Files
swift-mirror/lib/SILOptimizer/Transforms/DeadCodeElimination.cpp
Nate Chandler 6d9ae19629 [DCE] Don't complete lifetimes of erased values.
DCE may enqueue a value for lifetime completion and later on erase the
instruction that defines that value.  When erasing an instruction, erase
each of its results from the collection of values to complete.

rdar://141560546
2024-12-19 15:16:32 -08:00

1062 lines
37 KiB
C++

//===--- DeadCodeElimination.cpp - Delete dead code ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-dce"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/BlotSetVector.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/NodeBits.h"
#include "swift/SIL/OSSALifetimeCompletion.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SILOptimizer/Analysis/DeadEndBlocksAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
STATISTIC(NumBranchesPromoted, "Number of dead branches promoted to jumps");
STATISTIC(NumDeletedInsts, "Number of instructions deleted");
namespace {
// Without any complex analysis, does this instruction seem like
// something that we need to keep?
//
// FIXME: Reconcile the similarities between this and
// isInstructionTriviallyDead.
static bool seemsUseful(SILInstruction *I) {
// Even though begin_access/destroy_value/copy_value/end_lifetime have
// side-effects, they can be DCE'ed if they do not have useful
// dependencies/reverse dependencies
if (isa<BeginAccessInst>(I) || isa<CopyValueInst>(I) ||
isa<DestroyValueInst>(I) || isa<EndLifetimeInst>(I) ||
isa<EndBorrowInst>(I))
return false;
if (isa<UnconditionalCheckedCastInst>(I)) {
return false;
}
// A load [copy] is okay to be DCE'ed if there are no useful dependencies
if (auto *load = dyn_cast<LoadInst>(I)) {
if (load->getOwnershipQualifier() == LoadOwnershipQualifier::Copy)
return false;
}
if (I->mayHaveSideEffects())
return true;
if (llvm::any_of(I->getResults(),
[](auto result) { return result->isLexical(); })) {
return true;
}
if (auto *BI = dyn_cast<BuiltinInst>(I)) {
// Although the onFastPath builtin has no side-effects we don't want to
// remove it.
return BI->getBuiltinInfo().ID == BuiltinValueKind::OnFastPath;
}
if (isa<UnreachableInst>(I))
return true;
if (auto TI = dyn_cast<TermInst>(I)) {
if (TI->isFunctionExiting())
return true;
}
// Is useful if it's associating with a function argument
// If undef, it is useful and it doesn't cost anything.
if (isa<DebugValueInst>(I))
return isa<SILFunctionArgument>(I->getOperand(0))
|| isa<SILUndef>(I->getOperand(0));
// Don't delete allocation instructions in DCE.
if (isa<AllocRefInst>(I) || isa<AllocRefDynamicInst>(I)) {
return true;
}
return false;
}
// We map from post-dominator tree node to a ControllingInfo struct
// which contains the post-dominator tree level of this node, along
// with the direct predecessors that this node is control-dependent
// on, and the minimum level number of any predecessor in the subtree
// below this node in the post-dominator tree.
struct ControllingInfo {
typedef std::pair<SILBasicBlock *, unsigned> PredInfo;
SILBasicBlock *Block;
// The post-dominator tree level for this node.
unsigned Level;
llvm::SmallVector<PredInfo, 2> ControllingPreds;
unsigned MinTreePredLevel;
};
class DCE {
typedef llvm::DomTreeNodeBase<SILBasicBlock> PostDomTreeNode;
SILFunction *F;
ValueSet LiveArguments;
InstructionSet LiveInstructions;
BasicBlockSet LiveBlocks;
llvm::SmallVector<SILInstruction *, 64> Worklist;
PostDominanceInfo *PDT;
DominanceInfo *DT;
DeadEndBlocks *deadEndBlocks;
llvm::DenseMap<SILBasicBlock *, ControllingInfo> ControllingInfoMap;
SmallBlotSetVector<SILValue, 8> valuesToComplete;
// Maps instructions which produce a failing condition (like overflow
// builtins) to the actual cond_fail instructions which handle the failure.
// Dependencies which go in the reverse direction. Usually for a pair
// %1 = inst_a
// inst_b(%1)
// the dependency goes from inst_b to inst_a: if inst_b is alive then
// inst_a is also alive.
// For some instructions the dependency is exactly the other way round, e.g.
// %1 = inst_which_can_fail
// cond_fail(%1)
// In this case cond_fail is alive only if inst_which_can_fail is alive.
// The key of this map is the source of the dependency (inst_a), the
// value is the set of instructions dependent on it (inst_b).
llvm::DenseMap<SILValue, SmallPtrSet<SILInstruction *, 4>>
ReverseDependencies;
// guaranteedPhiDependencies tracks the dependency of reborrows and
// @guaranteed forwarding phis with its base value.
