Files
swift-mirror/lib/Sema/DerivedConformance/DerivedConformanceRawRepresentable.cpp
Allan Shortlidge 4a76c04cf5 SILGen: Fix if #unavailable mis-compile for zippered libraries.
Inverted availability queries were mis-compiled for zippered libraries because
the code that emits calls to `isOSVersionAtLeastOrVariantVersionAtLeast()` was
not updated when the `if #unavailable` syntax was introduced (at that time
support for zippered libraries had not yet been upstreamed). The result of
these calls is now inverted when appropriate.

To make it easier to manage the growing complexity of supporting availability
queries, Sema now models the relevant information about an availability query
with the new `AvailabilityQuery` type. It encapsulates the domain for the
query, the result if it is known at compile time, and the version tuple
arguments to pass to a runtime invocation if applicable.

Resolves rdar://147929876.
2025-07-02 11:23:42 -07:00

548 lines
20 KiB
C++

//===--- DerivedConformanceRawRepresentable.cpp -----------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2025 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements implicit derivation of the RawRepresentable protocol
// for an enum.
//
//===----------------------------------------------------------------------===//
#include "CodeSynthesis.h"
#include "DerivedConformance.h"
#include "TypeCheckAvailability.h"
#include "TypeCheckDecl.h"
#include "TypeChecker.h"
#include "swift/AST/AvailabilityConstraint.h"
#include "swift/AST/AvailabilitySpec.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Expr.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/Pattern.h"
#include "swift/AST/Stmt.h"
#include "swift/AST/Types.h"
#include "swift/Basic/Assertions.h"
#include "llvm/ADT/APInt.h"
using namespace swift;
static LiteralExpr *cloneRawLiteralExpr(ASTContext &C, LiteralExpr *expr) {
LiteralExpr *clone;
if (auto intLit = dyn_cast<IntegerLiteralExpr>(expr)) {
clone = new (C) IntegerLiteralExpr(intLit->getDigitsText(), expr->getLoc(),
/*implicit*/ true);
if (intLit->isNegative())
cast<IntegerLiteralExpr>(clone)->setNegative(expr->getLoc());
} else if (isa<NilLiteralExpr>(expr)) {
clone = new (C) NilLiteralExpr(expr->getLoc());
} else if (auto stringLit = dyn_cast<StringLiteralExpr>(expr)) {
clone = new (C) StringLiteralExpr(stringLit->getValue(), expr->getLoc());
} else if (auto floatLit = dyn_cast<FloatLiteralExpr>(expr)) {
clone = new (C) FloatLiteralExpr(floatLit->getDigitsText(), expr->getLoc(),
/*implicit*/ true);
if (floatLit->isNegative())
cast<FloatLiteralExpr>(clone)->setNegative(expr->getLoc());
} else if (auto boolLit = dyn_cast<BooleanLiteralExpr>(expr)) {
clone = new (C) BooleanLiteralExpr(boolLit->getValue(), expr->getLoc(),
/*implicit*/true);
} else {
llvm_unreachable("invalid raw literal expr");
}
clone->setImplicit();
return clone;
}
static Type deriveRawRepresentable_Raw(DerivedConformance &derived) {
// enum SomeEnum : SomeType {
// @derived
// typealias Raw = SomeType
// }
auto rawInterfaceType = cast<EnumDecl>(derived.Nominal)->getRawType();
return derived.getConformanceContext()->mapTypeIntoContext(rawInterfaceType);
}
static std::pair<BraceStmt *, bool>
deriveBodyRawRepresentable_raw(AbstractFunctionDecl *toRawDecl, void *) {
// enum SomeEnum : SomeType {
// case A = 111, B = 222
// @derived
// var raw: SomeType {
// switch self {
// case A:
// return 111
// case B:
// return 222
// }
// }
// }
auto parentDC = toRawDecl->getDeclContext();
ASTContext &C = parentDC->getASTContext();
auto enumDecl = parentDC->getSelfEnumDecl();
Type rawTy = enumDecl->getRawType();
assert(rawTy);
rawTy = toRawDecl->mapTypeIntoContext(rawTy);
if (enumDecl->isObjC()) {
// Special case: ObjC enums are represented by their raw value, so just use
// a bitcast.
