc();
SILValue foldedSILVal = emitCodeForSymbolicValue(
constantSymbolicVal, instType, builder, loc, foldState.stringInfo);
// Replace constantSILValue with foldedSILVal and adjust the lifetime and
// ownership of the values appropriately.
replaceAllUsesAndFixLifetimes(foldedSILVal, constantSILValue, fun);
possiblyDeadInsts.push_back(definingInst);
}
}
/// Check whether OSLogMessage and OSLogInterpolation instances and all their
/// stored properties are constants. If not, it indicates errors that are due to
/// incorrect implementation of OSLogMessage either in the os module or in the
/// extensions created by users. Detect and emit diagnostics for such errors.
/// The diagnostics here are for os log library authors.
static bool checkOSLogMessageIsConstant(SingleValueInstruction *osLogMessage,
FoldState &foldState) {
ConstExprStepEvaluator &constantEvaluator = foldState.constantEvaluator;
SILLocation loc = osLogMessage->getLoc();
SourceLoc sourceLoc = loc.getSourceLoc();
SILFunction *fn = osLogMessage->getFunction();
SILModule &module = fn->getModule();
ASTContext &astContext = fn->getASTContext();
std::optional<SymbolicValue> osLogMessageValueOpt =
constantEvaluator.lookupConstValue(osLogMessage);
if (!osLogMessageValueOpt ||
osLogMessageValueOpt->getKind() != SymbolicValue::Aggregate) {
diagnose(astContext, sourceLoc, diag::oslog_non_constant_message);
return true;
}
// The first (and only) property of OSLogMessage is the OSLogInterpolation
// instance.
SymbolicValue osLogInterpolationValue =
osLogMessageValueOpt->getAggregateMembers()[0];
if (!osLogInterpolationValue.isConstant()) {
diagnose(astContext, sourceLoc, diag::oslog_non_constant_interpolation);
return true;
}
// Check if every property of the OSLogInterpolation instance has a constant
// value.
SILType osLogMessageType = osLogMessage->getType();
StructDecl *structDecl = osLogMessageType.getStructOrBoundGenericStruct();
assert(structDecl);
auto typeExpansionContext =
TypeExpansionContext(*osLogMessage->getFunction());
VarDecl *interpolationPropDecl = structDecl->getStoredProperties().front();
SILType osLogInterpolationType = osLogMessageType.getFieldType(
interpolationPropDecl, module, typeExpansionContext);
StructDecl *interpolationStruct =
osLogInterpolationType.getStructOrBoundGenericStruct();
assert(interpolationStruct);
auto propertyDecls = interpolationStruct->getStoredProperties();
ArrayRef<SymbolicValue> propertyValues =
osLogInterpolationValue.getAggregateMembers();
auto propValueI = propertyValues.begin();
bool errorDetected = false;
// Also, track if there is a string-valued property.
bool hasStringValuedProperty = false;
for (auto *propDecl : propertyDecls) {
SymbolicValue propertyValue = *(propValueI++);
if (!propertyValue.isConstant()) {
diagnose(astContext, sourceLoc, diag::oslog_property_not_constant,
propDecl->getNameStr());
errorDetected = true;
break;
}
hasStringValuedProperty = propertyValue.getKind() == SymbolicValue::String;
}
// If we have a string-valued property but don't have the stringInfo
// initialized here, it means the initializer OSLogInterpolation is explicitly
// called, which should be diagnosed.
if (hasStringValuedProperty && !foldState.stringInfo.isInitialized()) {
diagnose(astContext, sourceLoc, diag::oslog_message_explicitly_created);
errorDetected = true;
}
return errorDetected;
}
/// Return true iff the given address-valued instruction has only stores into
/// it. This function tests for the conditions under which a call, that was
/// constant evaluated, that writes into the address-valued instruction can be
/// considered as a point store and exploits it to remove such uses.
/// TODO: eventually some of this logic can be moved to
/// PredictableDeadAllocElimination pass, but the assumption about constant
/// evaluable functions taking inout parameters is not easily generalizable to
/// arbitrary non-constant contexts where the function could be used. The logic
/// here is relying on the fact that the constant_evaluable function has been
/// evaluated and therefore doesn't have any side-effects.
static bool hasOnlyStoreUses(SingleValueInstruction *addressInst) {
for (Operand *use : addressInst->getUses()) {
SILInstruction *user = use->getUser();
switch (user->getKind()) {
default:
return false;
case SILInstructionKind::BeginAccessInst: {
if (!hasOnlyStoreUses(cast<BeginAccessInst>(user)))
return false;
continue;
}
case SILInstructionKind::StoreInst: {
// For now, ignore assigns as we need to destroy_addr its dest if it
// is deleted.