// If the base value is also passed along as a phi operand with the reborrow
// operand/GuaranteedForwardingPhi operand, we will have a new base value
// for the reborrow phi/@guaranteed forwarding phi.
using BaseValueSet = SmallPtrSet<SILValue, 8>;
llvm::DenseMap<SILPhiArgument *, BaseValueSet> guaranteedPhiDependencies;
/// Tracks if the pass changed branches.
bool BranchesChanged = false;
/// Tracks if the pass changed ApplyInsts.
bool CallsChanged = false;
bool precomputeControlInfo();
/// Populates borrow dependencies and disables DCE if needed.
void processBorrow(BorrowedValue borrow);
void markLive();
/// Record a reverse dependency from \p from to \p to meaning \p to is live
/// if \p from is also live.
void addReverseDependency(SILValue from, SILInstruction *to);
/// Starting from \p borrow find all reborrow and guaranteed phi dependencies
/// along with their base values.
void findGuaranteedPhiDependencies(BorrowedValue borrow);
bool removeDead();
void computeLevelNumbers(PostDomTreeNode *root);
bool hasInfiniteLoops();
void computePredecessorDependence();
void computeMinPredecessorLevels(PostDomTreeNode *root);
void insertControllingInfo(SILBasicBlock *Block, unsigned Level);
void markValueLive(SILValue V);
void markInstructionLive(SILInstruction *Inst);
void markTerminatorArgsLive(SILBasicBlock *Pred, SILBasicBlock *Succ,
size_t ArgIndex);
void markControllingTerminatorsLive(SILBasicBlock *Block);
void propagateLiveBlockArgument(SILArgument *Arg);
void propagateLiveness(SILInstruction *I);
void collectControllingBlocksInTree(ControllingInfo &QueryInfo,
PostDomTreeNode *root,
llvm::SmallPtrSetImpl<SILBasicBlock *> &Controlling);
void collectControllingBlocks(SILBasicBlock *Block,
llvm::SmallPtrSetImpl<SILBasicBlock *> &);
SILBasicBlock *nearestUsefulPostDominator(SILBasicBlock *Block);
void replaceBranchWithJump(SILInstruction *Inst, SILBasicBlock *Block);
/// Insert lifetime ending instruction if defining value of \p op is live.
void endLifetimeOfLiveValue(Operand *op, SILInstruction *insertPt);
public:
DCE(SILFunction *F, PostDominanceInfo *PDT, DominanceInfo *DT,
DeadEndBlocks *deadEndBlocks)
: F(F), LiveArguments(F), LiveInstructions(F), LiveBlocks(F), PDT(PDT),
DT(DT), deadEndBlocks(deadEndBlocks) {}
/// The entry point to the transformation.
bool run() {
if (!precomputeControlInfo())
return false;
markLive();
return removeDead();
}
bool mustInvalidateCalls() const { return CallsChanged; }
bool mustInvalidateBranches() const { return BranchesChanged; }
};
// Keep track of the fact that V is live and add it to our worklist
// so that we can process the values it depends on.
void DCE::markValueLive(SILValue V) {
if (SILInstruction *inst = V->getDefiningInstruction())
return markInstructionLive(inst);
if (isa<SILUndef>(V))
return;
LLVM_DEBUG(llvm::dbgs() << "Marking as live: " << *V);
auto *Arg = cast<SILArgument>(V);
if (!LiveArguments.insert(Arg))
return;
markControllingTerminatorsLive(Arg->getParent());
propagateLiveBlockArgument(Arg);
}
void DCE::markInstructionLive(SILInstruction *Inst) {
if (!LiveInstructions.insert(Inst))
return;
LLVM_DEBUG(llvm::dbgs() << "Marking as live: " << *Inst);
Worklist.push_back(Inst);
}
/// Gets the producing instruction of a cond_fail condition. Currently these
/// are overflow builtins but may be extended to other instructions in the
/// future.
static BuiltinInst *getProducer(CondFailInst *CFI) {
// Check for the pattern:
// %1 = builtin "some_operation_with_overflow"
// %2 = tuple_extract %1
// %3 = cond_fail %2
SILValue FailCond = CFI->getOperand();
if (auto *TEI = dyn_cast<TupleExtractInst>(FailCond)) {
if (auto *BI = dyn_cast<BuiltinInst>(TEI->getOperand())) {
return BI;
}
}
return nullptr;
}
void DCE::processBorrow(BorrowedValue borrow) {
// Populate guaranteedPhiDependencies for this borrow
findGuaranteedPhiDependencies(borrow);
if (!borrow.hasReborrow()) {
return;
}
// If the borrow was not computed from another
// borrow, return.
