mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This is similar to SuppressedAssociatedTypes, but infers default requirements when primary associated types of protocols are suppressed. This defaulting for the primary associated types happens in extensions of the protocol, along with generic parameters, whenever a source-written requirement states a conformance requirement for the protocol. Thus, the current scheme for this defaulting is a simplistic, driven by source-written requirements, rather than facts that are inferred while building generic signatures. Defaults are not expanded for infinitely many associated types. rdar://135168163
744 lines
26 KiB
C++
744 lines
26 KiB
C++
//===--- ConcreteContraction.cpp - Preprocessing concrete conformances ----===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2022 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The concrete contraction pass runs after requirement desugaring and before
|
|
// rewrite rules are built from desugared requirements when constructing a
|
|
// rewrite system for a user-written generic signature.
|
|
//
|
|
// This is an imperfect hack to deal with two issues:
|
|
//
|
|
// a) When a generic parameter is subject to both a conformance requirement and
|
|
// a concrete type requirement (or a superclass requirement where the
|
|
// superclass also conforms to the protocol), the conformance requirement
|
|
// becomes redundant during property map construction.
|
|
//
|
|
// However, unlike other kinds of requirements, dropping a conformance
|
|
// requirement can change canonical types in the rewrite system, and in
|
|
// particular, it can change the canonical types of other minimal
|
|
// requirements, if the protocol in the conformance requirement has
|
|
// associated types.
|
|
//
|
|
// Consider this example:
|
|
//
|
|
// protocol P {
|
|
// associatedtype T
|
|
// }
|
|
//
|
|
// protocol Q {}
|
|
//
|
|
// struct S<T> : P {}
|
|
//
|
|
// struct Holder<A : P, B : P> where A.T : Q {}
|
|
//
|
|
// extension Holder where A == S<B.T> {}
|
|
//
|
|
// The signature of the extension is built from these requirements:
|
|
//
|
|
// - A : P
|
|
// - B : P
|
|
// - A.T : Q
|
|
// - A == S<B.T>
|
|
//
|
|
// In this rewrite system, the canonical type of 'B.T' is 'A.T', so the
|
|
// requirements canonicalize as follows:
|
|
//
|
|
// - A : P
|
|
// - B : P
|
|
// - A.T : Q
|
|
// - A == S<A.T>
|
|
//
|
|
// Also, the first requirement 'A : P' is redundant in this rewrite system,
|
|
// because 'A == S<B.T>' and S conforms to P.
|
|
//
|
|
// However, simply dropping 'A : P' is not enough. If the user instead
|
|
// directly wrote a signature with the original requirements omitting
|
|
// 'A : P', we would have:
|
|
//
|
|
// - B : P
|
|
// - A == S<B.T>
|
|
// - B.T : Q
|
|
//
|
|
// Indeed, computing canonical types from the first rewrite system produces
|
|
// different results, because 'B.T' canonicalizes to 'A.T' and not 'B.T'.
|
|
//
|
|
// b) The GenericSignatureBuilder permitted references to "fully concrete"
|
|
// member types of a dependent type that were not associated types from
|
|
// conformance requirements.
|
|
//
|
|
// That is, the following was permitted:
|
|
//
|
|
// class C {
|
|
// typealias A = Int
|
|
// }
|
|
//
|
|
// <T, U where T : C, U == T.A>
|
|
//
|
|
// The requirement 'U == T.A' was resolved to 'U == Int', despite 'T' not
|
|
// declaring any protocol conformance requirements with an associated type
|
|
// named 'A' (or any conformance requirements at all).
|
|
//
|
|
// The GenericSignatureBuilder dealt with a) using a "rebuilding" pass that
|
|
// build a new generic signature after dropping redundant conformance
|
|
// requirements, feeding the original requirements back in. The behavior b)
|
|
// was a consequence of how requirement resolution was implemented, by calling
|
|
// into name lookup.
|
|
//
|
|
// The Requirement Machine's approach to both a) and b) doesn't handle as many
|
|
// cases, but is much simpler and hopefully more robust. Before building the
|
|
// rewrite system, we pre-process the requirements and identify generic
|
|
// parameters subject to a superclass or concrete type requirement. Then, we
|
|
// substitute this generic parameter for the superclass or concrete type,
|
|
// respectively, in all other requirements.
