Files
swift-mirror/lib/SILOptimizer/Utils/CanonicalizeOSSALifetime.cpp
Nate Chandler 8e7dae560d [OSSACanOwned] Bail on escaping inner pointers.
If there is a pointer escape, we cannot safely rewrite its lifetime.
2025-02-27 07:20:27 -08:00

1524 lines
61 KiB
C++

//===-- CanonicalizeOSSALifetime.cpp - Canonicalize OSSA value lifetimes --===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// This top-level API rewrites the extended lifetime of a SILValue:
///
/// bool CanonicalizeOSSALifetime::canonicalizeValueLifetime(SILValue def)
///
/// Each time it's called on a single OSSA value, `def`, it performs four
/// steps:
///
/// 1. Compute "pruned" liveness of def and its copies, ignoring original
/// destroys. Initializes `liveness`.
///
/// 2. Find the "original" boundary of liveness using
/// PrunedLiveness::computeBoundary.
///
/// 3. (Optional) At Onone, extend liveness up to original extent when possible
/// without incurring extra copies.
///
/// 4. Find the "extended" boundary of liveness by walking out from the boundary
/// computed by PrunedLiveness out to destroys which aren't separated from
/// the original destory by "interesting" instructions.
///
/// 5. Initializes `consumes` and inserts new destroy_value instructions.
///
/// 6. Rewrite `def`s original copies and destroys, inserting new copies where
/// needed. Deletes original copies and destroys and inserts new copies.
///
/// See CanonicalizeOSSALifetime.h for examples.
///
/// TODO: Canonicalization currently bails out if any uses of the def has
/// OperandOwnership::PointerEscape. Once project_box is protected by a borrow
/// scope and mark_dependence is associated with an end_dependence, those will
/// no longer be represented as PointerEscapes, and canonicalization will
/// naturally work everywhere as intended. The intention is to keep the
/// canonicalization algorithm as simple and robust, leaving the remaining
/// performance opportunities contingent on fixing the SIL representation.
///
/// TODO: Replace BasicBlock SmallDenseMaps with inlined bits;
/// see BasicBlockDataStructures.h.
///
/// TODO: This algorithm would be extraordinarily simple and cheap except for
/// the following issues:
///
/// 1. Liveness is extended by any overlapping begin/end_access scopes. This
/// avoids calling a destructor within an exclusive access. A simpler
/// alternative would be to model all end_access instructions as deinit
/// barriers, but that may significantly limit optimization.
///
/// 2. Liveness is extended out to original destroys to avoid spurious changes.
///
/// 3. In the Onone mode, liveness is preserved to its previous extent whenever
/// doing so doesn't incur extra copies compared to what is done in the O mode.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "copy-propagation"
#include "swift/SILOptimizer/Utils/CanonicalizeOSSALifetime.h"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/NodeDatastructures.h"
#include "swift/SIL/OSSALifetimeCompletion.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/PrunedLiveness.h"
#include "swift/SIL/Test.h"
#include "swift/SILOptimizer/Analysis/BasicCalleeAnalysis.h"
#include "swift/SILOptimizer/Analysis/Reachability.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/DebugOptUtils.h"
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
#include "swift/SILOptimizer/Utils/ValueLifetime.h"
#include "llvm/ADT/Statistic.h"
using namespace swift;
using llvm::SmallSetVector;
llvm::Statistic swift::NumCopiesAndMovesEliminated = {
DEBUG_TYPE, "NumCopiesAndMovesEliminated",
"number of copy_value and move_value instructions removed"};
llvm::Statistic swift::NumCopiesGenerated = {
DEBUG_TYPE, "NumCopiesGenerated",
"number of copy_value instructions created"};
STATISTIC(NumDestroysEliminated,
"number of destroy_value instructions removed");
STATISTIC(NumDestroysGenerated, "number of destroy_value instructions created");
//===----------------------------------------------------------------------===//
// MARK: General utilities
//===----------------------------------------------------------------------===//
template <typename... T, typename... U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&...args) {
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
/// Is \p instruction a destroy_value whose operand is \p def, or its
/// transitive copy.
static bool isDestroyOfCopyOf(SILInstruction *instruction, SILValue def) {
auto *destroy = dyn_cast<DestroyValueInst>(instruction);
if (!destroy)
return false;
auto destroyed = destroy->getOperand();
while (true) {
if (destroyed == def)
return true;
auto *copy = dyn_cast<CopyValueInst>(destroyed);
if (!copy)
break;
destroyed = copy->getOperand();
}
return false;
}
//===----------------------------------------------------------------------===//
// MARK: Step 1. Compute pruned liveness
//===----------------------------------------------------------------------===//
bool CanonicalizeOSSALifetime::computeCanonicalLiveness() {
LLVM_DEBUG(llvm::dbgs() << "Computing canonical liveness from:\n";
getCurrentDef()->print(llvm::dbgs()));
SmallVector<unsigned, 8> indexWorklist;
ValueSet visitedDefs(getCurrentDef()->getFunction());
auto addDefToWorklist = [&](Def def) {
if (!visitedDefs.insert(def.value))
return;
discoveredDefs.push_back(def);
indexWorklist.push_back(discoveredDefs.size() - 1);
};
discoveredDefs.clear();
addDefToWorklist(Def::root(getCurrentDef()));
// Only the first level of reborrows need to be consider. All nested inner
// adjacent reborrows and phis are encapsulated within their lifetimes.
SILPhiArgument *arg;
if ((arg = dyn_cast<SILPhiArgument>(getCurrentDef())) && arg->isPhi()) {
visitInnerAdjacentPhis(arg, [&](SILArgument *reborrow) {
addDefToWorklist(Def::reborrow(reborrow));
return true;
});
}
while (!indexWorklist.empty()) {
auto index = indexWorklist.pop_back_val();
auto def = discoveredDefs[index];
auto value = def.value;
LLVM_DEBUG(llvm::dbgs() << " Uses of value:\n";
value->print(llvm::dbgs()));
for (Operand *use : value->getUses()) {
LLVM_DEBUG(llvm::dbgs() << " Use:\n";
use->getUser()->print(llvm::dbgs()));
auto *user = use->getUser();
// Recurse through copies.
if (auto *copy = dyn_cast<CopyValueInst>(user)) {
// Don't recurse through copies of borrowed-froms or reborrows.
switch (def.kind) {
case Def::Root:
case Def::Copy:
addDefToWorklist(Def::copy(copy));
break;
case Def::Reborrow:
case Def::BorrowedFrom:
break;
}
continue;
}
if (auto *bfi = dyn_cast<BorrowedFromInst>(user)) {
addDefToWorklist(Def::borrowedFrom(bfi));
continue;
}
// Handle debug_value instructions separately.
if (pruneDebugMode) {
if (auto *dvi = dyn_cast<DebugValueInst>(user)) {
// Only instructions potentially outside current pruned liveness are
// interesting.
if (liveness->getBlockLiveness(dvi->getParent())
!= PrunedLiveBlocks::LiveOut) {
recordDebugValue(dvi);
}
continue;
}
}
switch (use->getOperandOwnership()) {
case OperandOwnership::NonUse:
break;
case OperandOwnership::TrivialUse:
llvm_unreachable("this operand cannot handle ownership");
// Conservatively treat a conversion to an unowned value as a pointer
// escape. Is it legal to canonicalize ForwardingUnowned?
case OperandOwnership::ForwardingUnowned:
case OperandOwnership::PointerEscape:
LLVM_DEBUG(llvm::dbgs() << " Value escaped! Giving up\n");
return false;
case OperandOwnership::InstantaneousUse:
case OperandOwnership::UnownedInstantaneousUse:
case OperandOwnership::BitwiseEscape:
liveness->updateForUse(user, /*lifetimeEnding*/ false);
break;
case OperandOwnership::ForwardingConsume:
recordConsumingUse(use);
liveness->updateForUse(user, /*lifetimeEnding*/ true);
break;
case OperandOwnership::DestroyingConsume:
if (isDestroyOfCopyOf(user, getCurrentDef())) {
destroys.insert(user);
} else {
// destroy_value of a transitive copy of the currentDef does not
// force pruned liveness (but store etc. does).