SILValue baseValue;
if (auto *beginBorrow = dyn_cast<BeginBorrowInst>(*borrow)) {
auto borrowOp = beginBorrow->getOperand();
if (borrowOp->getOwnershipKind() != OwnershipKind::Guaranteed) {
return;
}
baseValue = borrowOp;
} else {
auto *loadBorrow = cast<LoadBorrowInst>(*borrow);
auto accessBase = AccessBase::compute(loadBorrow->getOperand());
if (!accessBase.isReference()) {
return;
}
baseValue = accessBase.getReference();
}
// If the borrow was computed from another
// borrow, disable DCE of the outer borrow.
// This is because, when a reborrow is dead, DCE has to insert
// end_borrows in predecessor blocks and it cannot yet handle borrow
// nesting.
// TODO: Instead of disabling DCE of outer borrow, consider inserting
// end_borrows inside-out.
SmallVector<SILValue, 4> roots;
findGuaranteedReferenceRoots(baseValue,
/*lookThroughNestedBorrows=*/false, roots);
// Visit the end_borrows of all the borrow scopes that this
// begin_borrow could be borrowing, and mark them live.
for (auto root : roots) {
visitTransitiveEndBorrows(root, [&](EndBorrowInst *endBorrow) {
markInstructionLive(endBorrow);
});
}
}
// Determine which instructions from this function we need to keep.
void DCE::markLive() {
// Find the initial set of instructions in this function that appear
// to be live in the sense that they are not trivially something we
// can delete by examining only that instruction.
for (auto &BB : *F) {
for (auto &I : BB) {
switch (I.getKind()) {
case SILInstructionKind::CondFailInst: {
if (auto *Prod = getProducer(cast<CondFailInst>(&I))) {
addReverseDependency(Prod, &I);
} else {
markInstructionLive(&I);
}
break;
}
// The side-effects of fix_lifetime effect all references to the same
// object. It must be preserved to keep alive any potentially aliasing
// references. fix_lifetime can only be removed by proving that its
// operand is both a unique and a dead reference, but this makes more
// sense in DeadObjectElimination.
case SILInstructionKind::FixLifetimeInst: {
// If the operand is a trivial scalar value, then it has no aliases or
// side-effects. Consider handling this as an instruction
// canonicalization instead.
SILValue Op = I.getOperand(0);
if (!Op->getType().isAddress() && Op->getType().isTrivial(*F)) {
addReverseDependency(Op, &I);
} else {
markInstructionLive(&I);
}
break;
}
case SILInstructionKind::EndAccessInst: {
// An end_access is live only if it's begin_access is also live.
auto *beginAccess = cast<EndAccessInst>(&I)->getBeginAccess();
addReverseDependency(beginAccess, &I);
break;
}
case SILInstructionKind::DestroyValueInst: {
auto phi = PhiValue(I.getOperand(0));
// Disable DCE of phis which are lexical or may have a pointer escape.
if (phi && (phi->isLexical() || findPointerEscape(phi))) {
markInstructionLive(&I);
}
// The instruction is live only if it's operand value is also live
addReverseDependency(I.getOperand(0), &I);
break;
}
case SILInstructionKind::EndBorrowInst: {
auto phi = PhiValue(lookThroughBorrowedFromDef(I.getOperand(0)));
// If there is a pointer escape or phi is lexical, disable DCE.
if (phi && (findPointerEscape(phi) || phi->isLexical())) {
markInstructionLive(&I);
}
// The instruction is live only if it's operand value is also live
addReverseDependency(I.getOperand(0), &I);
break;
}
case SILInstructionKind::BorrowedFromInst: {
addReverseDependency(I.getOperand(0), &I);
break;
}
case SILInstructionKind::EndLifetimeInst: {
if (I.getOperand(0)->getType().isAddress()) {
// DCE cannot reason about values in memory.
markInstructionLive(&I);
break;
}
// The instruction is live only if it's operand value is also live
addReverseDependency(I.getOperand(0), &I);
break;
}
case SILInstructionKind::BeginBorrowInst: {
auto *borrowInst = cast<BeginBorrowInst>(&I);
processBorrow(BorrowedValue(borrowInst));
break;
}
case SILInstructionKind::LoadBorrowInst: {
auto *loadBorrowInst = cast<LoadBorrowInst>(&I);
processBorrow(BorrowedValue(loadBorrowInst));
break;
}
default:
if (seemsUseful(&I))
markInstructionLive(&I);
}
}
}
// Now propagate liveness backwards from each instruction in our
// worklist, adding new instructions to the worklist as we discover
// more that we need to keep.