|
|
//
|
|
// In the above example, it produces the following list of requirements:
|
|
//
|
|
// - S<B.T> : P
|
|
// - B : P
|
|
// - S<B.T>.T : Q
|
|
// - A == S<B.T>
|
|
//
|
|
// The requirements are fed back into desugarRequirements(), and we get:
|
|
//
|
|
// - B : P
|
|
// - B.T : Q
|
|
// - A == S<B.T>
|
|
//
|
|
// This also handles b), where the original requirements are:
|
|
//
|
|
// - T : C
|
|
// - U == T.A
|
|
//
|
|
// and after concrete contraction, we get
|
|
//
|
|
// - T : C
|
|
// - U == Int
|
|
//
|
|
// Since this is all a heuristic that is applied before the rewrite system is
|
|
// built, it doesn't handle cases where a nested type of a generic parameter is
|
|
// subject to both a concrete type and conformance requirement, nor does it
|
|
// handle more complex cases where the redundant conformance is only discovered
|
|
// via an intermediate same-type requirement, such as the following:
|
|
//
|
|
// <T, U, V where T == S<V>, T == U, U : P>
|
|
//
|
|
// If concrete contraction fails, the minimized generic signature will fail
|
|
// verification if it still contains incorrectly-canonicalized types.
|
|
//
|
|
// We might need a more general solution eventually, but for now this is good
|
|
// enough to handle the cases where this arises in practice.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/AST/ConformanceLookup.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/Module.h"
|
|
#include "swift/AST/Requirement.h"
|
|
#include "swift/AST/Type.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "NameLookup.h"
|
|
#include "RequirementLowering.h"
|
|
|
|
using namespace swift;
|
|
using namespace rewriting;
|
|
|
|
/// Strip associated types from types used as keys to erase differences between
|
|
/// resolved types coming from the parent generic signature and unresolved types
|
|
/// coming from user-written requirements.
|
|
Type swift::rewriting::stripBoundDependentMemberTypes(Type t) {
|
|
if (auto *depMemTy = t->getAs<DependentMemberType>()) {
|
|
return DependentMemberType::get(
|
|
stripBoundDependentMemberTypes(depMemTy->getBase()),
|
|
depMemTy->getName());
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
/// Returns true if \p lhs appears as the base of a member type in \p rhs.
|
|
static bool typeOccursIn(Type lhs, Type rhs) {
|
|
return rhs.findIf([lhs](Type t) -> bool {
|
|
if (auto *memberType = t->getAs<DependentMemberType>())
|
|
return memberType->getBase()->isEqual(lhs);
|
|
return false;
|
|
});
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Utility class to store some shared state.
|
|
class ConcreteContraction {
|
|
bool Debug;
|
|
|
|
llvm::SmallDenseMap<CanType, llvm::SmallDenseSet<Type, 1>> ConcreteTypes;
|
|
llvm::SmallDenseMap<CanType, llvm::SmallDenseSet<Type, 1>> Superclasses;
|
|
llvm::SmallDenseMap<CanType, llvm::SmallVector<ProtocolDecl *, 1>> Conformances;
|
|
|
|
enum Position {
|
|
/// Base type of some other type appearing in a requirement.
|
|
BaseType,
|
|
|
|
/// Subject type of a conformance requirement.
|
|
ConformanceRequirement,
|
|
|
|
/// Subject type of a superclass requirement.
|
|
SuperclassRequirement,
|
|
|
|
/// Subject type of a same-type requirement.
|
|
SameTypeRequirement,
|
|
|
|
/// Some other position.
|
|
Other
|
|
};
|
|
|
|
std::optional<Type> substTypeParameterRec(Type type, Position position) const;
|
|
Type substTypeParameter(Type type, Position position) const;
|
|
Type substType(Type type) const;
|
|
Requirement substRequirement(const Requirement &req) const;
|
|
|
|
bool preserveSameTypeRequirement(const Requirement &req) const;
|
|
|
|
bool hasResolvedMemberTypeOfInterestingParameter(Type t) const;
|
|
|
|
public:
|
|
ConcreteContraction(bool debug) : Debug(debug) {}
|
|
|
|
bool performConcreteContraction(
|
|
ArrayRef<StructuralRequirement> requirements,
|
|
SmallVectorImpl<StructuralRequirement> &result,
|
|
SmallVectorImpl<RequirementError> &errors);
|
|
};
|
|
|
|
} // end namespace
|
|
|
|
/// A re-implementation of Type::subst() that also handles unresolved
|
|
/// DependentMemberTypes by performing name lookup into the base type.
