mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Issue: When using a densemap subscript expression on both sides of an assignment in the same statement of the same map we run into the issue that the map can reallocate because of the assignment but we are referencing the value of the RHS map subscript by reference -- i.e we can reference deallocated memory. Not good. Scope: A "silent" memory error that one might run into including the reporter of the bug. Risk: Extremely, low. The fix is spliting an assignment from a map value to a map entry into: A value assignment of the map value to a local. And then storing the local in the map entry forgoing the reference of reallocated memory bug. ``` valueMap[bfi] = valueMap[bfi->getBorrowedValue()]; => auto mappedMValue = valueMap[bfi->getBorrowedValue()]; valueMap[bfi] = mappedValue; ``` Reviewed by: Meghana G, Erik E., Joe G. Testing: The fix was tested on the reporting project. rdar://151031297
543 lines
20 KiB
C++
543 lines
20 KiB
C++
//===--- LoopRotate.cpp - Loop structure simplify -------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-looprotate"
|
|
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/SIL/Dominance.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SILOptimizer/Analysis/Analysis.h"
|
|
#include "swift/SILOptimizer/Analysis/DeadEndBlocksAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
|
|
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/LoopUtils.h"
|
|
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
|
|
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
|
|
#include "swift/SILOptimizer/Utils/SILInliner.h"
|
|
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
using namespace swift;
|
|
|
|
/// The size limit for the loop block to duplicate.
|
|
///
|
|
/// Larger blocks will not be duplicated to avoid too much code size increase.
|
|
/// It's very seldom that the default value of 20 is exceeded (< 0.3% of all
|
|
/// loops in the swift benchmarks).
|
|
static llvm::cl::opt<int> LoopRotateSizeLimit("looprotate-size-limit",
|
|
llvm::cl::init(20));
|
|
static llvm::cl::opt<bool> RotateSingleBlockLoop("looprotate-single-block-loop",
|
|
llvm::cl::init(false));
|
|
static llvm::cl::opt<bool>
|
|
LoopRotateInfiniteBudget("looprotate-infinite-budget",
|
|
llvm::cl::init(false));
|
|
|
|
static bool rotateLoop(SILLoop *loop, DominanceInfo *domInfo,
|
|
SILLoopInfo *loopInfo, bool rotateSingleBlockLoops,
|
|
SILBasicBlock *upToBB, SILPassManager *pm);
|
|
|
|
/// Check whether all operands are loop invariant.
|
|
static bool
|
|
hasLoopInvariantOperands(SILInstruction *inst, SILLoop *loop,
|
|
llvm::DenseSet<SILInstruction *> &invariant) {
|
|
auto operands = inst->getAllOperands();
|
|
|
|
return llvm::all_of(operands, [=](Operand &operand) {
|
|
ValueBase *def = operand.get();
|
|
// Operand is outside the loop or marked invariant.
|
|
if (auto *inst = def->getDefiningInstruction())
|
|
return !loop->contains(inst->getParent()) || invariant.count(inst);
|
|
if (auto *arg = dyn_cast<SILArgument>(def))
|
|
return !loop->contains(arg->getParent());
|
|
|
|
return false;
|
|
});
|
|
}
|
|
|
|
/// We cannot duplicate blocks with AllocStack instructions (they need to be
|
|
/// FIFO). Other instructions can be moved to the preheader.
|
|
static bool
|
|
canDuplicateOrMoveToPreheader(SILLoop *loop, SILBasicBlock *preheader,
|
|
SILBasicBlock *bb,
|
|
SmallVectorImpl<SILInstruction *> &moves,
|
|
SinkAddressProjections &sinkProj) {
|
|
llvm::DenseSet<SILInstruction *> invariants;
|
|
int cost = 0;
|
|
for (auto &instRef : *bb) {
|
|
auto *inst = &instRef;
|
|
if (!inst->isTriviallyDuplicatable()) {
|
|
return false;
|
|
}
|
|
// It wouldn't make sense to rotate dealloc_stack without also rotating the
|
|
// alloc_stack, which is covered by isTriviallyDuplicatable.