if (cast<StoreInst>(user)->getOwnershipQualifier() ==
StoreOwnershipQualifier::Assign)
return false;
continue;
}
case SILInstructionKind::EndAccessInst:
case SILInstructionKind::DestroyAddrInst:
case SILInstructionKind::InjectEnumAddrInst:
case SILInstructionKind::DeallocStackInst:
continue;
case SILInstructionKind::ApplyInst: {
ApplyInst *apply = cast<ApplyInst>(user);
SILFunction *callee = apply->getCalleeFunction();
if (!callee || !isConstantEvaluable(callee) || !apply->use_empty())
return false;
// Note that since we are looking at an alloc_stack used to produce the
// OSLogMessage instance, this constant_evaluable call should have been
// evaluated successfully by the evaluator. Otherwise, we would have
// reported an error earlier. Therefore, all values manipulated by such
// a call are symbolic constants and the call would not have any global
// side effects. The following logic relies on this property.
// If there are other indirect writable results for the call other than
// the alloc_stack we are checking, it may not be dead. Therefore, bail
// out.
FullApplySite applySite(apply);
unsigned numWritableArguments =
getNumInOutArguments(applySite) + applySite.getNumIndirectSILResults();
if (numWritableArguments > 1)
return false;
SILArgumentConvention convention = applySite.getArgumentConvention(*use);
if (convention == SILArgumentConvention::Indirect_In ||
convention == SILArgumentConvention::Indirect_In_Guaranteed) {
if (numWritableArguments > 0)
return false;
}
// Here, either there are no writable parameters or the alloc_stack
// is the only writable parameter.
continue;
}
}
}
return true;
}
/// Delete the given alloc_stack instruction by deleting the users of the
/// instruction. In case the user is a begin_apply, recursively delete the users
/// of begin_apply. This will also fix the lifetimes of the deleted instructions
/// whenever possible.
static void forceDeleteAllocStack(SingleValueInstruction *inst,
InstructionDeleter &deleter) {
SmallVector<SILInstruction *, 8> users;
for (Operand *use : inst->getUses())
users.push_back(use->getUser());
for (SILInstruction *user : users) {
if (isIncidentalUse(user))
continue;
if (isa<DestroyAddrInst>(user)) {
deleter.forceDelete(user);
continue;
}
if (isa<BeginAccessInst>(user)) {
forceDeleteAllocStack(cast<BeginAccessInst>(user), deleter);
continue;
}
// Notify the deletion worklist in case user's other operands become dead.
deleter.getCallbacks().notifyWillBeDeleted(user);
deleter.forceDeleteAndFixLifetimes(user);
}
deleter.forceDelete(inst);
}
/// Delete \c inst , if it is dead, along with its dead users and invoke the
/// callback whenever an instruction is deleted.
static void
deleteInstructionWithUsersAndFixLifetimes(SILInstruction *inst,
InstructionDeleter &deleter) {
// If this is an alloc_stack, it can be eliminated as long as it is only
// stored into or destroyed.
if (AllocStackInst *allocStack = dyn_cast<AllocStackInst>(inst)) {
if (hasOnlyStoreUses(allocStack))
forceDeleteAllocStack(allocStack, deleter);
return;
}
deleter.recursivelyDeleteUsersIfDead(inst);
}
/// Try to dead-code eliminate the OSLogMessage instance \c oslogMessage passed
/// to the os log call and clean up its dependencies. If the instance cannot be
/// eliminated, emit diagnostics.
/// \returns true if elimination is successful and false if it is not successful
/// and diagnostics is emitted.
static bool tryEliminateOSLogMessage(SingleValueInstruction *oslogMessage) {
// List of instructions that are possibly dead.
SmallVector<SILInstruction *, 4> worklist = {oslogMessage};
// Set of all deleted instructions.