while (!Worklist.empty()) {
auto *I = Worklist.pop_back_val();
propagateLiveness(I);
}
}
// Records a reverse dependency if needed. See DCE::ReverseDependencies.
void DCE::addReverseDependency(SILValue from, SILInstruction *to) {
LLVM_DEBUG(llvm::dbgs() << "Adding reverse dependency from " << from << " to "
<< *to);
ReverseDependencies[from].insert(to);
}
void DCE::findGuaranteedPhiDependencies(BorrowedValue borrow) {
assert(borrow.kind == BorrowedValueKind::BeginBorrow ||
borrow.kind == BorrowedValueKind::LoadBorrow);
LLVM_DEBUG(llvm::dbgs() << "Finding @guaranteed phi dependencies of "
<< borrow << "\n");
auto visitDependentPhiBaseValuePair = [&](SILPhiArgument *phiArg,
SILValue baseValue) {
guaranteedPhiDependencies[phiArg].insert(baseValue);
};
// Find all dependencies starting from \p borrowInst and populate
// them in guaranteedPhiDependencies
if (borrow.kind == BorrowedValueKind::BeginBorrow) {
visitExtendedReborrowPhiBaseValuePairs(cast<BeginBorrowInst>(borrow.value),
visitDependentPhiBaseValuePair);
}
visitExtendedGuaranteedForwardingPhiBaseValuePairs(
borrow, visitDependentPhiBaseValuePair);
}
// Mark as live the terminator argument at index ArgIndex in Pred that
// targets Succ.
void DCE::markTerminatorArgsLive(SILBasicBlock *Pred,
SILBasicBlock *Succ,
size_t ArgIndex) {
auto *Term = Pred->getTerminator();
// If the arguments are live, we need to keep the terminator that
// delivers those arguments.
markInstructionLive(Term);
switch (Term->getTermKind()) {
case TermKind::ReturnInst:
case TermKind::ThrowInst:
case TermKind::ThrowAddrInst:
case TermKind::UnwindInst:
case TermKind::YieldInst:
case TermKind::UnreachableInst:
case TermKind::SwitchValueInst:
case TermKind::SwitchEnumAddrInst:
case TermKind::CheckedCastAddrBranchInst:
llvm_unreachable("Unexpected argument for terminator kind!");
break;
case TermKind::DynamicMethodBranchInst:
case TermKind::SwitchEnumInst:
case TermKind::CheckedCastBranchInst:
assert(ArgIndex == 0 && "Expected a single argument!");
// We do not need to do anything with these. If the resulting
// argument is used at the destination these terminators will end
// up live, and then our normal liveness propagation will mark the
// single operand of these instructions as live.
break;
case TermKind::BranchInst:
markValueLive(cast<BranchInst>(Term)->getArg(ArgIndex));
break;
case TermKind::CondBranchInst: {
auto *CondBr = cast<CondBranchInst>(Term);
if (CondBr->getTrueBB() == Succ) {
auto TrueArgs = CondBr->getTrueArgs();
markValueLive(TrueArgs[ArgIndex]);
}
if (CondBr->getFalseBB() == Succ) {
auto FalseArgs = CondBr->getFalseArgs();
markValueLive(FalseArgs[ArgIndex]);
}
break;
}
case TermKind::AwaitAsyncContinuationInst:
case TermKind::TryApplyInst: {
assert(ArgIndex == 0 && "Expect a single argument!");
break;
}
}
}
// Propagate liveness back from Arg to the terminator arguments that
// supply its value.
void DCE::propagateLiveBlockArgument(SILArgument *Arg) {
// Conceptually, the dependency from a debug instruction to its definition
// is in reverse direction: Only if its definition (the Arg) is alive, also
// the debug_value instruction is alive.
for (Operand *DU : getDebugUses(Arg))
markInstructionLive(DU->getUser());
// Mark all reverse dependencies on the Arg live
for (auto *depInst : ReverseDependencies.lookup(Arg)) {
markInstructionLive(depInst);
}
if (auto *phi = dyn_cast<SILPhiArgument>(Arg)) {
for (auto depVal : guaranteedPhiDependencies.lookup(phi)) {
markValueLive(depVal);
}
}
auto *Block = Arg->getParent();
auto ArgIndex = Arg->getIndex();
for (auto Pred : Block->getPredecessorBlocks())
markTerminatorArgsLive(Pred, Block, ArgIndex);
}
// Given an instruction which is considered live, propagate that liveness
// back to the instructions that produce values it consumes.
void DCE::propagateLiveness(SILInstruction *I) {
markControllingTerminatorsLive(I->getParent());
if (!isa<TermInst>(I)) {
for (auto &O : I->getAllOperands())
markValueLive(O.get());
// Conceptually, the dependency from a debug instruction to its definition
// is in reverse direction: Only if its definition is alive, also the
// debug_value instruction is alive.