|
|
if (isa<DeallocStackInst>(inst)) {
|
|
return false;
|
|
}
|
|
if (isa<FunctionRefInst>(inst)) {
|
|
moves.push_back(inst);
|
|
invariants.insert(inst);
|
|
continue;
|
|
}
|
|
if (isa<DynamicFunctionRefInst>(inst)) {
|
|
moves.push_back(inst);
|
|
invariants.insert(inst);
|
|
continue;
|
|
}
|
|
if (isa<PreviousDynamicFunctionRefInst>(inst)) {
|
|
moves.push_back(inst);
|
|
invariants.insert(inst);
|
|
continue;
|
|
}
|
|
if (isa<IntegerLiteralInst>(inst)) {
|
|
moves.push_back(inst);
|
|
invariants.insert(inst);
|
|
continue;
|
|
}
|
|
if (auto *MI = dyn_cast<MethodInst>(inst)) {
|
|
if (MI->getMember().isForeign)
|
|
return false;
|
|
if (!hasLoopInvariantOperands(inst, loop, invariants))
|
|
continue;
|
|
moves.push_back(inst);
|
|
invariants.insert(inst);
|
|
continue;
|
|
}
|
|
if (!inst->mayHaveSideEffects() && !inst->mayReadFromMemory() &&
|
|
!isa<TermInst>(inst) &&
|
|
!isa<AllocationInst>(inst) && /* not marked mayhavesideeffects */
|
|
!hasOwnershipOperandsOrResults(inst) &&
|
|
hasLoopInvariantOperands(inst, loop, invariants)) {
|
|
moves.push_back(inst);
|
|
invariants.insert(inst);
|
|
continue;
|
|
}
|
|
if (!sinkProj.analyzeAddressProjections(inst)) {
|
|
return false;
|
|
}
|
|
|
|
cost += (int)instructionInlineCost(instRef);
|
|
}
|
|
|
|
return cost < LoopRotateSizeLimit || LoopRotateInfiniteBudget;
|
|
}
|
|
|
|
static void mapOperands(SILInstruction *inst,
|
|
const llvm::DenseMap<ValueBase *, SILValue> &valueMap) {
|
|
for (auto &operand : inst->getAllOperands()) {
|
|
SILValue origVal = operand.get();
|
|
ValueBase *origDef = origVal;
|
|
auto found = valueMap.find(origDef);
|
|
if (found != valueMap.end()) {
|
|
SILValue mappedVal = found->second;
|
|
operand.set(mappedVal);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void updateSSAForUseOfValue(
|
|
SILSSAUpdater &updater, SmallVectorImpl<SILPhiArgument *> &insertedPhis,
|
|
const llvm::DenseMap<ValueBase *, SILValue> &valueMap,
|
|
SILBasicBlock *Header, SILBasicBlock *EntryCheckBlock, SILValue Res,
|
|
SILPassManager *pm) {
|
|
// Find the mapped instruction.
|
|
assert(valueMap.count(Res) && "Expected to find value in map!");
|
|
SILValue MappedValue = valueMap.find(Res)->second;
|
|
assert(MappedValue);
|
|
assert(Res->getType() == MappedValue->getType() && "The types must match");
|
|
|
|
insertedPhis.clear();
|
|
updater.initialize(MappedValue->getFunction(), Res->getType(),
|
|
Res->getOwnershipKind());
|
|
updater.addAvailableValue(Header, Res);
|
|
updater.addAvailableValue(EntryCheckBlock, MappedValue);
|
|
|
|
// Because of the way that phi nodes are represented we have to collect all
|
|
// uses before we update SSA. Modifying one phi node can invalidate another
|
|
// unrelated phi nodes operands through the common branch instruction (that
|
|
// has to be modified). This would invalidate a plain ValueUseIterator.
|
|
// Instead we collect uses wrapping uses in branches specially so that we
|
|
// can reconstruct the use even after the branch has been modified.