SmallPtrSet<SILInstruction *, 4> deletedInstructions;
auto callbacks =
InstModCallbacks().onNotifyWillBeDeleted([&](SILInstruction *deadInst) {
// Add operands of all deleted instructions to the worklist so that
// they can be recursively deleted if possible.
for (Operand &operand : deadInst->getAllOperands()) {
if (SILInstruction *definingInstruction =
operand.get()->getDefiningInstruction()) {
if (!deletedInstructions.count(definingInstruction))
worklist.push_back(definingInstruction);
}
}
(void)deletedInstructions.insert(deadInst);
});
InstructionDeleter deleter(std::move(callbacks));
unsigned startIndex = 0;
while (startIndex < worklist.size()) {
SILInstruction *inst = worklist[startIndex++];
if (deletedInstructions.count(inst))
continue;
deleteInstructionWithUsersAndFixLifetimes(inst, deleter);
// Call cleanupDeadInstructions incrementally because it may expose a dead
// alloc_stack, which will only be deleted by this pass via
// deleteInstructionWithUsersAndFixLifetimes().
deleter.cleanupDeadInstructions();
}
// If the OSLogMessage instance is not deleted, either we couldn't see the
// body of the log call or there is a bug in the library implementation.
// Assuming that the library implementation is correct, it means that either
// OSLogMessage is used in a context where it is not supposed to be used, or
// we somehow saw a conditional branch with a non-constant argument before
// completing evaluation (this can happen with the os_log(_:log:type)
// overload, when log or type is an optional unwrapping). Report an error
// that covers both contexts. (Note that it is very hard to distinguish these
// error cases in the current state.)
if (!deletedInstructions.count(oslogMessage)) {
SILFunction *fun = oslogMessage->getFunction();
diagnose(fun->getASTContext(), oslogMessage->getLoc().getSourceLoc(),
diag::oslog_message_alive_after_opts);
return false;
}
return true;
}
/// Constant evaluate instructions starting from \p start and fold the uses
/// of the SIL value \p oslogMessage.
/// \returns true if folding is successful and false if it is not successful and
/// diagnostics is emitted.
static bool constantFold(SILInstruction *start,
SingleValueInstruction *oslogMessage,
unsigned assertConfig) {
SILFunction *fun = start->getFunction();
assert(fun->hasOwnership() && "function not in ownership SIL");
// Initialize fold state.
SmallVector<SILInstruction *, 2> endUsersOfOSLogMessage;
getEndPointsOfDataDependentChain(oslogMessage, fun, endUsersOfOSLogMessage);
assert(!endUsersOfOSLogMessage.empty());
FoldState state(fun, assertConfig, start, endUsersOfOSLogMessage);
auto errorInfo = collectConstants(state);
if (errorInfo) // Evaluation failed with diagnostics.
return false;
// At this point, the `OSLogMessage` instance should be mapped to a constant
// value in the interpreter state. If this is not the case, it means the
// overlay implementation of OSLogMessage (or its extensions by users) are
// incorrect. Detect and diagnose this scenario.
bool errorDetected = checkOSLogMessageIsConstant(oslogMessage, state);
if (errorDetected)
return false;
substituteConstants(state);
return tryEliminateOSLogMessage(oslogMessage);
}
/// Given a call to the initializer of OSLogMessage, which conforms to
/// 'ExpressibleByStringInterpolation', find the first instruction, if any, that
/// marks the beginning of the string interpolation that is used to create an
/// OSLogMessage instance. This function traverses the backward data-dependence
/// chain of the given OSLogMessage initializer: \p oslogInit. As a special case
/// it avoids chasing the data-dependencies from the captured values of
/// partial-apply instructions, as a partial apply instruction is considered as
/// a constant regardless of the constantness of its captures.
static SILInstruction *beginOfInterpolation(ApplyInst *oslogInit) {
auto oslogInitCallSite = FullApplySite(oslogInit);
SILFunction *callee = oslogInitCallSite.getCalleeFunction();
assert (callee->hasSemanticsAttrThatStartsWith("oslog.message.init"));
// The initializer must return the OSLogMessage instance directly.
assert(oslogInitCallSite.getNumArguments() >= 1 &&
oslogInitCallSite.getNumIndirectSILResults() == 0);
// List of backward dependencies that needs to be analyzed.
SmallVector<SILInstruction *, 4> worklist = { oslogInit };
SmallPtrSet<SILInstruction *, 4> seenInstructions = { oslogInit };
// List of instructions that could potentially mark the beginning of the
// interpolation.
SmallPtrSet<SILInstruction *, 4> candidateStartInstructions;
unsigned i = 0;
while (i < worklist.size()) {
SILInstruction *inst = worklist[i++];
if (isa<PartialApplyInst>(inst)) {
// Partial applies are used to capture the dynamic arguments passed to
// the string interpolation. Their arguments are not required to be
// known at compile time and they need not be constant evaluated.
// Therefore, follow only the dependency chain along function ref operand.