|
|
///
|
|
/// When substituting a superclass requirement, we have to handle the
|
|
/// case where the superclass might not conform to the protocol in
|
|
/// question. For example, you can have a generic signature like this
|
|
///
|
|
/// <T where T : Sequence, T : SomeClass, T.Element == Int>
|
|
///
|
|
/// If SomeClass does not conform to Sequence, the type T is understood
|
|
/// to be some subclass of SomeClass which does conform to Sequence;
|
|
/// this is perfectly valid, and we cannot substitute the 'T.Element'
|
|
/// requirement. In this case, this method returns None.
|
|
std::optional<Type>
|
|
ConcreteContraction::substTypeParameterRec(Type type, Position position) const {
|
|
|
|
// If we have a superclass (T : C) or same-type requirement (T == C),
|
|
// don't substitute T, since then we end up with 'C == C' or 'C : C',
|
|
// losing the requirement.
|
|
if (position == Position::BaseType ||
|
|
position == Position::ConformanceRequirement) {
|
|
auto key = stripBoundDependentMemberTypes(type)->getCanonicalType();
|
|
|
|
Type concreteType;
|
|
{
|
|
auto found = ConcreteTypes.find(key);
|
|
if (found != ConcreteTypes.end() && found->second.size() == 1)
|
|
concreteType = *found->second.begin();
|
|
}
|
|
|
|
Type superclass;
|
|
{
|
|
auto found = Superclasses.find(key);
|
|
if (found != Superclasses.end() && found->second.size() == 1)
|
|
superclass = *found->second.begin();
|
|
}
|
|
|
|
// If we have both, prefer the concrete type requirement since it is more
|
|
// specific.
|
|
if (!concreteType && superclass)
|
|
concreteType = superclass;
|
|
|
|
if (concreteType) {
|
|
return concreteType;
|
|
}
|
|
}
|
|
|
|
if (auto *memberType = type->getAs<DependentMemberType>()) {
|
|
auto baseType = memberType->getBase();
|
|
auto substBaseType = substTypeParameterRec(baseType, Position::BaseType);
|
|
if (!substBaseType)
|
|
return std::nullopt;
|
|
|
|
// A resolved DependentMemberType stores an associated type declaration.
|
|
//
|
|
// Handle this by looking up the corresponding type witness in the base
|
|
// type's conformance to the associated type's protocol.
|
|
if (auto *assocType = memberType->getAssocType()) {
|
|
auto *proto = assocType->getProtocol();
|
|
|
|
// The 'Sendable' protocol does not declare any associated types, so the
|
|
// 'allowMissing' value here is actually irrelevant.
|
|
auto conformance = lookupConformance(*substBaseType, proto,
|
|
/*allowMissing=*/false);
|
|
|
|
if (proto->isSpecificProtocol(KnownProtocolKind::Sendable) &&
|
|
conformance.hasUnavailableConformance()) {
|
|
conformance = ProtocolConformanceRef::forInvalid();
|
|
}
|
|
|
|
// The base type doesn't conform, in which case the requirement remains
|
|
// unsubstituted.
|
|
if (!conformance) {
|
|
if (Debug) {
|
|
llvm::dbgs() << "@@@ " << substBaseType << " does not conform to "
|
|
<< proto->getName() << "\n";
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
return conformance.getTypeWitness(assocType);
|
|
}
|
|
|
|
// An unresolved DependentMemberType stores an identifier. Handle this
|
|
// by performing a name lookup into the base type.
|
|
SmallVector<TypeDecl *> concreteDecls;
|
|
lookupConcreteNestedType(*substBaseType, memberType->getName(), concreteDecls);
|
|
|
|
auto *typeDecl = findBestConcreteNestedType(concreteDecls);
|
|
if (typeDecl == nullptr) {
|
|
// The base type doesn't contain a member type with this name, in which
|
|
// case the requirement remains unsubstituted.