// Even though this instruction is a DestroyingConsume of its operand,
// if it's a destroy_value whose operand is not a transitive copy of
// currentDef, then it's just ending an implicit borrow of currentDef,
// not consuming it.
auto lifetimeEnding = !isa<DestroyValueInst>(user);
liveness->updateForUse(user, lifetimeEnding);
}
recordConsumingUse(use);
break;
case OperandOwnership::Borrow:
if (liveness->updateForBorrowingOperand(use)
!= InnerBorrowKind::Contained) {
LLVM_DEBUG(llvm::dbgs() << " Inner borrow can't be contained! Giving up\n");
return false;
}
break;
case OperandOwnership::InteriorPointer:
case OperandOwnership::AnyInteriorPointer:
if (liveness->checkAndUpdateInteriorPointer(use) !=
AddressUseKind::NonEscaping) {
LLVM_DEBUG(llvm::dbgs()
<< " Inner address use is escaping! Giving up\n");
return false;
}
break;
case OperandOwnership::GuaranteedForwarding:
case OperandOwnership::EndBorrow:
// Guaranteed values are exposed by inner adjacent reborrows. If user is
// a guaranteed phi (GuaranteedForwarding), then the owned lifetime
// either dominates it or its lifetime ends at an outer adjacent
// reborrow. Only instructions that end the reborrow lifetime should
// actually affect liveness of the outer owned value.
liveness->updateForUse(user, /*lifetimeEnding*/ false);
break;
case OperandOwnership::Reborrow:
BranchInst *branch = cast<BranchInst>(user);
// This is a cheap variation on visitEnclosingDef. We already know that
// getCurrentDef() is the enclosing def for this use. If the reborrow's
// has a enclosing def is an outer adjacent phi then this branch must
// consume getCurrentDef() as the outer phi operand.
if (is_contained(branch->getOperandValues(), getCurrentDef())) {
// An adjacent phi consumes the value being reborrowed. Although this
// use doesn't end the lifetime, this branch does end the lifetime by
// consuming the owned value.
liveness->updateForUse(branch, /*lifetimeEnding*/ true);
break;
}
// No adjacent phi consumes the value. This use is not lifetime ending.
liveness->updateForUse(branch, /*lifetimeEnding*/ false);
// This branch reborrows a guaranteed phi whose lifetime is dependent on
// currentDef. Uses of the reborrowing phi extend liveness.
auto *reborrow = PhiOperand(use).getValue();
addDefToWorklist(Def::reborrow(reborrow));
break;
}
}
}
return true;
}
/// Extend liveness to the availability boundary of currentDef. Even if a copy
/// is consumed on a path to the dead-end, if the def stays live through to the
/// dead-end, its lifetime must not be shrunk back from it (eventually we'll
/// support shrinking it back to deinit barriers).
///
/// Example:
/// %def is lexical
/// %copy = copy_value %def
/// consume %copy
/// apply %foo() // deinit barrier
/// // Must extend lifetime of %def up to this point per language rules.
/// unreachable
void CanonicalizeOSSALifetime::extendLexicalLivenessToDeadEnds() {
// TODO: OSSALifetimeCompletion: Once lifetimes are always complete, delete
// this method.
SmallVector<SILBasicBlock *, 32> directDiscoverdBlocks;
SSAPrunedLiveness directLiveness(function, &directDiscoverdBlocks);
directLiveness.initializeDef(getCurrentDef());
directLiveness.computeSimple();
OSSALifetimeCompletion::visitAvailabilityBoundary(
getCurrentDef(), directLiveness, [&](auto *unreachable, auto end) {
if (end == OSSALifetimeCompletion::LifetimeEnd::Boundary) {
recordUnreachableLifetimeEnd(unreachable);
}
unreachable->visitPriorInstructions([&](auto *inst) {
liveness->extendToNonUse(inst);
return true;
});
});
}
/// Extend liveness to the copy-extended availability boundary of currentDef.
/// Prevents destroys from being inserted between borrows of (copies of) the
/// def and dead-ends.
///
/// Example:
/// %def need not be lexical
/// %c = copy_value %def
/// %sb = store_borrow %c to %addr
/// // Must extend lifetime of %def up to this point. Otherwise, a
/// // destroy_value could be inserted within a borrow scope or interior
/// // pointer use.
/// unreachable
void CanonicalizeOSSALifetime::extendLivenessToDeadEnds() {
// TODO: OSSALifetimeCompletion: Once lifetimes are always complete, delete
// this method.
SmallVector<SILBasicBlock *, 32> discoveredBlocks(this->discoveredBlocks);
SSAPrunedLiveness completeLiveness(*liveness, &discoveredBlocks);
for (auto destroy : destroys) {
if (liveness->isWithinBoundary(destroy, /*deadEndBlocks=*/nullptr))
continue;
completeLiveness.updateForUse(destroy, /*lifetimeEnding*/ true);
}
// Demote consuming uses within complete liveness to non-consuming uses.
//
// OSSALifetimeCompletion considers the lifetime of a single value. Such
// lifetimes never continue beyond consumes.
std::optional<llvm::SmallPtrSet<SILInstruction *, 8>> lastUsers;
auto isConsumeOnBoundary = [&](SILInstruction *instruction) -> bool {
if (!lastUsers) {
// Avoid computing lastUsers if possible.
auto *function = getCurrentDef()->getFunction();
auto *deadEnds = deadEndBlocksAnalysis->get(function);
llvm::SmallVector<SILBasicBlock *, 8> completeConsumingBlocks(
consumingBlocks.getArrayRef());
for (auto &block : *function) {
if (!deadEnds->isDeadEnd(&block))
continue;
completeConsumingBlocks.push_back(&block);
}
PrunedLivenessBoundary boundary;
liveness->computeBoundary(boundary, completeConsumingBlocks);
lastUsers.emplace();
for (auto *lastUser : boundary.lastUsers) {
lastUsers->insert(lastUser);
}
}
return lastUsers->contains(instruction);
};
for (auto pair : liveness->getAllUsers()) {
if (!pair.second.isEnding())
continue;
auto *instruction = pair.first;
if (isConsumeOnBoundary(instruction))
continue;
// Demote instruction's lifetime-ending-ness to non-lifetime-ending.