for (auto result : I->getResults())
for (Operand *DU : getDebugUses(result))
markInstructionLive(DU->getUser());
// Handle all other reverse-dependency instructions, like cond_fail,
// fix_lifetime, destroy_value, etc. Only if the definition is alive, the
// user itself is alive.
for (auto res : I->getResults()) {
for (auto *depInst : ReverseDependencies.lookup(res)) {
markInstructionLive(depInst);
}
}
return;
}
switch (cast<TermInst>(I)->getTermKind()) {
case TermKind::BranchInst:
case TermKind::UnreachableInst:
case TermKind::UnwindInst:
case TermKind::ThrowAddrInst:
return;
case TermKind::ReturnInst:
case TermKind::ThrowInst:
case TermKind::CondBranchInst:
case TermKind::SwitchEnumInst:
case TermKind::SwitchEnumAddrInst:
case TermKind::DynamicMethodBranchInst:
markValueLive(I->getOperand(0));
return;
case TermKind::AwaitAsyncContinuationInst:
case TermKind::CheckedCastBranchInst:
case TermKind::CheckedCastAddrBranchInst:
case TermKind::TryApplyInst:
case TermKind::SwitchValueInst:
case TermKind::YieldInst:
for (auto &O : I->getAllOperands())
markValueLive(O.get());
return;
}
llvm_unreachable("corrupt instruction!");
}
SILBasicBlock *DCE::nearestUsefulPostDominator(SILBasicBlock *Block) {
// Find the nearest post-dominator that has useful instructions.
auto *PostDomNode = PDT->getNode(Block)->getIDom();
while (PostDomNode &&
// In case the PostDomNode's block is null, it means it's not contained
// in LiveBlocks.
(!PostDomNode->getBlock() ||
!LiveBlocks.contains(PostDomNode->getBlock())))
PostDomNode = PostDomNode->getIDom();
if (PostDomNode)
return PostDomNode->getBlock();
return nullptr;
}
// Replace the given conditional branching instruction with a plain
// jump (aka unconditional branch) to the destination block.
void DCE::replaceBranchWithJump(SILInstruction *Inst, SILBasicBlock *Block) {
++NumBranchesPromoted;
assert(Block && "Expected a destination block!");
assert((isa<CondBranchInst>(Inst) ||
isa<SwitchValueInst>(Inst) ||
isa<SwitchEnumInst>(Inst) ||
isa<SwitchEnumAddrInst>(Inst) ||
isa<DynamicMethodBranchInst>(Inst) ||
isa<CheckedCastBranchInst>(Inst)) &&
"Unexpected dead terminator kind!");
SILInstruction *Branch;
if (!Block->args_empty()) {
std::vector<SILValue> Args;
auto E = Block->args_end();
for (auto A = Block->args_begin(); A != E; ++A) {
assert(!LiveArguments.contains(*A) && "Unexpected live block argument!");
Args.push_back(SILUndef::get(*A));
}
Branch =
SILBuilderWithScope(Inst).createBranch(Inst->getLoc(), Block, Args);
} else {
Branch = SILBuilderWithScope(Inst).createBranch(Inst->getLoc(), Block);
}
LLVM_DEBUG(llvm::dbgs() << "Inserted unconditional branch:\n");
LLVM_DEBUG(Branch->dump());
(void)Branch;
}
void DCE::endLifetimeOfLiveValue(Operand *op, SILInstruction *insertPt) {
auto value = op->get();
if (SILInstruction *inst = value->getDefiningInstruction()) {
if (!LiveInstructions.contains(inst))
return;
} else if (auto *arg = dyn_cast<SILArgument>(value)) {
if (!LiveArguments.contains(arg))
return;
}
assert(op->isLifetimeEnding());
// If DCE is going to delete the block in which we have to insert a
// compensating lifetime end, let complete lifetimes utility handle it.
if (!LiveBlocks.contains(insertPt->getParent())) {
valuesToComplete.insert(lookThroughBorrowedFromDef(value));
return;
}
SILBuilderWithScope builder(insertPt);
if (value->getOwnershipKind() == OwnershipKind::Owned) {
auto *destroy = builder.createDestroyValue(
RegularLocation::getAutoGeneratedLocation(), value);
markInstructionLive(destroy);
}
if (value->getOwnershipKind() == OwnershipKind::Guaranteed) {
auto *endBorrow = builder.createEndBorrow(
RegularLocation::getAutoGeneratedLocation(), value);
markInstructionLive(endBorrow);
}
}
// Remove the instructions that are not potentially useful.