|
|
if (Debug) {
|
|
llvm::dbgs() << "@@@ Lookup of " << memberType->getName() << " failed on "
|
|
<< *substBaseType << "\n";
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
// Substitute the base type into the member type.
|
|
auto *dc = typeDecl->getDeclContext();
|
|
auto subMap = (*substBaseType)->getContextSubstitutionMap(dc);
|
|
return typeDecl->getDeclaredInterfaceType().subst(subMap);
|
|
}
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// Replace the generic parameter at the root of \p type, which must be a
|
|
/// type parameter, with the superclass or concrete type requirement that
|
|
/// the generic parameter is subject to.
|
|
///
|
|
/// Note that if the generic parameter has a superclass conformance, we
|
|
/// only substitute if it's the root of a member type; the generic parameter
|
|
/// itself does not become concrete when it's superclass-constrained, unless
|
|
/// it is the subject of a conformance requirement.
|
|
Type ConcreteContraction::substTypeParameter(
|
|
Type type, Position position) const {
|
|
ASSERT(type->isTypeParameter());
|
|
|
|
auto result = substTypeParameterRec(type, position);
|
|
if (!result)
|
|
return type;
|
|
|
|
return *result;
|
|
}
|
|
|
|
/// Substitute all type parameters occurring in structural positions of \p type.
|
|
Type ConcreteContraction::substType(Type type) const {
|
|
return type.transformRec([&](Type type) -> std::optional<Type> {
|
|
if (!type->isTypeParameter())
|
|
return std::nullopt;
|
|
|
|
return substTypeParameter(type, Position::Other);
|
|
});
|
|
}
|
|
|
|
/// Substitute all type parameters occurring in the given requirement.
|
|
Requirement
|
|
ConcreteContraction::substRequirement(const Requirement &req) const {
|
|
auto firstType = req.getFirstType();
|
|
|
|
switch (req.getKind()) {
|
|
case RequirementKind::SameShape: {
|
|
auto substFirstType = substType(firstType);
|
|
auto substSecondType = substType(req.getSecondType());
|
|
|
|
return Requirement(req.getKind(), substFirstType, substSecondType);
|
|
}
|
|
|
|
case RequirementKind::Superclass:
|
|
case RequirementKind::SameType: {
|
|
auto position = (req.getKind() == RequirementKind::Superclass
|
|
? Position::SuperclassRequirement
|
|
: Position::SameTypeRequirement);
|
|
auto substFirstType = substTypeParameter(firstType, position);
|
|
|
|
auto secondType = req.getSecondType();
|
|
auto substSecondType = substType(secondType);
|
|
|
|
return Requirement(req.getKind(),
|
|
substFirstType,
|
|
substSecondType);
|
|
}
|
|
|
|
case RequirementKind::Conformance: {
|
|
auto substFirstType = substTypeParameter(
|
|
firstType, Position::ConformanceRequirement);
|
|
|
|
auto *proto = req.getProtocolDecl();
|
|
|
|
// For conformance to 'Sendable', allow synthesis of a missing conformance
|
|
// if the generic parameter is concrete, that is, if we're looking at a
|
|
// signature of the form 'T == Foo, T : Sendable'.
|
|
//
|
|
// Otherwise, we have a superclass requirement, like 'T : C, T : Sendable';
|
|
// don't synthesize the conformance in this case since dropping
|
|
// 'T : Sendable' would be incorrect; we want to ensure that we only admit
|
|
// subclasses of 'C' which are 'Sendable'.
|
|
bool allowMissing = false;
|
|
auto key = stripBoundDependentMemberTypes(firstType)->getCanonicalType();
|
|
if (ConcreteTypes.count(key) > 0)
|
|
allowMissing = true;
|
|
|
|
if (!substFirstType->isTypeParameter()) {
|
|
auto conformance = lookupConformance(substFirstType, proto,
|
|
allowMissing);
|
|
|
|
if (!allowMissing &&
|
|
proto->isSpecificProtocol(KnownProtocolKind::Sendable) &&
|
|
conformance.hasUnavailableConformance()) {
|
|
conformance = ProtocolConformanceRef::forInvalid();
|
|
}
|
|
|
|
if (!conformance) {
|
|
// Handle the case of <T where T : P, T : C> where C is a class and
|
|
// C does not conform to P and only substitute the parent type of T
|
|
// by pretending we have a same-type requirement here.