SILInstruction *definingInstruction =
inst->getOperand(0)->getDefiningInstruction();
assert(definingInstruction && "no function-ref operand in partial-apply");
if (seenInstructions.insert(definingInstruction).second) {
worklist.push_back(definingInstruction);
candidateStartInstructions.insert(definingInstruction);
}
continue;
}
for (Operand &operand : inst->getAllOperands()) {
if (SILInstruction *definingInstruction =
operand.get()->getDefiningInstruction()) {
if (seenInstructions.count(definingInstruction))
continue;
worklist.push_back(definingInstruction);
seenInstructions.insert(definingInstruction);
candidateStartInstructions.insert(definingInstruction);
}
// If there is no defining instruction for this operand, it could be a
// basic block or function parameter. Such operands are not considered
// in the backward slice. Dependencies through them are safe to ignore
// in this context.
}
// If the instruction: `inst` has an operand, its definition should precede
// `inst` in the control-flow order. Therefore, remove `inst` from the
// candidate start instructions.
if (inst->getNumOperands() > 0) {
candidateStartInstructions.erase(inst);
}
if (!isa<AllocStackInst>(inst)) {
continue;
}
// If we have an alloc_stack instruction, include stores into it into the
// backward dependency list. However, whether alloc_stack precedes the
// definitions of values stored into the location in the control-flow order
// can only be determined by traversing the instructions in the control-flow
// order.
AllocStackInst *allocStackInst = cast<AllocStackInst>(inst);
for (StoreInst *storeInst : allocStackInst->getUsersOfType<StoreInst>()) {
worklist.push_back(storeInst);
candidateStartInstructions.insert(storeInst);
}
// Skip other uses of alloc_stack including function calls on the
// alloc_stack and data dependencies through them. This is done because
// all functions using the alloc_stack are expected to be constant evaluated
// and therefore should only be passed constants or auto closures. These
// constants must be constructed immediately before the call and would only
// appear in the SIL after the alloc_stack instruction. This invariant is
// relied upon here so as to restrict the backward dependency search, which
// in turn keeps the code that is constant evaluated small.
// Note that if the client code violates this assumption, it will be
// diagnosed by this pass (in function detectAndDiagnoseErrors) as it will
// result in non-constant values for OSLogMessage instance.
}
// Find the first basic block in the control-flow order. Typically, if
// formatting and privacy options are literals, all candidate instructions
// must be in the same basic block. But, this code doesn't rely on that
// assumption.
BasicBlockSet candidateBBs(oslogInit->getFunction());
SILBasicBlock *candidateBB = nullptr;
unsigned numCandidateBBsFound = 0;
for (auto *candidate: candidateStartInstructions) {
candidateBB = candidate->getParent();
if (candidateBBs.insert(candidateBB))
++numCandidateBBsFound;
}
SILBasicBlock *firstBB = nullptr;
if (numCandidateBBsFound == 1) {
assert(candidateBB);
firstBB = candidateBB;
} else {
SILBasicBlock *entryBB = oslogInit->getFunction()->getEntryBlock();
for (SILBasicBlock *bb : llvm::breadth_first<SILBasicBlock *>(entryBB)) {
if (candidateBBs.contains(bb)) {
firstBB = bb;
break;
}
}
if (!firstBB) {
// This case will be reached only if the log call appears in unreachable
// code and, for some reason, its data dependencies extend beyond a basic
// block. This case should generally not happen unless the library
// implementation of the os log APIs change. It is better to warn in this
// case, rather than skipping the call silently.
diagnose(callee->getASTContext(), oslogInit->getLoc().getSourceLoc(),
diag::oslog_call_in_unreachable_code);
return nullptr;
}
}
// Iterate over the instructions in the firstBB and find the instruction that
// starts the interpolation.
SILInstruction *startInst = nullptr;
for (SILInstruction &inst : *firstBB) {
if (candidateStartInstructions.count(&inst)) {
startInst = &inst;
break;
}
}
assert(startInst && "could not find beginning of interpolation");
return startInst;
}
/// Replace every _globalStringTablePointer builtin in the transitive users of
/// oslogMessage with an empty string literal. This would suppress the errors
/// emitted by a later pass on _globalStringTablePointerBuiltins. This utility
/// should be called only when this pass emits diagnostics.
static void
suppressGlobalStringTablePointerError(SingleValueInstruction *oslogMessage) {
SmallVector<SILInstruction *, 8> users;
getTransitiveUsers(oslogMessage, users);
// Collect all globalStringTablePointer instructions.
SmallVector<BuiltinInst *, 4> globalStringTablePointerInsts;
for (SILInstruction *user : users) {
BuiltinInst *bi = dyn_cast<BuiltinInst>(user);
if (bi &&
bi->getBuiltinInfo().ID == BuiltinValueKind::GlobalStringTablePointer)
globalStringTablePointerInsts.push_back(bi);
}
// Replace the globalStringTablePointer builtins by a string_literal
// instruction for an empty string and clean up dead code.