completeLiveness.updateForUse(pair.first, /*lifetimeEnding=*/false);
}
OSSALifetimeCompletion::visitAvailabilityBoundary(
getCurrentDef(), completeLiveness, [&](auto *unreachable, auto end) {
if (end == OSSALifetimeCompletion::LifetimeEnd::Boundary) {
recordUnreachableLifetimeEnd(unreachable);
}
unreachable->visitPriorInstructions([&](auto *inst) {
liveness->extendToNonUse(inst);
return true;
});
});
}
void CanonicalizeOSSALifetime::extendLivenessToDeinitBarriers() {
SmallVector<SILInstruction *, 8> ends;
if (currentLexicalLifetimeEnds.size() > 0) {
visitExtendedUnconsumedBoundary(
currentLexicalLifetimeEnds,
[&ends](auto *instruction, auto lifetimeEnding) {
instruction->visitSubsequentInstructions([&](auto *next) {
ends.push_back(next);
return true;
});
});
} else {
for (auto destroy : destroys) {
if (destroy->getOperand(0) != getCurrentDef())
continue;
ends.push_back(destroy);
}
}
auto *def = getCurrentDef()->getDefiningInstruction();
using InitialBlocks = ArrayRef<SILBasicBlock *>;
auto *defBlock = getCurrentDef()->getParentBlock();
auto initialBlocks = defBlock ? InitialBlocks(defBlock) : InitialBlocks();
ReachableBarriers barriers;
findBarriersBackward(ends, initialBlocks, *getCurrentDef()->getFunction(),
barriers, [&](auto *inst) {
if (inst == def)
return true;
if (!isDeinitBarrier(inst, calleeAnalysis))
return false;
// For the most part, instructions that are deinit
// barriers in the abstract are also deinit barriers
// for the purposes of canonicalizing def's lifetime.
//
// There is an important exception: transferring an
// owned lexical lifetime into a callee. If the
// instruction is a full apply which consumes def,
// then it isn't a deinit barrier. Keep looking for
// barriers above it.
auto apply = FullApplySite::isa(inst);
if (!apply)
return true;
return liveness->isInterestingUser(inst) !=
PrunedLiveness::IsInterestingUser::
LifetimeEndingUse;
});
for (auto *barrier : barriers.instructions) {
liveness->extendToNonUse(barrier);
}
for (auto *barrier : barriers.phis) {
for (auto *predecessor : barrier->getPredecessorBlocks()) {
liveness->extendToNonUse(predecessor->getTerminator());
}
}
for (auto *edge : barriers.edges) {
auto *predecessor = edge->getSinglePredecessorBlock();
assert(predecessor);
liveness->extendToNonUse(&predecessor->back());
}
// Ignore barriers.initialBlocks. If the collection is non-empty, it
// contains the def-block. Its presence means that no barriers were found
// between lifetime ends and def. In that case, no new instructions need to
// be added to liveness.
}
// Return true if \p inst is an end_access whose access scope overlaps the end
// of the pruned live range. This means that a hoisted destroy might execute
// within the access scope which previously executed outside the access scope.
//
// Not overlapping (ignored):
//
// %def
// use %def // pruned liveness ends here
// begin_access // access scope unrelated to def
// end_access
//
// Overlapping (must extend pruned liveness):
//
// %def
// begin_access // access scope unrelated to def
// use %def // pruned liveness ends here
// end_access
//
// Overlapping (must extend pruned liveness):
//
// begin_access // access scope unrelated to def
// %def
// use %def // pruned liveness ends here
// end_access
//
bool CanonicalizeOSSALifetime::
endsAccessOverlappingPrunedBoundary(SILInstruction *inst) {
if (isa<EndUnpairedAccessInst>(inst)) {
return true;
}
auto *endAccess = dyn_cast<EndAccessInst>(inst);
if (!endAccess) {
return false;
}
auto *beginAccess = endAccess->getBeginAccess();
SILBasicBlock *beginBB = beginAccess->getParent();
switch (liveness->getBlockLiveness(beginBB)) {
case PrunedLiveBlocks::LiveOut:
// Found partial overlap of the form:
// currentDef
// beginAccess
// br...
// bb...
// use
// endAccess
return true;
case PrunedLiveBlocks::LiveWithin:
// Check for partial overlap of this form where beginAccess and the last use
// are in the same block:
// currentDef
// beginAccess
// use
// endAccess
if (std::find_if(std::next(beginAccess->getIterator()), beginBB->end(),
[this](SILInstruction &nextInst) {
return liveness->isInterestingUser(&nextInst)
!= PrunedLiveness::NonUser;
})
!= beginBB->end()) {
// An interesting use after the beginAccess means overlap.
return true;
}
return false;
case PrunedLiveBlocks::Dead:
// Check for partial overlap of this form where beginAccess and currentDef
// are in different blocks:
// beginAccess
// br...
// bb...
// currentDef
// endAccess
//
// Since beginAccess is not within the canonical live range, its access
// scope overlaps only if there is a path from beginAccess to currentDef
// that does not pass through endAccess. endAccess is dominated by
// both currentDef and begin_access. Therefore, such a path only exists if
// beginAccess dominates currentDef.
return domTree->properlyDominates(beginAccess->getParent(),
getCurrentDef()->getParentBlock());
}
llvm_unreachable("covered switch");
}
// Find all overlapping access scopes and extend pruned liveness to cover them:
//
// This may also unnecessarily, but conservatively extend liveness over some
// originally overlapping access, such as:
//
// begin_access // access scope unrelated to def
// %def
// use %def
// destroy %def
// end_access
//
// Or:
//
// %def
// begin_access // access scope unrelated to def
// use %def
// destroy %def
// end_access
//
// To minimize unnecessary lifetime extension, only search for end_access
// within dead blocks that are backward reachable from an original destroy.
//
// Note that lifetime extension is iterative because adding a new liveness use
// may create new overlapping access scopes. This can happen because there is no
// guarantee of strict stack discipline across unrelated access. For example:
//
// %def
// begin_access A
// use %def // Initial pruned lifetime boundary
// begin_access B
// end_access A // Lifetime boundary after first extension
// end_access B // Lifetime boundary after second extension
// destroy %def
//
// If the lifetime extension did not iterate, then def would be destroyed within
// B's access scope when originally it was destroyed outside that scope.
void CanonicalizeOSSALifetime::extendLivenessThroughOverlappingAccess() {
this->accessBlocks = accessBlockAnalysis->get(getCurrentDef()->getFunction());
// Visit each original consuming use or destroy as the starting point for a
// backward CFG traversal. This traversal must only visit blocks within the
// original extended lifetime.
bool changed = true;
while (changed) {
changed = false;
// The blocks in which we may have to extend liveness over access scopes.
//
// It must be populated first so that we can test membership during the loop
// (see findLastConsume).