// return unsafeBitCast(self, to: RawType.self)
auto functionRef = UnresolvedDeclRefExpr::createImplicit(
C, C.getIdentifier("unsafeBitCast"), {Identifier(), C.Id_to});
auto selfRef = DerivedConformance::createSelfDeclRef(toRawDecl);
auto bareTypeExpr = TypeExpr::createImplicit(rawTy, C);
auto typeExpr = new (C) DotSelfExpr(bareTypeExpr, SourceLoc(), SourceLoc());
auto *argList = ArgumentList::forImplicitCallTo(functionRef->getName(),
{selfRef, typeExpr}, C);
Expr *call = CallExpr::createImplicit(C, functionRef, argList);
if (C.LangOpts.hasFeature(Feature::StrictMemorySafety, /*allowMigration=*/true))
call = UnsafeExpr::createImplicit(C, SourceLoc(), call);
auto *returnStmt = ReturnStmt::createImplicit(C, call);
auto body = BraceStmt::create(C, SourceLoc(), ASTNode(returnStmt),
SourceLoc());
return { body, /*isTypeChecked=*/false };
}
Type enumType = parentDC->getDeclaredTypeInContext();
SmallVector<CaseStmt *, 4> cases;
for (auto elt : enumDecl->getAllElements()) {
auto *pat = EnumElementPattern::createImplicit(
enumType, elt, /*subPattern*/ nullptr, /*DC*/ toRawDecl);
auto labelItem = CaseLabelItem(pat);
auto returnExpr = cloneRawLiteralExpr(C, elt->getRawValueExpr());
auto *returnStmt = ReturnStmt::createImplicit(C, returnExpr);
auto body = BraceStmt::create(C, SourceLoc(),
ASTNode(returnStmt), SourceLoc());
cases.push_back(CaseStmt::create(C, CaseParentKind::Switch, SourceLoc(),
labelItem, SourceLoc(), SourceLoc(), body,
/*case body var decls*/ std::nullopt));
}
auto selfRef = DerivedConformance::createSelfDeclRef(toRawDecl);
auto switchStmt =
SwitchStmt::createImplicit(LabeledStmtInfo(), selfRef, cases, C);
auto body = BraceStmt::create(C, SourceLoc(),
ASTNode(switchStmt),
SourceLoc());
return { body, /*isTypeChecked=*/false };
}
static void maybeMarkAsInlinable(DerivedConformance &derived,
AbstractFunctionDecl *afd) {
ASTContext &C = derived.Context;
auto parentDC = derived.getConformanceContext();
if (!parentDC->getParentModule()->isResilient()) {
AccessScope access =
afd->getFormalAccessScope(nullptr,
/*treatUsableFromInlineAsPublic*/true);
if (auto *attr = afd->getAttrs().getAttribute<UsableFromInlineAttr>())
attr->setInvalid();
if (access.isPublic())
afd->getAttrs().add(new (C) InlinableAttr(/*implicit*/false));
}
}
static VarDecl *deriveRawRepresentable_raw(DerivedConformance &derived) {
ASTContext &C = derived.Context;
auto enumDecl = cast<EnumDecl>(derived.Nominal);
auto rawInterfaceType = enumDecl->getRawType();
// Define the property.
VarDecl *propDecl;
PatternBindingDecl *pbDecl;
std::tie(propDecl, pbDecl) = derived.declareDerivedProperty(
DerivedConformance::SynthesizedIntroducer::Var, C.Id_rawValue,
rawInterfaceType, /*isStatic=*/false, /*isFinal=*/false);
addNonIsolatedToSynthesized(enumDecl, propDecl);
// Define the getter.
auto getterDecl =
DerivedConformance::addGetterToReadOnlyDerivedProperty(propDecl);
getterDecl->setBodySynthesizer(&deriveBodyRawRepresentable_raw);
// If the containing module is not resilient, make sure clients can get at
// the raw value without function call overhead.
maybeMarkAsInlinable(derived, getterDecl);
derived.addMembersToConformanceContext({propDecl, pbDecl});
return propDecl;
}
/// Contains information needed to synthesize a runtime version check.
struct RuntimeVersionCheck {
PlatformKind Platform;
llvm::VersionTuple Version;
RuntimeVersionCheck(PlatformKind Platform, llvm::VersionTuple Version)
: Platform(Platform), Version(Version)
{ }
VersionRange getVersionRange() const {
return VersionRange::allGTE(Version);
}
/// Synthesizes a statement which returns nil if the runtime version check
/// fails, e.g. "guard #available(iOS 10, *) else { return nil }".