|
|
SmallVector<UseWrapper, 8> storedUses;
|
|
for (auto *use : Res->getUses())
|
|
storedUses.push_back(UseWrapper(use));
|
|
for (auto useWrapper : storedUses) {
|
|
Operand *use = useWrapper;
|
|
SILInstruction *user = use->getUser();
|
|
assert(user && "Missing user");
|
|
|
|
// Ignore uses in the same basic block.
|
|
if (user->getParent() == Header)
|
|
continue;
|
|
|
|
assert(user->getParent() != EntryCheckBlock &&
|
|
"The entry check block should dominate the header");
|
|
updater.rewriteUse(*use);
|
|
}
|
|
|
|
replacePhisWithIncomingValues(pm, insertedPhis);
|
|
}
|
|
|
|
static void
|
|
updateSSAForUseOfInst(SILSSAUpdater &updater,
|
|
SmallVectorImpl<SILPhiArgument *> &insertedPhis,
|
|
const llvm::DenseMap<ValueBase *, SILValue> &valueMap,
|
|
SILBasicBlock *header, SILBasicBlock *entryCheckBlock,
|
|
SILInstruction *inst, SILPassManager *pm) {
|
|
for (auto result : inst->getResults())
|
|
updateSSAForUseOfValue(updater, insertedPhis, valueMap, header,
|
|
entryCheckBlock, result, pm);
|
|
}
|
|
|
|
/// Rewrite the code we just created in the preheader and update SSA form.
|
|
static void rewriteNewLoopEntryCheckBlock(
|
|
SILBasicBlock *header, SILBasicBlock *entryCheckBlock,
|
|
const llvm::DenseMap<ValueBase *, SILValue> &valueMap,
|
|
SILPassManager *pm) {
|
|
SmallVector<SILPhiArgument *, 8> insertedPhis;
|
|
SILSSAUpdater updater(&insertedPhis);
|
|
|
|
// Fix PHIs (incoming arguments). We iterate by index in case we replace the
|
|
// phi argument so we do not invalidate iterators.
|
|
for (unsigned i : range(header->getNumArguments())) {
|
|
auto *arg = header->getArguments()[i];
|
|
updateSSAForUseOfValue(updater, insertedPhis, valueMap, header,
|
|
entryCheckBlock, arg, pm);
|
|
}
|
|
|
|
auto instIter = header->begin();
|
|
|
|
// The terminator might change from under us.
|
|
while (instIter != header->end()) {
|
|
auto &inst = *instIter;
|
|
updateSSAForUseOfInst(updater, insertedPhis, valueMap, header,
|
|
entryCheckBlock, &inst, pm);
|
|
++instIter;
|
|
}
|
|
}
|
|
|
|
/// Update the dominator tree after rotating the loop.
|
|
/// The former preheader now dominates all of the former headers children. The
|
|
/// former latch now dominates the former header.
|
|
static void updateDomTree(DominanceInfo *domInfo, SILBasicBlock *preheader,
|
|
SILBasicBlock *latch, SILBasicBlock *header) {
|
|
auto *headerN = domInfo->getNode(header);
|
|
SmallVector<DominanceInfoNode *, 4> Children(headerN->begin(),
|
|
headerN->end());
|
|
auto *preheaderN = domInfo->getNode(preheader);
|
|
for (auto *Child : Children)
|
|
domInfo->changeImmediateDominator(Child, preheaderN);
|
|
|
|
if (header != latch)
|
|
domInfo->changeImmediateDominator(headerN, domInfo->getNode(latch));
|
|
}
|
|
|
|
static bool rotateLoopAtMostUpToLatch(SILLoop *loop, DominanceInfo *domInfo,
|
|
SILLoopInfo *loopInfo, SILPassManager *pm) {
|
|
auto *latch = loop->getLoopLatch();
|
|
if (!latch) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< *loop << " does not have a single latch block\n");
|
|
return false;
|
|
}
|
|
|
|
bool didRotate = rotateLoop(
|
|
loop, domInfo, loopInfo,
|
|
RotateSingleBlockLoop /* rotateSingleBlockLoops */, latch, pm);
|
|
|
|
// Keep rotating at most until we hit the original latch.