BasicBlockSetVector blocksToVisit(getCurrentDef()->getFunction());
for (auto *block : consumingBlocks) {
blocksToVisit.insert(block);
}
for (auto iterator = blocksToVisit.begin(); iterator != blocksToVisit.end();
++iterator) {
auto *bb = *iterator;
// If the block isn't dead, then we won't need to extend liveness within
// any of its predecessors (though we may within it).
if (liveness->getBlockLiveness(bb) != PrunedLiveBlocks::Dead)
continue;
// Continue searching upward to find the pruned liveness boundary.
for (auto *predBB : bb->getPredecessorBlocks()) {
blocksToVisit.insert(predBB);
}
}
for (auto *bb : blocksToVisit) {
auto blockLiveness = liveness->getBlockLiveness(bb);
// Ignore blocks within pruned liveness.
if (blockLiveness == PrunedLiveBlocks::LiveOut) {
continue;
}
if (blockLiveness == PrunedLiveBlocks::Dead) {
// Otherwise, ignore dead blocks with no nonlocal end_access.
if (!accessBlocks->containsNonLocalEndAccess(bb)) {
continue;
}
}
bool blockHasUse = (blockLiveness == PrunedLiveBlocks::LiveWithin);
// Find the latest partially overlapping access scope, if one exists:
// use %def // pruned liveness ends here
// end_access
// Whether to look for the last consume in the block.
//
// We need to avoid extending liveness over end_accesses that occur after
// original liveness ended.
bool findLastConsume =
consumingBlocks.contains(bb)
&& llvm::none_of(bb->getSuccessorBlocks(), [&](auto *successor) {
return blocksToVisit.contains(successor)
&& liveness->getBlockLiveness(successor)
== PrunedLiveBlocks::Dead;
});
for (auto &inst : llvm::reverse(*bb)) {
if (findLastConsume) {
findLastConsume = !destroys.contains(&inst);
continue;
}
// Stop at the latest use. An earlier end_access does not overlap.
if (blockHasUse
&& liveness->isInterestingUser(&inst) != PrunedLiveness::NonUser) {
break;
}
if (endsAccessOverlappingPrunedBoundary(&inst)) {
liveness->extendToNonUse(&inst);
changed = true;
break;
}
}
// If liveness changed, might as well restart CFG traversal.
if (changed) {
break;
}
}
}
}
//===----------------------------------------------------------------------===//
// MARK: Step 2. Find the "original" (unextended) boundary determined by the
// liveness built up in step 1.
//===----------------------------------------------------------------------===//
void CanonicalizeOSSALifetime::findOriginalBoundary(
PrunedLivenessBoundary &boundary) {
assert(boundary.lastUsers.size() == 0 && boundary.boundaryEdges.size() == 0 &&
boundary.deadDefs.size() == 0);
liveness->computeBoundary(boundary, consumingBlocks.getArrayRef());
}
//===----------------------------------------------------------------------===//
// MARK: Step 3. (Optional) Maximize lifetimes.
//===----------------------------------------------------------------------===//
/// At -Onone, there are some conflicting goals:
/// On the one hand: good debugging experience.
/// (1) do not shorten value's lifetime
/// On the other: demonstrate semantics.
/// (2) consume value at same places it will be consumed at -O
/// (3) ensure there are no more copies than there would be at -O
///
/// (2) and (3) are equivalent--extra (compared to -O) copies arise from failing
/// to end lifetimes at consuming uses (which then need their own copies).
///
/// We achieve (2) and (3) always. We achieve (1) where possible.
///
/// Conceptually, the strategy is the following:
/// - Collect the blocks in which the value was live before canonicalization.
/// These are the "original" live blocks (originalLiveBlocks).
/// [Color these blocks green.]
/// - From within that collection, collect the blocks which contain a _final_
/// consuming, non-destroy use, and their iterative successors.
/// These are the "consumed" blocks (consumedAtExitBlocks).
/// [Color these blocks red.]
/// - Extend liveness down to the boundary between originalLiveBlocks and
/// consumedAtExitBlocks blocks.
/// [Extend liveness down to the boundary between green blocks and red.]
/// - In particular, in regions of originalLiveBlocks which have no boundary
/// with consumedAtExitBlocks, liveness should be extended to its original
/// extent.
/// [Extend liveness down to the boundary between green blocks and uncolored.]
void CanonicalizeOSSALifetime::visitExtendedUnconsumedBoundary(
ArrayRef<SILInstruction *> consumes,
llvm::function_ref<void(SILInstruction *, PrunedLiveness::LifetimeEnding)>
visitor) {
auto currentDef = getCurrentDef();
#ifndef NDEBUG
for (auto *consume : consumes) {
assert(!liveness->isWithinBoundary(consume, /*deadEndBlocks=*/nullptr));
}
#endif
// First, collect the blocks that were _originally_ live. We can't use
// liveness here because it doesn't include blocks that occur before a
// destroy_value.
BasicBlockSet originalLiveBlocks(currentDef->getFunction());
{
// Some of the work here was already done by computeCanonicalLiveness.
// Specifically, it already discovered all blocks containing (transitive)
// uses and blocks that appear between them and the def.
//
// Seed the set with what it already discovered.
for (auto *discoveredBlock : liveness->getDiscoveredBlocks())
originalLiveBlocks.insert(discoveredBlock);
// Start the walk from the consuming blocks (which includes destroys as well
// as the other consuming uses).
BasicBlockWorklist worklist(currentDef->getFunction());
for (auto *consumingBlock : consumingBlocks) {
worklist.push(consumingBlock);
}
// Walk backwards from consuming blocks.
while (auto *block = worklist.pop()) {
if (!originalLiveBlocks.insert(block))
continue;
for (auto *predecessor : block->getPredecessorBlocks()) {
// If the block was discovered by liveness, we already added it to the
// set.
if (originalLiveBlocks.contains(predecessor))
continue;
worklist.pushIfNotVisited(predecessor);
}
}
}
// Second, collect the blocks which contain a _final_ consuming use and their
// iterative successors within the originalLiveBlocks.
BasicBlockSet consumedAtExitBlocks(currentDef->getFunction());
// The subset of consumedAtExitBlocks which do not contain a _final_ consuming
// use, i.e. the subset that is dead.
StackList<SILBasicBlock *> consumedAtEntryBlocks(currentDef->getFunction());
{
// Start the forward walk from blocks which contain _final_ non-destroy
// consumes. These are just the instructions on the boundary which aren't
// destroys.