|
|
substFirstType = substTypeParameter(
|
|
firstType, Position::SameTypeRequirement);
|
|
}
|
|
}
|
|
|
|
// Otherwise, replace the generic parameter in the conformance
|
|
// requirement with the concrete type. It will desugar to nothing
|
|
// (if the conformance is conditional) or to zero or more
|
|
// conditional requirements needed to satisfy the conformance.
|
|
return Requirement(req.getKind(),
|
|
substFirstType,
|
|
req.getSecondType());
|
|
}
|
|
|
|
case RequirementKind::Layout: {
|
|
auto substFirstType = substTypeParameter(firstType, Position::Other);
|
|
if (!substFirstType->isTypeParameter() &&
|
|
!substFirstType->satisfiesClassConstraint() &&
|
|
req.getLayoutConstraint()->isClass()) {
|
|
// If the concrete type doesn't satisfy the layout constraint, produce
|
|
// a better diagnostic and only substitute the parent type by pretending
|
|
// we have a same-type requirement here.
|
|
substFirstType = substTypeParameter(
|
|
firstType, Position::SameTypeRequirement);
|
|
}
|
|
|
|
return Requirement(req.getKind(),
|
|
substFirstType,
|
|
req.getLayoutConstraint());
|
|
}
|
|
}
|
|
}
|
|
|
|
bool ConcreteContraction::
|
|
hasResolvedMemberTypeOfInterestingParameter(Type type) const {
|
|
return type.findIf([&](Type t) -> bool {
|
|
if (auto *memberTy = t->getAs<DependentMemberType>()) {
|
|
if (memberTy->getAssocType() == nullptr)
|
|
return false;
|
|
|
|
auto key = stripBoundDependentMemberTypes(memberTy->getBase())
|
|
->getCanonicalType();
|
|
Type concreteType;
|
|
{
|
|
auto found = ConcreteTypes.find(key);
|
|
if (found != ConcreteTypes.end() && found->second.size() == 1)
|
|
return true;
|
|
}
|
|
|
|
Type superclass;
|
|
{
|
|
auto found = Superclasses.find(key);
|
|
if (found != Superclasses.end() && found->second.size() == 1)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
});
|
|
}
|
|
|
|
/// Another silly GenericSignatureBuilder compatibility hack.
|
|
///
|
|
/// Consider this code:
|
|
///
|
|
/// class C<T> {
|
|
/// typealias A = T
|
|
/// }
|
|
///
|
|
/// protocol P {
|
|
/// associatedtype A
|
|
/// }
|
|
///
|
|
/// func f<X, T>(_: X, _: T) where X : P, X : C<T>, X.A == T {}
|
|
///
|
|
/// The GenericSignatureBuilder would introduce an equivalence between
|
|
/// typealias A in class C and associatedtype A in protocol P, so the
|
|
/// requirement 'X.A == T' would effectively constrain _both_.
|
|
///
|
|
/// Simulate this by keeping both the original and substituted same-type
|
|
/// requirement in a narrow case.
|
|
bool ConcreteContraction::preserveSameTypeRequirement(
|
|
const Requirement &req) const {
|
|
if (req.getKind() != RequirementKind::SameType)
|
|
return false;
|
|
|
|
// One of the parent types of this type parameter should be subject
|
|
// to a superclass requirement.
|
|
auto type = stripBoundDependentMemberTypes(req.getFirstType())
|
|
->getCanonicalType();
|
|
while (true) {
|
|
if (Superclasses.find(type) != Superclasses.end())
|
|
break;
|
|
|
|
if (auto memberType = dyn_cast<DependentMemberType>(type)) {
|
|
type = memberType.getBase();
|
|
continue;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
if (hasResolvedMemberTypeOfInterestingParameter(req.getFirstType()) ||
|
|
hasResolvedMemberTypeOfInterestingParameter(req.getSecondType()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Substitute all occurrences of generic parameters subject to superclass
|
|
/// or concrete type requirements with their corresponding superclass or
|
|
/// concrete type.
|
|
///
|
|
/// If this returns false, \p result should be ignored and the requirements
|
|
/// remain unchanged. If this returns true, \p result should replace the
|
|
/// original \p requirements.