Stmt *createEarlyReturnStmt(ASTContext &C) const {
// platformSpec = "\(attr.platform) \(attr.introduced)"
auto domain = AvailabilityDomain::forPlatform(Platform);
auto platformSpec = AvailabilitySpec::createForDomain(
C, domain, SourceLoc(), Version, SourceLoc());
// wildcardSpec = "*"
auto wildcardSpec = AvailabilitySpec::createWildcard(C, SourceLoc());
// availableInfo = "#available(\(platformSpec), \(wildcardSpec))"
auto availableInfo = PoundAvailableInfo::create(
C, SourceLoc(), SourceLoc(), {platformSpec, wildcardSpec}, SourceLoc(),
false);
// This won't be filled in by TypeCheckAvailability because we have
// invalid SourceLocs in this area of the AST.
availableInfo->setAvailabilityQuery(AvailabilityQuery::dynamic(
domain, /*isUnavailable=*/false, AvailabilityRange(getVersionRange()),
std::nullopt));
// earlyReturnBody = "{ return nil }"
auto earlyReturn = new (C) FailStmt(SourceLoc(), SourceLoc());
auto earlyReturnBody = BraceStmt::create(C, SourceLoc(),
ASTNode(earlyReturn),
SourceLoc(), /*implicit=*/true);
// guardStmt = "guard \(availableInfo) else \(earlyReturnBody)"
StmtConditionElement conds[1] = { availableInfo };
auto guardStmt = new (C) GuardStmt(SourceLoc(), C.AllocateCopy(conds),
earlyReturnBody, /*implicit=*/true);
return guardStmt;
}
};
/// Checks if the case will be available at runtime given the current target
/// platform. If it will never be available, returns false. If it will always
/// be available, returns true. If it will sometimes be available, adds
/// information about the runtime check needed to ensure it is available to
/// \c versionCheck and returns true.
static bool
checkAvailability(const EnumElementDecl *elt,
AvailabilityContext availabilityContext,
std::optional<RuntimeVersionCheck> &versionCheck) {
auto &C = elt->getASTContext();
auto constraint = getAvailabilityConstraintsForDecl(elt, availabilityContext)
.getPrimaryConstraint();
// Is it always available?
if (!constraint)
return true;
// Is it never available?
if (constraint->isUnavailable())
return false;
// Some constraints are active for type checking but can't translate to
// runtime restrictions.
if (!constraint->isActiveForRuntimeQueries(C))
return true;
auto domainAndRange = constraint->getDomainAndRange(C);
// Only platform version constraints are supported currently.
// FIXME: [availability] Support non-platform domain availability checks
if (!domainAndRange.getDomain().isPlatform())
return true;
// It's conditionally available; create a version constraint and return true.
versionCheck.emplace(domainAndRange.getDomain().getPlatformKind(),
domainAndRange.getRange().getRawMinimumVersion());
return true;
}
static std::pair<BraceStmt *, bool>
deriveBodyRawRepresentable_init(AbstractFunctionDecl *initDecl, void *) {
// enum SomeEnum : SomeType {
// case A = 111, B = 222
// @available(iOS 10, *) case C = 333
// @derived
// init?(rawValue: SomeType) {
// switch rawValue {
// case 111:
// self = .A
// case 222:
// self = .B
// case 333:
// guard #available(iOS 10, *) else { return nil }
// self = .C
// default:
// return nil
// }
// }
// }
auto parentDC = initDecl->getDeclContext();
ASTContext &C = parentDC->getASTContext();
auto availabilityContext = AvailabilityContext::forDeploymentTarget(C);
auto nominalTypeDecl = parentDC->getSelfNominalTypeDecl();
auto enumDecl = cast<EnumDecl>(nominalTypeDecl);
Type rawTy = enumDecl->getRawType();
assert(rawTy);
rawTy = initDecl->mapTypeIntoContext(rawTy);
bool isStringEnum = rawTy->isString();
llvm::SmallVector<Expr *, 16> stringExprs;
Type enumType = parentDC->getDeclaredTypeInContext();
auto selfDecl = cast<ConstructorDecl>(initDecl)->getImplicitSelfDecl();
SmallVector<CaseStmt *, 4> cases;
unsigned Idx = 0;
for (auto elt : enumDecl->getAllElements()) {
// First, check case availability. If the case will definitely be
// unavailable, skip it. If it might be unavailable at runtime, save
// information about that check in versionCheck and keep processing this
// element.