|
|
if (didRotate)
|
|
while (rotateLoop(loop, domInfo, loopInfo, false, latch, pm)) {
|
|
}
|
|
|
|
return didRotate;
|
|
}
|
|
|
|
/// Check whether this a single basic block loop - ignoring split back edges.
|
|
static bool isSingleBlockLoop(SILLoop *L) {
|
|
auto Blocks = L->getBlocks();
|
|
auto NumBlocks = Blocks.size();
|
|
if (NumBlocks > 2)
|
|
return false;
|
|
|
|
if (NumBlocks == 1)
|
|
return true;
|
|
|
|
auto *header = L->getHeader();
|
|
auto *BackEdge = Blocks[1];
|
|
if (BackEdge == header)
|
|
BackEdge = Blocks[0];
|
|
|
|
if (!BackEdge->getSingleSuccessorBlock())
|
|
return false;
|
|
|
|
assert(BackEdge->getSingleSuccessorBlock() == header
|
|
&& "Loop not well formed");
|
|
|
|
// Check whether the back-edge block is just a split-edge.
|
|
for (SILInstruction &inst : make_range(BackEdge->begin(), --BackEdge->end())) {
|
|
if (instructionInlineCost(inst) != InlineCost::Free)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// We rotated a loop if it has the following properties.
|
|
///
|
|
/// * It has an exiting header with a conditional branch.
|
|
/// * It has a preheader (the function will try to create one for critical edges
|
|
/// from cond_br).
|
|
///
|
|
/// We will rotate at most up to the basic block passed as an argument.
|
|
/// We will not rotate a loop where the header is equal to the latch except is
|
|
/// rotateSingleBlockLoops is true.
|
|
///
|
|
/// Note: The code relies on the 'UpTo' basic block to stay within the rotate
|
|
/// loop for termination.
|
|
static bool rotateLoop(SILLoop *loop, DominanceInfo *domInfo,
|
|
SILLoopInfo *loopInfo, bool rotateSingleBlockLoops,
|
|
SILBasicBlock *upToBB, SILPassManager *pm) {
|
|
assert(loop != nullptr && domInfo != nullptr && loopInfo != nullptr
|
|
&& "Missing loop information");
|
|
|
|
auto *header = loop->getHeader();
|
|
if (!header)
|
|
return false;
|
|
|
|
// We need a preheader - this is also a canonicalization for follow-up
|
|
// passes.
|
|
auto *preheader = loop->getLoopPreheader();
|
|
if (!preheader) {
|
|
LLVM_DEBUG(llvm::dbgs() << *loop << " no preheader\n");
|
|
LLVM_DEBUG(loop->getHeader()->getParent()->dump());
|
|
return false;
|
|
}
|
|
|
|
if (!rotateSingleBlockLoops && (header == upToBB || isSingleBlockLoop(loop)))
|
|
return false;
|
|
|
|
assert(rotateSingleBlockLoops || loop->getBlocks().size() != 1);
|
|
|
|
// Need a conditional branch that guards the entry into the loop.
|
|
auto *loopEntryBranch = dyn_cast<CondBranchInst>(header->getTerminator());
|
|
if (!loopEntryBranch)
|
|
return false;
|
|
|
|
// The header needs to exit the loop.
|
|
if (!loop->isLoopExiting(header)) {
|
|
LLVM_DEBUG(llvm::dbgs() << *loop << " not an exiting header\n");
|
|
LLVM_DEBUG(loop->getHeader()->getParent()->dump());
|
|
return false;
|
|
}
|
|
|
|
// We need a single backedge and the latch must not exit the loop if it is
|
|
// also the header.
|
|
auto *latch = loop->getLoopLatch();
|
|
if (!latch) {
|
|
LLVM_DEBUG(llvm::dbgs() << *loop << " no single latch\n");
|
|
return false;
|
|
}
|
|
|
|
// Make sure we can duplicate the header.