InstructionDeleter deleter;
for (BuiltinInst *bi : globalStringTablePointerInsts) {
SILBuilderWithScope builder(bi);
StringLiteralInst *stringLiteral = builder.createStringLiteral(
bi->getLoc(), StringRef(""), StringLiteralInst::Encoding::UTF8_OSLOG);
bi->replaceAllUsesWith(stringLiteral);
// The builtin instruction is likely dead. But since we are iterating over
// many instructions, do the cleanup at the end.
deleter.trackIfDead(bi);
}
deleter.cleanupDeadInstructions();
}
/// If the SILInstruction is an initialization of OSLogMessage, return the
/// initialization call as an ApplyInst. Otherwise, return nullptr.
static ApplyInst *getAsOSLogMessageInit(SILInstruction *inst) {
auto *applyInst = dyn_cast<ApplyInst>(inst);
if (!applyInst) {
return nullptr;
}
SILFunction *callee = applyInst->getCalleeFunction();
if (!callee ||
!callee->hasSemanticsAttrThatStartsWith("oslog.message.init")) {
return nullptr;
}
// Default argument generators created for a function also inherit
// the semantics attribute of the function. Therefore, check that there are
// at least two operands for this apply instruction.
if (applyInst->getNumOperands() > 1) {
return applyInst;
}
return nullptr;
}
/// Return true iff the SIL function \c fun is a method of the \c OSLogMessage
/// type or a type that has the @_semantics("oslog.message.type") annotation.
static bool isMethodOfOSLogMessage(SILFunction &fun) {
DeclContext *declContext = fun.getDeclContext();
if (!declContext)
return false;
Decl *decl = declContext->getAsDecl();
if (!decl)
return false;
ConstructorDecl *ctor = dyn_cast<ConstructorDecl>(decl);
if (!ctor)
return false;
DeclContext *parentContext = ctor->getParent();
if (!parentContext)
return false;
NominalTypeDecl *typeDecl = parentContext->getSelfNominalTypeDecl();
if (!typeDecl)
return false;
return typeDecl->getName() == fun.getASTContext().Id_OSLogMessage
|| typeDecl->hasSemanticsAttr(semantics::OSLOG_MESSAGE_TYPE);
}
class OSLogOptimization : public SILFunctionTransform {
~OSLogOptimization() override {}
/// The entry point to the transformation.
void run() override {
auto &fun = *getFunction();
unsigned assertConfig = getOptions().AssertConfig;
// Don't rerun optimization on deserialized functions or stdlib functions.
if (fun.wasDeserializedCanonical()) {
return;
}
// Skip methods of OSLogMessage type. This avoid unnecessary work and also
// avoids falsely diagnosing the auto-generated (transparent) witness method
// of OSLogMessage, which ends up invoking the OSLogMessage initializer:
// "oslog.message.init_interpolation" without an interpolated string
// literal that is expected by this pass.
if (isMethodOfOSLogMessage(fun)) {
return;
}
// Collect all 'OSLogMessage.init' in the function. 'OSLogMessage' is a
// custom string interpolation type used by the new OS log APIs.
SmallVector<ApplyInst *, 4> oslogMessageInits;
for (auto &bb : fun) {
for (auto &inst : bb) {
auto init = getAsOSLogMessageInit(&inst);
if (!init)
continue;
oslogMessageInits.push_back(init);
}
}
bool madeChange = false;
// Constant fold the uses of properties of OSLogMessage instance. Note that
// the function body will change due to constant folding, after each
// iteration.
for (auto *oslogInit : oslogMessageInits) {
SILInstruction *interpolationStart = beginOfInterpolation(oslogInit);
if (!interpolationStart) {
// The log call is in unreachable code here.
continue;
}
bool foldingSucceeded =
constantFold(interpolationStart, oslogInit, assertConfig);
// If folding did not succeeded, it implies that an error was diagnosed.
// However, this will also trigger a diagnostics later on since
// _globalStringTablePointerBuiltin would not be passed a string literal.
// Suppress this error by synthesizing a dummy string literal for the
// builtin.
if (!foldingSucceeded)
suppressGlobalStringTablePointerError(oslogInit);
madeChange = true;
}
if (madeChange) {
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
}
}
};
} // end anonymous namespace
SILTransform *swift::createOSLogOptimization() {
return new OSLogOptimization();
}