std::optional<RuntimeVersionCheck> versionCheck(std::nullopt);
if (!checkAvailability(elt, availabilityContext, versionCheck))
continue;
// litPat = elt.rawValueExpr as a pattern
LiteralExpr *litExpr = cloneRawLiteralExpr(C, elt->getRawValueExpr());
if (isStringEnum) {
// In case of a string enum we are calling the _findStringSwitchCase
// function from the library and switching on the returned Int value.
stringExprs.push_back(litExpr);
litExpr = IntegerLiteralExpr::createFromUnsigned(C, Idx, SourceLoc());
}
auto *litPat = ExprPattern::createImplicit(C, litExpr, /*DC*/ initDecl);
/// Statements in the body of this case.
SmallVector<ASTNode, 2> stmts;
// If checkAvailability() discovered we need a runtime version check,
// add it now.
if (versionCheck.has_value())
stmts.push_back(ASTNode(versionCheck->createEarlyReturnStmt(C)));
// Create a statement which assigns the case to self.
// valueExpr = "\(enumType).\(elt)"
auto metaTyRef = TypeExpr::createImplicit(enumType, C);
auto valueExpr = new (C) MemberRefExpr(metaTyRef, SourceLoc(),
elt, DeclNameLoc(), /*implicit*/true);
// assignment = "self = \(valueExpr)"
auto selfRef = new (C) DeclRefExpr(selfDecl, DeclNameLoc(),
/*implicit*/true,
AccessSemantics::DirectToStorage);
auto assignment = new (C) AssignExpr(selfRef, SourceLoc(), valueExpr,
/*implicit*/ true);
stmts.push_back(ASTNode(assignment));
// body = "{ \(stmts) }" (the braces are silent)
auto body = BraceStmt::create(C, SourceLoc(),
stmts, SourceLoc());
// cases.append("case \(litPat): \(body)")
cases.push_back(CaseStmt::create(C, CaseParentKind::Switch, SourceLoc(),
CaseLabelItem(litPat), SourceLoc(),
SourceLoc(), body,
/*case body var decls*/ std::nullopt));
++Idx;
}
auto anyPat = AnyPattern::createImplicit(C);
auto dfltLabelItem = CaseLabelItem::getDefault(anyPat);
auto dfltReturnStmt = new (C) FailStmt(SourceLoc(), SourceLoc());
auto dfltBody = BraceStmt::create(C, SourceLoc(),
ASTNode(dfltReturnStmt), SourceLoc());
cases.push_back(CaseStmt::create(C, CaseParentKind::Switch, SourceLoc(),
dfltLabelItem, SourceLoc(), SourceLoc(),
dfltBody,
/*case body var decls*/ std::nullopt));
auto rawDecl = initDecl->getParameters()->get(0);
auto rawRef = new (C) DeclRefExpr(rawDecl, DeclNameLoc(), /*implicit*/true);
Expr *switchArg = rawRef;
if (isStringEnum) {
// Call _findStringSwitchCase with an array of strings as argument.