BasicBlockWorklist worklist(currentDef->getFunction());
for (auto *instruction : consumes) {
if (destroys.contains(instruction))
continue;
if (liveness->isInterestingUser(instruction)
!= PrunedLiveness::IsInterestingUser::LifetimeEndingUse)
continue;
worklist.push(instruction->getParent());
}
while (auto *block = worklist.pop()) {
consumedAtExitBlocks.insert(block);
for (auto *successor : block->getSuccessorBlocks()) {
if (!originalLiveBlocks.contains(successor))
continue;
worklist.pushIfNotVisited(successor);
consumedAtEntryBlocks.push_back(successor);
}
}
}
// Third, find the blocks on the boundary between the originalLiveBlocks
// blocks and the consumedAtEntryBlocks blocks. Extend liveness "to the end"
// of these blocks.
for (auto *block : consumedAtEntryBlocks) {
for (auto *predecessor : block->getPredecessorBlocks()) {
if (consumedAtExitBlocks.contains(predecessor))
continue;
// Add "the instruction(s) before the terminator" of the predecessor to
// liveness.
predecessor->getTerminator()->visitPriorInstructions([&](auto *inst) {
visitor(inst, PrunedLiveness::LifetimeEnding::Value::NonUse);
return true;
});
}
}
// Finally, preserve the destroys which weren't in the consumed region in
// place: hoisting such destroys would not avoid copies.
for (auto *destroy : destroys) {
auto *block = destroy->getParent();
// If the destroy is in a consumed block or a final consuming block,
// hoisting it would avoid a copy.
if (consumedAtExitBlocks.contains(block))
continue;
visitor(destroy, PrunedLiveness::LifetimeEnding::Value::Ending);
}
}
void CanonicalizeOSSALifetime::extendUnconsumedLiveness(
PrunedLivenessBoundary const &boundary) {
visitExtendedUnconsumedBoundary(
boundary.lastUsers, [&](auto *instruction, auto lifetimeEnding) {
liveness->updateForUse(instruction, lifetimeEnding);
});
}
//===----------------------------------------------------------------------===//
// MARK: Step 4. Extend the "original" boundary from step 2 up to destroys that
// aren't separated from it by "interesting" instructions.
//===----------------------------------------------------------------------===//
namespace {
/// Extends the boundary from PrunedLiveness down to preexisting destroys of the
/// def which aren't separated from the original boundary by "interesting"
/// instructions.
///
/// The motivation for extending the boundary is to avoid "churning" when
/// iterating to a fixed point by canonicalizing the lifetimes of several
/// values with overlapping live ranges and failing to find a fixed point
/// because their destroys are repeatedly hoisted over one another.
class ExtendBoundaryToDestroys final {
using InstructionPredicate = llvm::function_ref<bool(SILInstruction *)>;
SSAPrunedLiveness &liveness;
PrunedLivenessBoundary const &originalBoundary;
SILValue currentDef;
BasicBlockSet seenMergePoints;
InstructionPredicate isDestroy;
public:
ExtendBoundaryToDestroys(SSAPrunedLiveness &liveness,
PrunedLivenessBoundary const &originalBoundary,
SILValue currentDef, InstructionPredicate isDestroy)
: liveness(liveness), originalBoundary(originalBoundary),
currentDef(currentDef), seenMergePoints(currentDef->getFunction()),
isDestroy(isDestroy){};
ExtendBoundaryToDestroys(ExtendBoundaryToDestroys const &) = delete;
ExtendBoundaryToDestroys &
operator=(ExtendBoundaryToDestroys const &) = delete;
/// Compute the extended boundary by walking out from the original boundary
/// (from PrunedLiveness::computeBoundary) down to any destroys that appear
/// later but which aren't separated from the original boundary by
/// "interesting" users.
void extend(PrunedLivenessBoundary &boundary) {
for (auto *def : originalBoundary.deadDefs) {
extendBoundaryFromDef(def, boundary);
}
for (auto *destination : originalBoundary.boundaryEdges) {
extendBoundaryFromBoundaryEdge(destination, boundary);
}
for (auto *user : originalBoundary.lastUsers) {
extendBoundaryFromUser(user, boundary);
}
}
/// Look past ignoreable instructions to find the _last_ destroy after the
/// specified instruction that destroys \p def.
static DestroyValueInst *findDestroyAfter(SILInstruction *previous,
SILValue def,
InstructionPredicate isDestroy) {
DestroyValueInst *retval = nullptr;
for (auto *instruction = previous->getNextInstruction(); instruction;
instruction = instruction->getNextInstruction()) {
if (!CanonicalizeOSSALifetime::ignoredByDestroyHoisting(
instruction->getKind()))
break;
if (isDestroy(instruction))
retval = cast<DestroyValueInst>(instruction);
}
return retval;
}
/// Look past ignoreable instructions to find the _last_ destroy at or after
/// the specified instruction that destroys \p def.
static DestroyValueInst *
findDestroyAtOrAfter(SILInstruction *start, SILValue def,
InstructionPredicate isDestroy) {
if (isDestroy(start))
return cast<DestroyValueInst>(start);
return findDestroyAfter(start, def, isDestroy);
}
/// Look past ignoreable instructions to find the _first_ destroy in \p
/// destination that destroys \p def and isn't separated from the beginning
/// by "interesting" instructions.
static DestroyValueInst *
findDestroyFromBlockBegin(SILBasicBlock *destination, SILValue def,
InstructionPredicate isDestroy) {
return findDestroyAtOrAfter(&*destination->begin(), def, isDestroy);
}
private:
/// Compute the points on the extended boundary found by walking forward from
/// the dead def (starting either with the top of the block in the case of a
/// dead arg or the next instruction in the case of an instruction) down to
/// any destroys that appear later but which aren't separated from the
/// original boundary by "interesting" users.
///
/// If a destroy is found, it becomes a last user. Otherwise, the boundary
/// stays in place and \p def remains a dead def.
void extendBoundaryFromDef(SILNode *def, PrunedLivenessBoundary &boundary) {
if (auto *arg = dyn_cast<SILArgument>(def)) {
if (auto *dvi = findDestroyFromBlockBegin(arg->getParent(), currentDef,
isDestroy)) {
boundary.lastUsers.push_back(dvi);
return;
}
} else {
if (auto *dvi = findDestroyAfter(cast<SILInstruction>(def), currentDef,
isDestroy)) {
boundary.lastUsers.push_back(dvi);
return;
}
}
boundary.deadDefs.push_back(def);
}
/// Compute the points on the extended boundary found by walking down from the
/// boundary edge in the original boundary (uniquely determined by the
/// specified destination edge) down to any destroys that appear later but
/// which aren't separated from the original boundary by "interesting" users.
///
/// If a destroy is found, it becomes a last user. Otherwise, the boundary
/// stays in place and \p destination remains a boundary edge.
void extendBoundaryFromBoundaryEdge(SILBasicBlock *destination,
PrunedLivenessBoundary &boundary) {
if (auto *dvi =
findDestroyFromBlockBegin(destination, currentDef, isDestroy)) {
boundary.lastUsers.push_back(dvi);
} else {
boundary.boundaryEdges.push_back(destination);
}
}
/// Compute the points on the extended boundary found by walking down from the
/// specified instruction in the original boundary down to any destroys that
/// appear later but which aren't separated from the original boundary by
/// "interesting" users.
///
/// If the user is consuming, the boundary remains in place.
///
/// If the user is a terminator, see extendBoundaryFromTerminator.