|
|
bool ConcreteContraction::performConcreteContraction(
|
|
ArrayRef<StructuralRequirement> requirements,
|
|
SmallVectorImpl<StructuralRequirement> &result,
|
|
SmallVectorImpl<RequirementError> &errors) {
|
|
|
|
// Phase 1 - collect concrete type and superclass requirements where the
|
|
// subject type is a generic parameter.
|
|
for (auto req : requirements) {
|
|
auto subjectType = req.req.getFirstType();
|
|
ASSERT(subjectType->isTypeParameter() &&
|
|
"Forgot to call desugarRequirement()");
|
|
|
|
auto kind = req.req.getKind();
|
|
switch (kind) {
|
|
case RequirementKind::SameShape:
|
|
ASSERT(req.req.getSecondType()->isTypeParameter());
|
|
continue;
|
|
|
|
case RequirementKind::SameType: {
|
|
auto constraintType = req.req.getSecondType();
|
|
|
|
// Same-type requirements between type parameters are not interesting
|
|
// to this pass.
|
|
if (constraintType->isTypeParameter())
|
|
break;
|
|
|
|
subjectType = stripBoundDependentMemberTypes(subjectType);
|
|
if (typeOccursIn(subjectType,
|
|
stripBoundDependentMemberTypes(constraintType))) {
|
|
if (Debug) {
|
|
llvm::dbgs() << "@ Subject type of same-type requirement "
|
|
<< subjectType << " == " << constraintType << " "
|
|
<< "occurs in the constraint type, skipping\n";
|
|
}
|
|
break;
|
|
}
|
|
ConcreteTypes[subjectType->getCanonicalType()].insert(constraintType);
|
|
break;
|
|
}
|
|
case RequirementKind::Superclass: {
|
|
auto constraintType = req.req.getSecondType();
|
|
ASSERT(!constraintType->isTypeParameter() &&
|
|
"Forgot to call desugarRequirement()");
|
|
|
|
subjectType = stripBoundDependentMemberTypes(subjectType);
|
|
if (typeOccursIn(subjectType,
|
|
stripBoundDependentMemberTypes(constraintType))) {
|
|
if (Debug) {
|
|
llvm::dbgs() << "@ Subject type of superclass requirement "
|
|
<< subjectType << " : " << constraintType << " "
|
|
<< "occurs in the constraint type, skipping\n";
|
|
}
|
|
break;
|
|
}
|
|
Superclasses[subjectType->getCanonicalType()].insert(constraintType);
|
|
break;
|
|
}
|
|
case RequirementKind::Conformance: {
|
|
auto *protoDecl = req.req.getProtocolDecl();
|
|
subjectType = stripBoundDependentMemberTypes(subjectType);
|
|
Conformances[subjectType->getCanonicalType()].push_back(protoDecl);
|
|
|
|
break;
|
|
}
|
|
case RequirementKind::Layout:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Block concrete contraction if a generic parameter conforms to a protocol P
|
|
// which has a superclass bound C which again conforms to P. This is a really
|
|
// silly edge case, but we go to great pains to produce the same minimized
|
|
// signature as the GenericSignatureBuilder in this case, <T : P>, and not the
|
|
// more logical <T : C>.
|
|
for (const auto &pair : Conformances) {
|
|
auto subjectType = pair.first;
|
|
auto found = Superclasses.find(subjectType);
|
|
if (found == Superclasses.end() || found->second.size() != 1)
|
|
continue;
|
|
|
|
auto superclassTy = *found->second.begin();
|
|
|
|
for (auto *proto : pair.second) {
|
|
if (lookupConformance(superclassTy, proto)) {
|
|
auto genericSig = proto->getGenericSignature();
|
|
// FIXME: If we end up here while building the requirement
|
|
// signature of `proto`, we will hit a request cycle.
|
|
if (auto otherSuperclassTy = genericSig->getSuperclassBound(
|
|
proto->getSelfInterfaceType())) {
|
|
if (Debug) {
|
|
llvm::dbgs() << "@ Subject type of superclass requirement "
|
|
<< subjectType << " : " << superclassTy
|
|
<< " conforms to "<< proto->getName()
|
|
<< " which has a superclass bound "
|
|
<< otherSuperclassTy << "\n";
|
|
}
|
|
|
|
if (superclassTy->isEqual(otherSuperclassTy)) {
|
|
Superclasses.erase(subjectType);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there's nothing to do just return.