bool DCE::removeDead() {
bool Changed = false;
for (auto &BB : *F) {
for (unsigned i = 0; i < BB.getArguments().size();) {
auto *arg = BB.getArgument(i);
if (LiveArguments.contains(arg)) {
i++;
continue;
}
LLVM_DEBUG(llvm::dbgs() << "Removing dead argument:\n");
LLVM_DEBUG(arg->dump());
arg->replaceAllUsesWithUndef();
if (!F->hasOwnership() || arg->getOwnershipKind() == OwnershipKind::None) {
i++;
Changed = true;
BranchesChanged = true;
continue;
}
if (!arg->isPhi()) {
// We cannot delete a non phi. If it was @owned, insert a
// destroy_value, because its consuming user has already been marked
// dead and will be deleted.
// We do not have to end lifetime of a @guaranteed non phi arg.
if (arg->getOwnershipKind() == OwnershipKind::Owned) {
auto loc = RegularLocation::getAutoGeneratedLocation();
// insertPt is non-null because Undef is non-owned.
auto insertPt = getInsertAfterPoint(arg).value();
SILBuilderWithScope builder(insertPt);
auto *destroy = builder.createDestroyValue(loc, arg);
LiveInstructions.insert(destroy);
}
i++;
Changed = true;
BranchesChanged = true;
continue;
}
auto *phiArg = cast<SILPhiArgument>(arg);
// In OSSA, we have to delete a dead phi argument and insert destroy or
// end_borrow at its predecessors if the incoming values are live.
// This is not necessary in non-OSSA, and will infact be incorrect.
// Because, passing a value as a phi argument does not imply end of
// lifetime in non-OSSA.
for (auto *pred : BB.getPredecessorBlocks()) {
auto *predTerm = pred->getTerminator();
SILInstruction *insertPt = predTerm;
if (phiArg->isReborrow()) {
// If the phiArg is dead and had reborrow dependencies, its baseValue
// may also have been dead and a destroy_value of its baseValue may
// have been inserted before the pred's terminator. Make sure to
// adjust the insertPt before any destroy_value.
//
// FIXME: This code currently can reorder destroys, e.g., when the
// block already contains a destroy_value just before the
// terminator. Fix this by making note of the added
// destroy_value insts and only moving the insertion point
// before those that are newly added.
for (SILInstruction &predInst : llvm::reverse(*pred)) {
if (&predInst == predTerm)
continue;
if (!isa<DestroyValueInst>(&predInst)) {
break;
}
insertPt = &predInst;
}
}
auto *predOp = phiArg->getIncomingPhiOperand(pred);
if (predOp->isLifetimeEnding()) {
endLifetimeOfLiveValue(predOp, insertPt);
}
}
erasePhiArgument(
&BB, i, /*cleanupDeadPhiOps=*/true,
InstModCallbacks()
.onCreateNewInst([&](auto *inst) { markInstructionLive(inst); })
.onDelete([&](auto *inst) {
for (auto result : inst->getResults()) {
result = lookThroughBorrowedFromDef(result);
if (valuesToComplete.count(result)) {
valuesToComplete.erase(result);
}
}
inst->replaceAllUsesOfAllResultsWithUndef();
if (isa<ApplyInst>(inst))
CallsChanged = true;
++NumDeletedInsts;
inst->eraseFromParent();
}));
Changed = true;
BranchesChanged = true;
}
for (auto I = BB.begin(), E = BB.end(); I != E; ) {
auto *Inst = &*I;
++I;
if (LiveInstructions.contains(Inst) || isa<BranchInst>(Inst))
continue;
// We want to replace dead terminators with unconditional branches to
// the nearest post-dominator that has useful instructions.