///
/// If a destroy is found after the (non-consuming, non-terminator) \p user,
/// it becomes a last user. Otherwise, the boundary stays in place and \p
/// user remains a last user.
void extendBoundaryFromUser(SILInstruction *user,
PrunedLivenessBoundary &boundary) {
if (isDestroy(user)) {
auto *dvi = cast<DestroyValueInst>(user);
auto *existingDestroy = findDestroyAtOrAfter(dvi, currentDef, isDestroy);
assert(existingDestroy && "couldn't find a destroy at or after one!?");
boundary.lastUsers.push_back(existingDestroy);
return;
}
switch (liveness.isInterestingUser(user)) {
case PrunedLiveness::IsInterestingUser::LifetimeEndingUse:
// Even if we saw a destroy after this consuming use, we don't want to
// add it to the boundary. We will rewrite copies so that this user is
// the final consuming user on this path.
boundary.lastUsers.push_back(user);
return;
case PrunedLiveness::IsInterestingUser::NonLifetimeEndingUse:
case PrunedLiveness::IsInterestingUser::NonUser:
if (auto *terminator = dyn_cast<TermInst>(user)) {
extendBoundaryFromTerminator(terminator, boundary);
return;
}
if (auto *existingDestroy =
findDestroyAfter(user, currentDef, isDestroy)) {
boundary.lastUsers.push_back(existingDestroy);
return;
}
boundary.lastUsers.push_back(user);
}
}
/// Compute the points on the extended boundary by walking into \p user's
/// parent's successors and looking for destroys.
///
/// If any destroys are found, they become last users and all other successors
/// (which lack destroys) become boundary edges. If no destroys are found,
/// the boundary stays in place and \p user remains a last user.
void extendBoundaryFromTerminator(TermInst *user,
PrunedLivenessBoundary &boundary) {
auto *block = user->getParent();
// Record the successors at the beginning of which we didn't find destroys.
// If we found a destroy at the beginning of any other successor, then all
// the other edges become boundary edges.
SmallVector<SILBasicBlock *, 4> successorsWithoutDestroys;
bool foundDestroy = false;
for (auto *successor : block->getSuccessorBlocks()) {
// If multiple terminators were live and had the same successor, only
// record the boundary corresponding to that destination block once.
if (!seenMergePoints.insert(successor)) {
// Thanks to the lack of critical edges, having seen this successor
// before means it has multiple predecessors, so this must be \p block's
// unique successor.
assert(block->getSingleSuccessorBlock() == successor);
// When this merge point was encountered the first time, a
// destroy_value was sought from its top. If one was found, it was
// added to the boundary. If no destroy_value was found, _that_ user
// (i.e. the one on behalf of which extendBoundaryFromTerminator was
// called which inserted successor into seenMergePoints) was added to
// the boundary.
//
// This time, if a destroy was found, it's already in the boundary. If
// no destroy was found, though, _this_ user must be added to the
// boundary.
foundDestroy =
findDestroyFromBlockBegin(successor, currentDef, isDestroy);
continue;
}
if (auto *dvi =
findDestroyFromBlockBegin(successor, currentDef, isDestroy)) {
boundary.lastUsers.push_back(dvi);
foundDestroy = true;
} else {
successorsWithoutDestroys.push_back(successor);
}
}
if (foundDestroy) {
// If we found a destroy in any successor, then every block at the
// beginning of which we didn't find a destroy becomes a boundary edge.
for (auto *successor : successorsWithoutDestroys) {
boundary.boundaryEdges.push_back(successor);
}
} else {
boundary.lastUsers.push_back(user);
}
}
};
} // anonymous namespace
void CanonicalizeOSSALifetime::findExtendedBoundary(
PrunedLivenessBoundary const &originalBoundary,
PrunedLivenessBoundary &boundary) {
assert(boundary.lastUsers.size() == 0 && boundary.boundaryEdges.size() == 0 &&
boundary.deadDefs.size() == 0);
auto isDestroy = [&](auto *inst) { return destroys.contains(inst); };
ExtendBoundaryToDestroys extender(*liveness, originalBoundary,
getCurrentDef(), isDestroy);
extender.extend(boundary);
}
//===----------------------------------------------------------------------===//
// MARK: Step 5. Insert destroys onto the boundary found in step 3 where needed.
//===----------------------------------------------------------------------===//
/// Create a new destroy_value instruction before the specified instruction and
/// record it as a final consume.
static void
insertDestroyBeforeInstruction(SILInstruction *nextInstruction,
SILValue currentDef, IsDeadEnd_t isDeadEnd,
CanonicalOSSAConsumeInfo &consumes,
SmallVectorImpl<DestroyValueInst *> &destroys,
InstModCallbacks &callbacks) {
// OSSALifetimeCompletion: This conditional clause can be deleted with
// complete lifetimes.
if (consumes.isUnreachableLifetimeEnd(nextInstruction)) {
// Don't create a destroy_value if the next instruction is an unreachable
// (or a terminator on the availability boundary of the dead-end region
// starting from the non-lifetime-ending boundary of `currentDef`).
//
// If there was a destroy here already, it would be reused. Avoids
// creating an explicit destroy of a value which might have an unclosed
// borrow scope. Doing so would result in
//
// somewhere:
// %def
// %borrow = begin_borrow ...
//
// die:
// destroy_value %def
// unreachable
//
// which is invalid (although the verifier doesn't catch
// it--rdar://115850528) because there must be an `end_borrow %borrow`
// before the destroy_value.
return;
}
SILBuilderWithScope builder(nextInstruction);
auto loc =
RegularLocation::getAutoGeneratedLocation(nextInstruction->getLoc());
auto *dvi =
builder.createDestroyValue(loc, currentDef, DontPoisonRefs, isDeadEnd);
callbacks.createdNewInst(dvi);
consumes.recordFinalConsume(dvi);
++NumDestroysGenerated;
destroys.push_back(dvi);
}
/// Whether a destroy created at \p inst should be marked [dead_end].
///
/// It should be if
/// (1) \p inst is itself in a dead-end region
/// (2) all destroys after \p inst are [dead_end]
static IsDeadEnd_t
isDeadEndDestroy(SILInstruction *inst,
SmallPtrSetVector<SILInstruction *, 8> const &destroys,
BasicBlockSet &semanticDestroysBlocks,
DeadEndBlocks *deadEnds) {
auto *parent = inst->getParent();
if (!deadEnds->isDeadEnd(parent)) {
// Only destroys in dead-ends can be non-meaningful (aka "dead end").
return IsntDeadEnd;
}
if (semanticDestroysBlocks.contains(parent)) {
// `parent` has a semantic destroy somewhere. Is it after `inst`?
for (auto *i = inst; i; i = i->getNextInstruction()) {
if (!destroys.contains(i)) {
continue;
}
auto *dvi = cast<DestroyValueInst>(i);
if (!dvi->isDeadEnd()) {
// Some subsequent destroy within `parent` was meaningful, so one
// created at `inst` must be too.
return IsntDeadEnd;
}
}
}
// Walk the portion of the dead-end region after `parent` to check that all
// destroys are non-meaningful.
BasicBlockWorklist worklist(inst->getFunction());
for (auto *successor : parent->getSuccessorBlocks()) {
worklist.push(successor);
}
while (auto *block = worklist.pop()) {
assert(deadEnds->isDeadEnd(block));
if (semanticDestroysBlocks.contains(block)) {
// Some subsequent destroy was meaningful, so one created at `inst`
// must be too.
return IsntDeadEnd;
}
for (auto *successor : block->getSuccessorBlocks()) {
worklist.pushIfNotVisited(successor);
}
}
return IsDeadEnd;
}
/// Inserts destroys along the boundary where needed and records all final
/// consuming uses.