|
|
if (ConcreteTypes.empty() && Superclasses.empty())
|
|
return false;
|
|
|
|
if (Debug) {
|
|
llvm::dbgs() << "@ Concrete types: @\n";
|
|
for (auto pair : ConcreteTypes) {
|
|
llvm::dbgs() << pair.first;
|
|
if (pair.second.size() == 1) {
|
|
llvm::dbgs() << " == " << *pair.second.begin() << "\n";
|
|
} else {
|
|
llvm::dbgs() << " has duplicate concrete type requirements\n";
|
|
}
|
|
}
|
|
|
|
llvm::dbgs() << "@ Superclasses: @\n";
|
|
for (auto pair : Superclasses) {
|
|
llvm::dbgs() << pair.first;
|
|
if (pair.second.size() == 1) {
|
|
llvm::dbgs() << " : " << *pair.second.begin() << "\n";
|
|
} else {
|
|
llvm::dbgs() << " has duplicate superclass requirements\n";
|
|
}
|
|
}
|
|
}
|
|
|
|
// Phase 2: Replace each concretely-conforming generic parameter with its
|
|
// concrete type.
|
|
for (auto req : requirements) {
|
|
if (Debug) {
|
|
llvm::dbgs() << "@ Original requirement: ";
|
|
req.req.dump(llvm::dbgs());
|
|
llvm::dbgs() << "\n";
|
|
}
|
|
|
|
// Substitute the requirement.
|
|
auto substReq = substRequirement(req.req);
|
|
|
|
if (Debug) {
|
|
llvm::dbgs() << "@ Substituted requirement: ";
|
|
substReq.dump(llvm::dbgs());
|
|
llvm::dbgs() << "\n";
|
|
}
|
|
|
|
// Otherwise, desugar the requirement again, since we might now have a
|
|
// requirement where the left hand side is not a type parameter.
|
|
SmallVector<Requirement, 4> reqs;
|
|
SmallVector<InverseRequirement, 4> ignoreInverses;
|
|
desugarRequirement(substReq, req.loc, reqs, ignoreInverses, errors);
|
|
|
|
for (auto desugaredReq : reqs) {
|
|
if (Debug) {
|
|
llvm::dbgs() << "@@ Desugared requirement: ";
|
|
desugaredReq.dump(llvm::dbgs());
|
|
llvm::dbgs() << "\n";
|
|
}
|
|
result.push_back({desugaredReq, req.loc});
|
|
}
|
|
|
|
if (preserveSameTypeRequirement(req.req) &&
|
|
(!req.req.getFirstType()->isEqual(substReq.getFirstType()) ||
|
|
!req.req.getSecondType()->isEqual(substReq.getSecondType()))) {
|
|
if (Debug) {
|
|
llvm::dbgs() << "@ Preserving original requirement: ";
|
|
req.req.dump(llvm::dbgs());
|
|
llvm::dbgs() << "\n";
|
|
}
|
|
|
|
// Make the duplicated requirement 'inferred' so that we don't diagnose
|
|
// it as redundant.
|
|
result.push_back({req.req, SourceLoc()});
|
|
}
|
|
}
|
|
|
|
if (Debug) {
|
|
llvm::dbgs() << "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\n";
|
|
llvm::dbgs() << "@ Concrete contraction succeeded @\n";
|
|
llvm::dbgs() << "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@\n";
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Substitute all occurrences of generic parameters subject to superclass
|
|
/// or concrete type requirements with their corresponding superclass or
|
|
/// concrete type.
|
|
///
|
|
/// If this returns false, \p result should be ignored and the requirements
|
|
/// remain unchanged. If this returns true, \p result should replace the
|
|
/// original \p requirements.
|
|
bool swift::rewriting::performConcreteContraction(
|
|
ArrayRef<StructuralRequirement> requirements,
|
|
SmallVectorImpl<StructuralRequirement> &result,
|
|
SmallVectorImpl<RequirementError> &errors,
|
|
bool debug) {
|
|
ConcreteContraction concreteContraction(debug);
|
|
return concreteContraction.performConcreteContraction(
|
|
requirements, result, errors);
|
|
}
|