auto *Fun = UnresolvedDeclRefExpr::createImplicit(
C, C.getIdentifier("_findStringSwitchCase"));
auto *strArray = ArrayExpr::create(C, SourceLoc(), stringExprs, {},
SourceLoc());
Argument args[] = {
Argument(SourceLoc(), C.getIdentifier("cases"), strArray),
Argument(SourceLoc(), C.getIdentifier("string"), rawRef)
};
auto *argList = ArgumentList::createImplicit(C, args);
switchArg = CallExpr::createImplicit(C, Fun, argList);
}
auto switchStmt =
SwitchStmt::createImplicit(LabeledStmtInfo(), switchArg, cases, C);
auto body = BraceStmt::create(C, SourceLoc(),
ASTNode(switchStmt),
SourceLoc());
return { body, /*isTypeChecked=*/false };
}
static ConstructorDecl *
deriveRawRepresentable_init(DerivedConformance &derived) {
ASTContext &C = derived.Context;
auto enumDecl = cast<EnumDecl>(derived.Nominal);
auto parentDC = derived.getConformanceContext();
auto rawInterfaceType = enumDecl->getRawType();
auto rawType = parentDC->mapTypeIntoContext(rawInterfaceType);
assert([&]() -> bool {
return TypeChecker::conformsToKnownProtocol(
rawType, KnownProtocolKind::Equatable);
}());
auto *rawDecl = new (C)
ParamDecl(SourceLoc(), SourceLoc(),
C.Id_rawValue, SourceLoc(), C.Id_rawValue, parentDC);
rawDecl->setSpecifier(ParamSpecifier::Default);
rawDecl->setInterfaceType(rawInterfaceType);
rawDecl->setImplicit();
auto paramList = ParameterList::createWithoutLoc(rawDecl);
DeclName name(C, DeclBaseName::createConstructor(), paramList);
auto initDecl =
new (C) ConstructorDecl(name, SourceLoc(),
/*Failable=*/true, /*FailabilityLoc=*/SourceLoc(),
/*Async=*/false, /*AsyncLoc=*/SourceLoc(),
/*Throws=*/false, /*ThrowsLoc=*/SourceLoc(),
/*ThrownType=*/TypeLoc(), paramList,
/*GenericParams=*/nullptr, parentDC);
initDecl->setImplicit();
initDecl->setBodySynthesizer(&deriveBodyRawRepresentable_init);
addNonIsolatedToSynthesized(enumDecl, initDecl);
initDecl->copyFormalAccessFrom(enumDecl, /*sourceIsParentContext*/true);
// If the containing module is not resilient, make sure clients can construct
// an instance without function call overhead.
maybeMarkAsInlinable(derived, initDecl);
derived.addMembersToConformanceContext({initDecl});
return initDecl;
}
bool DerivedConformance::canDeriveRawRepresentable(DeclContext *DC,
NominalTypeDecl *type) {
auto enumDecl = dyn_cast<EnumDecl>(type);
if (!enumDecl)
return false;
Type rawType = enumDecl->getRawType();
if (!rawType || rawType->hasError())
return false;
if (!computeAutomaticEnumValueKind(enumDecl))
return false;
rawType = DC->mapTypeIntoContext(rawType);
auto inherited = enumDecl->getInherited().getEntries();
if (!inherited.empty() && inherited.front().wasValidated() &&
inherited.front().isError())
return false;
// The raw type must be Equatable, so that we have a suitable ~= for
// synthesized switch statements.
if (!TypeChecker::conformsToKnownProtocol(rawType, KnownProtocolKind::Equatable))
return false;
auto &C = type->getASTContext();
auto rawValueDecls = enumDecl->lookupDirect(DeclName(C.Id_RawValue));
if (rawValueDecls.size() > 1)
return false;
// Check that the RawValue matches the expected raw type.
if (!rawValueDecls.empty()) {
if (auto alias = dyn_cast<TypeDecl>(rawValueDecls.front())) {
auto ty = alias->getDeclaredInterfaceType();
if (!DC->mapTypeIntoContext(ty)->isEqual(rawType)) {
return false;
}
}
}
// There must be enum elements.
if (enumDecl->getAllElements().empty())
return false;
// Have the type-checker validate that:
// - the enum elements all have the same type
// - they all match the enum type
for (auto elt : enumDecl->getAllElements()) {
// We cannot synthesize raw representable conformance for an enum with
// cases that have a payload.
if (elt->hasAssociatedValues())
return false;
if (elt->isInvalid()) {
return false;
}
}
// If it meets all of those requirements, we can synthesize RawRepresentable conformance.
return true;
}
ValueDecl *DerivedConformance::deriveRawRepresentable(ValueDecl *requirement) {
// Check preconditions for synthesized conformance.
if (!canDeriveRawRepresentable(cast<DeclContext>(ConformanceDecl), Nominal))
return nullptr;
if (requirement->getBaseName() == Context.Id_rawValue)
return deriveRawRepresentable_raw(*this);
if (requirement->getBaseName().isConstructor())
return deriveRawRepresentable_init(*this);
Context.Diags.diagnose(requirement->getLoc(),
diag::broken_raw_representable_requirement);
return nullptr;
}
Type DerivedConformance::deriveRawRepresentable(AssociatedTypeDecl *assocType) {
// Check preconditions for synthesized conformance.
if (!canDeriveRawRepresentable(cast<DeclContext>(ConformanceDecl), Nominal))
return nullptr;
if (assocType->getName() == Context.Id_RawValue) {
return deriveRawRepresentable_Raw(*this);
}
Context.Diags.diagnose(assocType->getLoc(),
diag::broken_raw_representable_requirement);
return nullptr;
}