///
/// Observations:
/// - currentDef must be postdominated by some subset of its
/// consuming uses, including destroys on all return paths.
/// - The postdominating consumes cannot be within nested loops.
/// - Any blocks in nested loops are now marked LiveOut.
void CanonicalizeOSSALifetime::insertDestroysOnBoundary(
PrunedLivenessBoundary const &boundary,
SmallVectorImpl<DestroyValueInst *> &newDestroys) {
BasicBlockSet semanticDestroyBlocks(getCurrentDef()->getFunction());
for (auto *destroy : destroys) {
if (!cast<DestroyValueInst>(destroy)->isDeadEnd()) {
semanticDestroyBlocks.insert(destroy->getParent());
}
}
auto isDeadEnd = [&semanticDestroyBlocks,
this](SILInstruction *inst) -> IsDeadEnd_t {
return isDeadEndDestroy(
inst, destroys, semanticDestroyBlocks,
deadEndBlocksAnalysis->get(getCurrentDef()->getFunction()));
};
BasicBlockSet seenMergePoints(getCurrentDef()->getFunction());
for (auto *instruction : boundary.lastUsers) {
if (destroys.contains(instruction)) {
consumes.recordFinalConsume(instruction);
continue;
}
switch (liveness->isInterestingUser(instruction)) {
case PrunedLiveness::IsInterestingUser::LifetimeEndingUse:
consumes.recordFinalConsume(instruction);
continue;
case PrunedLiveness::IsInterestingUser::NonLifetimeEndingUse:
case PrunedLiveness::IsInterestingUser::NonUser:
if (isa<TermInst>(instruction)) {
auto *block = instruction->getParent();
for (auto *successor : block->getSuccessorBlocks()) {
if (!seenMergePoints.insert(successor)) {
assert(block->getSingleSuccessorBlock() == successor);
continue;
}
auto *insertionPoint = &*successor->begin();
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(),
isDeadEnd(insertionPoint), consumes,
newDestroys, getCallbacks());
LLVM_DEBUG(llvm::dbgs() << " Destroy after terminator "
<< *instruction << " at beginning of ";
successor->printID(llvm::dbgs(), false);
llvm::dbgs() << "\n";);
}
continue;
}
auto *insertionPoint = instruction->getNextInstruction();
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(),
isDeadEnd(insertionPoint), consumes,
newDestroys, getCallbacks());
LLVM_DEBUG(llvm::dbgs()
<< " Destroy at last use " << insertionPoint << "\n");
continue;
}
}
for (auto *edgeDestination : boundary.boundaryEdges) {
auto *insertionPoint = &*edgeDestination->begin();
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(),
isDeadEnd(insertionPoint), consumes,
newDestroys, getCallbacks());
LLVM_DEBUG(llvm::dbgs() << " Destroy on edge " << edgeDestination << "\n");
}
for (auto *def : boundary.deadDefs) {
if (auto *arg = dyn_cast<SILArgument>(def)) {
auto *insertionPoint = &*arg->getParent()->begin();
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(),
isDeadEnd(insertionPoint), consumes,
newDestroys, getCallbacks());
LLVM_DEBUG(llvm::dbgs()
<< " Destroy after dead def arg " << arg << "\n");
} else {
auto *instruction = cast<SILInstruction>(def);
auto *insertionPoint = instruction->getNextInstruction();
assert(insertionPoint && "def instruction was a terminator?!");
insertDestroyBeforeInstruction(insertionPoint, getCurrentDef(),
isDeadEnd(insertionPoint), consumes,
newDestroys, getCallbacks());
LLVM_DEBUG(llvm::dbgs()
<< " Destroy after dead def inst " << instruction << "\n");
}
}
}
//===----------------------------------------------------------------------===//
// MARK: Step 6. Rewrite copies and destroys
//===----------------------------------------------------------------------===//
/// The lifetime extends beyond given consuming use. Copy the value.
///
/// This can set the operand value, but cannot invalidate the use iterator.
void swift::copyLiveUse(Operand *use, InstModCallbacks &instModCallbacks) {
SILInstruction *user = use->getUser();
SILBuilderWithScope builder(user->getIterator());
auto loc = RegularLocation::getAutoGeneratedLocation(user->getLoc());
auto *copy = builder.createCopyValue(loc, use->get());
instModCallbacks.createdNewInst(copy);
use->set(copy);
++NumCopiesGenerated;
LLVM_DEBUG(llvm::dbgs() << " Copying at last use " << *copy);
}
/// Revisit the def-use chain of currentDef. Mark unneeded original
/// copies and destroys for deletion. Insert new copies for interior uses that
/// require ownership of the used operand.
void CanonicalizeOSSALifetime::rewriteCopies(
SmallVectorImpl<DestroyValueInst *> const &newDestroys) {
assert(getCurrentDef()->getOwnershipKind() == OwnershipKind::Owned);
// Shadow discoveredDefs in order to constrain its uses.
const auto &discoveredDefs = this->discoveredDefs;
InstructionSetVector instsToDelete(getCurrentDef()->getFunction());
// Visit each operand in the def-use chain.
//
// Return true if the operand can use the current definition. Return false if
// it requires a copy.
auto visitUse = [&](Operand *use) {
auto *user = use->getUser();
if (destroys.contains(user)) {
auto *destroy = cast<DestroyValueInst>(user);
// If this destroy was marked as a final destroy, ignore it; otherwise,
// delete it.
if (!consumes.claimConsume(destroy)) {
instsToDelete.insert(destroy);
LLVM_DEBUG(llvm::dbgs() << " Removing " << *destroy);
++NumDestroysEliminated;
} else if (pruneDebugMode) {
// If this destroy was marked as a final destroy, add it to liveness so
// that we don't delete any debug instructions that occur before it.
// (Only relevant in pruneDebugMode).
liveness->updateForUse(destroy, /*lifetimeEnding*/ true);
}
return true;
}
// Nonconsuming uses do not need copies and cannot be marked as destroys.
// A lifetime-ending use here must be a consume because EndBorrow/Reborrow
// uses have been filtered out.
if (!use->isLifetimeEnding())
return true;
// If this use was not marked as a final destroy *or* this is not the first
// consumed operand we visited, then it needs a copy.
if (!consumes.claimConsume(user)) {
return false;
}
return true;
};
// Perform a def-use traversal, visiting each use operand.
for (auto def : discoveredDefs) {
switch (def.kind) {
case Def::BorrowedFrom:
case Def::Reborrow:
// Direct uses of these defs never need to be rewritten. Being guaranteed
// values, none of their direct uses consume an owned value.
assert(def.value->getOwnershipKind() == OwnershipKind::Guaranteed);
break;
case Def::Root: {
SILValue value = def.value;
for (auto useIter = value->use_begin(), endIter = value->use_end();
useIter != endIter;) {
Operand *use = *useIter++;
if (!visitUse(use)) {
copyLiveUse(use, getCallbacks());
}
}
break;
}
case Def::Copy: {
SILValue value = def.value;
CopyValueInst *srcCopy = cast<CopyValueInst>(value);
// Recurse through copies while replacing their uses.