if (auto *termInst = dyn_cast<TermInst>(Inst)) {
SILBasicBlock *postDom =
nearestUsefulPostDominator(termInst->getParent());
if (!postDom)
continue;
for (auto &op : termInst->getAllOperands()) {
if (op.isLifetimeEnding()) {
endLifetimeOfLiveValue(&op, termInst);
}
}
LLVM_DEBUG(llvm::dbgs() << "Replacing branch: ");
LLVM_DEBUG(termInst->dump());
LLVM_DEBUG(llvm::dbgs()
<< "with jump to: BB" << postDom->getDebugID() << "\n");
replaceBranchWithJump(termInst, postDom);
++NumDeletedInsts;
termInst->eraseFromParent();
BranchesChanged = true;
Changed = true;
continue;
}
++NumDeletedInsts;
LLVM_DEBUG(llvm::dbgs() << "Removing dead instruction:\n");
LLVM_DEBUG(Inst->dump());
if (F->hasOwnership()) {
for (auto &Op : Inst->getAllOperands()) {
if (Op.isLifetimeEnding()) {
endLifetimeOfLiveValue(&Op, Inst);
}
}
}
for (auto result : Inst->getResults()) {
result = lookThroughBorrowedFromDef(result);
if (valuesToComplete.count(result)) {
valuesToComplete.erase(result);
}
}
Inst->replaceAllUsesOfAllResultsWithUndef();
if (isa<ApplyInst>(Inst))
CallsChanged = true;
Inst->eraseFromParent();
Changed = true;
}
}
OSSALifetimeCompletion completion(F, DT, *deadEndBlocks);
for (auto value : valuesToComplete) {
if (!value.has_value())
continue;
completion.completeOSSALifetime(*value,
OSSALifetimeCompletion::Boundary::Liveness);
}
return Changed;
}
// Precompute some information from the post-dominator tree to aid us
// in determining control dependence without generating a complete
// control dependence graph. Inspired by:
// Optimal control dependence and the Roman chariots problem
// TOPLAS, v19, issue 3, 1997
// http://dx.doi.org/10.1145/256167.256217
//
// For each node in the post-dominator tree we will compute:
// -- A level number.
//
// -- The list of immediate predecessors that this block is
// control-dependent on along with the level number in the
// post-dominator tree of each of those predecessors.
//
// -- The lowest level number of any predecessor below the given node
// in the post-dominator tree. This will be used to exit early in
// later control-dependence queries.
//
// Returns true upon success, false if nodes that are not present in the
// post-dominator tree are detected.
bool DCE::precomputeControlInfo() {
computeLevelNumbers(PDT->getRootNode());
if (hasInfiniteLoops())
return false;
computePredecessorDependence();
computeMinPredecessorLevels(PDT->getRootNode());
return true;
}
void DCE::insertControllingInfo(SILBasicBlock *Block, unsigned Level) {
assert(ControllingInfoMap.find(Block) == ControllingInfoMap.end() &&
"Unexpected map entry for node!");
ControllingInfo Info;
Info.Block = Block;
Info.Level = Level;
Info.MinTreePredLevel = -1;
ControllingInfoMap[Block] = Info;
}
// Assign a level number to each node in the post-dominator tree.
void DCE::computeLevelNumbers(PostDomTreeNode *root) {
llvm::SmallVector<std::pair<PostDomTreeNode *, unsigned>, 32> workList;
workList.push_back({root, 0});
while (!workList.empty()) {
auto entry = workList.pop_back_val();
PostDomTreeNode *node = entry.first;
unsigned level = entry.second;
insertControllingInfo(node->getBlock(), level);
for (PostDomTreeNode *child : *node) {
workList.push_back({child, level + 1});
}
}
}
// Structurally infinite loops like:
// bb1:
// br bb1
// are not present in the post-dominator tree. Their presence
// requires significant modifications to the way the rest of the
// algorithm works. They should be rare, so for now we'll do the most
// conservative thing and completely bail out, doing no dead code
// elimination. Note this will also hit for unreachable code, but
// presumably we'll run DCE at some point after removing unreachable
// code.
bool DCE::hasInfiniteLoops() {
for (auto &BB : *F)
if (ControllingInfoMap.find(&BB) == ControllingInfoMap.end())
return true;
return false;
}
// For each block, create a list of the direct predecessors that the
// block is control-dependent on. With each predecessor, also keep the
// level number of the predecessor in the post-dominator tree.
void DCE::computePredecessorDependence() {
for (auto &BB : *F) {
assert(ControllingInfoMap.find(&BB) != ControllingInfoMap.end()
&& "Expected to already have a map entry for block!");
for (auto Pred : BB.getPredecessorBlocks())
if (!PDT->properlyDominates(&BB, Pred)) {
assert(ControllingInfoMap.find(Pred) != ControllingInfoMap.end() &&
"Expected to already have a map entry for block!");
auto PredLevel = ControllingInfoMap[Pred].Level;
auto PredInfo = std::make_pair(Pred, PredLevel);
auto &MapElement = ControllingInfoMap[&BB];
MapElement.ControllingPreds.push_back(PredInfo);
}
}
}
// Assign the minimum post-dominator tree level to each node in the tree.