Operand *reusedCopyOp = nullptr;
for (auto useIter = srcCopy->use_begin();
useIter != srcCopy->use_end();) {
Operand *use = *useIter++;
if (!visitUse(use)) {
if (!reusedCopyOp && srcCopy->getParent() == use->getParentBlock()) {
reusedCopyOp = use;
} else {
copyLiveUse(use, getCallbacks());
}
}
}
if (!(reusedCopyOp && srcCopy->hasOneUse())) {
getCallbacks().replaceValueUsesWith(srcCopy, srcCopy->getOperand());
if (reusedCopyOp) {
reusedCopyOp->set(srcCopy);
} else {
if (instsToDelete.insert(srcCopy)) {
LLVM_DEBUG(llvm::dbgs() << " Removing " << *srcCopy);
++NumCopiesAndMovesEliminated;
}
}
}
break;
}
}
}
assert(!consumes.hasUnclaimedConsumes());
if (pruneDebugMode) {
for (auto *destroy : newDestroys) {
liveness->updateForUse(destroy, /*lifetimeEnding=*/true);
}
for (auto *dvi : debugValues) {
if (liveness->isWithinBoundary(
dvi,
deadEndBlocksAnalysis->get(getCurrentDef()->getFunction()))) {
continue;
}
LLVM_DEBUG(llvm::dbgs() << " Removing debug_value: " << *dvi);
deleter.forceDelete(dvi);
}
}
// Remove the leftover copy_value and destroy_value instructions.
for (auto *inst : instsToDelete) {
deleter.forceDelete(inst);
}
}
//===----------------------------------------------------------------------===//
// MARK: Top-Level API
//===----------------------------------------------------------------------===//
bool CanonicalizeOSSALifetime::computeLiveness() {
LLVM_DEBUG(llvm::dbgs() << " Canonicalizing: " << currentDef);
if (currentDef->getOwnershipKind() != OwnershipKind::Owned) {
LLVM_DEBUG(llvm::dbgs() << " not owned, never mind\n");
return false;
}
// Note: There is no need to register callbacks with this utility. 'onDelete'
// is the only one in use to handle dangling pointers, which could be done
// instead be registering a temporary handler with the pass. Canonicalization
// is only allowed to create and delete instructions that are associated with
// this canonical def (copies and destroys). Each canonical def has a disjoint
// extended lifetime. Any pass calling this utility should work at the level
// canonical defs, not individual instructions.
//
// NotifyWillBeDeleted will not work because copy rewriting removes operands
// before deleting instructions. Also prohibit setUse callbacks just because
// that would simply be unsound.
assert(!getCallbacks().notifyWillBeDeletedFunc
&& !getCallbacks().setUseValueFunc && "unsupported");
// Step 1: compute liveness
if (!computeCanonicalLiveness()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to compute canonical liveness?!\n");
clear();
return false;
}
if (respectsDeinitBarriers()) {
extendLexicalLivenessToDeadEnds();
}
extendLivenessToDeadEnds();
if (respectsDeinitBarriers()) {
extendLivenessToDeinitBarriers();
}
if (accessBlockAnalysis) {
extendLivenessThroughOverlappingAccess();
}
return true;
}
void CanonicalizeOSSALifetime::rewriteLifetimes() {
// Step 2: compute original boundary
PrunedLivenessBoundary originalBoundary;
findOriginalBoundary(originalBoundary);
PrunedLivenessBoundary extendedBoundary;
if (maximizeLifetime) {
// Step 3. (optional) maximize lifetimes
extendUnconsumedLiveness(originalBoundary);
originalBoundary.clear();
// Step 2: (again) recompute the original boundary since we've extended
// liveness
findOriginalBoundary(originalBoundary);
// Step 4: extend boundary to destroys
findExtendedBoundary(originalBoundary, extendedBoundary);
} else {
// Step 3: (skipped)
// Step 4: extend boundary to destroys
findExtendedBoundary(originalBoundary, extendedBoundary);
}
SmallVector<DestroyValueInst *> newDestroys;
// Step 5: insert destroys and record consumes
insertDestroysOnBoundary(extendedBoundary, newDestroys);
// Step 6: rewrite copies and delete extra destroys
rewriteCopies(newDestroys);
clear();
}
/// Canonicalize a single extended owned lifetime.
bool CanonicalizeOSSALifetime::canonicalizeValueLifetime(
SILValue def, ArrayRef<SILInstruction *> lexicalLifetimeEnds) {
LivenessState livenessState(*this, def, lexicalLifetimeEnds);
// Don't canonicalize the lifetimes of values of move-only type. According to
// language rules, they are fixed.
if (def->getType().isMoveOnly()) {
return false;
}
// Step 1: Compute liveness.
if (!computeLiveness()) {
LLVM_DEBUG(llvm::dbgs() << "Failed to compute liveness boundary!\n");
return false;
}
// Steps 2-6. \see rewriteUses for explanation of steps 2-6.
rewriteLifetimes();
return true;
}
namespace swift::test {
// Arguments:
// - bool: pruneDebug
// - bool: maximizeLifetimes
// - bool: "respectAccessScopes", whether to contract lifetimes to end within
// access scopes which they previously enclosed but can't be hoisted
// before
// - SILValue: value to canonicalize
// - [SILInstruction]: the lexicalLifetimeEnds to recognize
// Dumps:
// - function after value canonicalization
static FunctionTest CanonicalizeOSSALifetimeTest(
"canonicalize_ossa_lifetime",
[](auto &function, auto &arguments, auto &test) {
auto *accessBlockAnalysis =
test.template getAnalysis<NonLocalAccessBlockAnalysis>();
auto *deadEndBlocksAnalysis =
test.template getAnalysis<DeadEndBlocksAnalysis>();
auto *dominanceAnalysis = test.template getAnalysis<DominanceAnalysis>();
DominanceInfo *domTree = dominanceAnalysis->get(&function);
auto *calleeAnalysis = test.template getAnalysis<BasicCalleeAnalysis>();
auto pruneDebug = PruneDebugInsts_t(arguments.takeBool());
auto maximizeLifetimes = MaximizeLifetime_t(arguments.takeBool());
auto respectAccessScopes = arguments.takeBool();
InstructionDeleter deleter;
CanonicalizeOSSALifetime canonicalizer(
pruneDebug, maximizeLifetimes, &function,
respectAccessScopes ? accessBlockAnalysis : nullptr,
deadEndBlocksAnalysis, domTree, calleeAnalysis, deleter);
auto value = arguments.takeValue();
SmallVector<SILInstruction *, 4> lexicalLifetimeEnds;
while (arguments.hasUntaken()) {
lexicalLifetimeEnds.push_back(arguments.takeInstruction());
}
canonicalizer.canonicalizeValueLifetime(value, lexicalLifetimeEnds);
function.print(llvm::outs());
});
} // end namespace swift::test
//===----------------------------------------------------------------------===//
// MARK: Debugging
//===----------------------------------------------------------------------===//
SWIFT_ASSERT_ONLY_DECL(
void CanonicalOSSAConsumeInfo::dump() const {
llvm::dbgs() << "Consumes:";
for (auto &blockAndInst : finalBlockConsumes) {
llvm::dbgs() << " " << *blockAndInst.getSecond();
}
})