void DCE::computeMinPredecessorLevels(PostDomTreeNode *root) {
llvm::SmallVector<PostDomTreeNode *, 32> postDomOrder;
postDomOrder.reserve(ControllingInfoMap.size());
postDomOrder.push_back(root);
for (unsigned idx = 0; idx < postDomOrder.size(); ++idx) {
PostDomTreeNode *node = postDomOrder[idx];
for (PostDomTreeNode *child : *node) {
postDomOrder.push_back(child);
}
}
for (PostDomTreeNode *node : llvm::reverse(postDomOrder)) {
SILBasicBlock *block = node->getBlock();
assert(ControllingInfoMap.find(block) != ControllingInfoMap.end() &&
"Expected to have map entry for node!");
ControllingInfo &nodeInfo = ControllingInfoMap[block];
for (auto &pred : nodeInfo.ControllingPreds) {
nodeInfo.MinTreePredLevel = std::min(nodeInfo.MinTreePredLevel, pred.second);
}
if (PostDomTreeNode *parentNode = node->getIDom()) {
ControllingInfo &parentInfo = ControllingInfoMap[parentNode->getBlock()];
parentInfo.MinTreePredLevel = std::min(parentInfo.MinTreePredLevel, nodeInfo.MinTreePredLevel);
}
}
}
void DCE::collectControllingBlocksInTree(ControllingInfo &QueryInfo,
PostDomTreeNode *root,
llvm::SmallPtrSetImpl<SILBasicBlock *> &Controlling) {
llvm::SmallVector<PostDomTreeNode *, 32> workList;
workList.push_back(root);
while (!workList.empty()) {
PostDomTreeNode *node = workList.pop_back_val();
SILBasicBlock *block = node->getBlock();
assert(ControllingInfoMap.find(block) != ControllingInfoMap.end() &&
"Expected to have map entry for node!");
auto &nodeInfo = ControllingInfoMap[block];
if (nodeInfo.MinTreePredLevel > QueryInfo.Level)
continue;
for (auto &PredInfo : nodeInfo.ControllingPreds) {
if (PredInfo.second <= QueryInfo.Level) {
assert(PDT->properlyDominates(
PDT->getNode(PredInfo.first)->getIDom()->getBlock(),
QueryInfo.Block) &&
"Expected predecessor's post-dominator to post-dominate node.");
Controlling.insert(PredInfo.first);
}
}
for (PostDomTreeNode *child : *node) {
workList.push_back(child);
}
}
}
// Walk the post-dominator tree from the query block down, building
// the set of blocks that the given block is control-dependent on. To
// determine control dependence we use some precomputed information
// about the direct predecessors that control each block, along with
// the level numbers in the post-dominator tree of those controlling
// predecessors. We can use the latter to terminate the walk down the
// dominator tree early.
void DCE::collectControllingBlocks(SILBasicBlock *Block,
llvm::SmallPtrSetImpl<SILBasicBlock *> &Controlling) {
// First add the blocks that QueryNode is directly control-dependent on.
assert(ControllingInfoMap.find(Block) != ControllingInfoMap.end() &&
"Expected map entry for node!");
auto &MapEntry = ControllingInfoMap[Block];
// Now walk the children looking for nodes that have controlling
// predecessors that have the same or lower level number in the
// post-dominator tree.
collectControllingBlocksInTree(MapEntry, PDT->getNode(Block), Controlling);
}
void DCE::markControllingTerminatorsLive(SILBasicBlock *Block) {
if (LiveBlocks.contains(Block))
return;
LiveBlocks.insert(Block);
llvm::SmallPtrSet<SILBasicBlock *, 4> ControllingBlocks;
collectControllingBlocks(Block, ControllingBlocks);
for (auto BB : ControllingBlocks)
markInstructionLive(BB->getTerminator());
}
class DCEPass : public SILFunctionTransform {
public:
/// The entry point to the transformation.
void run() override {
SILFunction *F = getFunction();
LLVM_DEBUG(llvm::dbgs() << "*** DCE on function: " << F->getName()
<< " ***\n");
auto *PDA = PM->getAnalysis<PostDominanceAnalysis>();
PostDominanceInfo *PDT = PDA->get(F);
auto *DA = PM->getAnalysis<DominanceAnalysis>();
auto *DEA = getAnalysis<DeadEndBlocksAnalysis>();
// If we have a function that consists of nothing but a
// structurally infinite loop like:
// while true {}
// we'll have an empty post dominator tree.
if (!PDT->getRootNode())
return;
DCE dce(F, PDT, DA->get(F), DEA->get(F));
if (dce.run()) {
using InvalidationKind = SILAnalysis::InvalidationKind;
unsigned Inv = InvalidationKind::Instructions;
if (dce.mustInvalidateCalls())
Inv |= (unsigned)InvalidationKind::Calls;
if (dce.mustInvalidateBranches()) {
removeUnreachableBlocks(*F);
Inv |= (unsigned)InvalidationKind::Branches;
}
invalidateAnalysis(SILAnalysis::InvalidationKind(Inv));
}
}
};
} // end anonymous namespace
SILTransform *swift::createDCE() {
return new DCEPass();
}