|
|
SmallVector<SILInstruction *, 8> moveToPreheader;
|
|
SinkAddressProjections sinkProj;
|
|
if (!canDuplicateOrMoveToPreheader(loop, preheader, header, moveToPreheader,
|
|
sinkProj)) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< *loop << " instructions in header preventing rotating\n");
|
|
return false;
|
|
}
|
|
|
|
auto *newHeader = loopEntryBranch->getTrueBB();
|
|
auto *exit = loopEntryBranch->getFalseBB();
|
|
if (loop->contains(exit))
|
|
std::swap(newHeader, exit);
|
|
assert(loop->contains(newHeader) && !loop->contains(exit)
|
|
&& "Could not find loop header and exit block");
|
|
|
|
// It does not make sense to rotate the loop if the new header is loop
|
|
// exiting as well.
|
|
if (loop->isLoopExiting(newHeader)) {
|
|
return false;
|
|
}
|
|
|
|
// Incomplete liveranges in the dead-end exit block can cause a missing adjacent
|
|
// phi-argument for a re-borrow if there is a borrow-scope is in the loop.
|
|
// But even when we have complete lifetimes, it's probably not worth rotating
|
|
// a loop where the header block branches to a dead-end block.
|
|
auto *deBlocks = pm->getAnalysis<DeadEndBlocksAnalysis>()->get(exit->getParent());
|
|
if (deBlocks->isDeadEnd(exit)) {
|
|
return false;
|
|
}
|
|
|
|
// We don't want to rotate such that we merge two headers of separate loops
|
|
// into one. This can be turned into an assert again once we have guaranteed
|
|
// preheader insertions.
|
|
if (!newHeader->getSinglePredecessorBlock() && header != latch)
|
|
return false;
|
|
|
|
// Now that we know we can perform the rotation - move the instructions that
|
|
// need moving.
|
|
for (auto *inst : moveToPreheader)
|
|
inst->moveBefore(preheader->getTerminator());
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " Rotating " << *loop);
|
|
|
|
// Map the values for the duplicated header block. We are duplicating the
|
|
// header instructions into the end of the preheader.
|
|
llvm::DenseMap<ValueBase *, SILValue> valueMap;
|
|
|
|
// The original 'phi' argument values are just the values coming from the
|
|
// preheader edge.
|
|
ArrayRef<SILArgument *> phis = header->getArguments();
|
|
OperandValueArrayRef preheaderArgs =
|
|
cast<BranchInst>(preheader->getTerminator())->getArgs();
|
|
assert(phis.size() == preheaderArgs.size()
|
|
&& "Basic block arguments and incoming edge mismatch");
|
|
|
|
// Here we also store the value index to use into the value map (versus
|
|
// non-argument values where the operand use decides which value index to
|
|
// use).
|
|
for (unsigned Idx = 0, E = phis.size(); Idx != E; ++Idx)
|
|
valueMap[phis[Idx]] = preheaderArgs[Idx];
|
|
|
|
// The other instructions are just cloned to the preheader.
|
|
TermInst *preheaderBranch = preheader->getTerminator();
|
|
|
|
// sink address projections to avoid address phis.
|
|
for (auto &inst : *header) {
|
|
bool success = sinkProj.analyzeAddressProjections(&inst);
|
|
assert(success);
|
|
sinkProj.cloneProjections();
|
|
}
|
|
|
|
for (auto &inst : *header) {
|
|
if (auto *bfi = dyn_cast<BorrowedFromInst>(&inst)) {
|
|
auto mappedValue = valueMap[bfi->getBorrowedValue()];
|
|
valueMap[bfi] = mappedValue;
|
|
} else if (SILInstruction *cloned = inst.clone(preheaderBranch)) {
|
|
mapOperands(cloned, valueMap);
|
|
|
|
// The actual operand will sort out which result idx to use.
|
|
auto instResults = inst.getResults();
|
|
auto clonedResults = cloned->getResults();
|
|
assert(instResults.size() == clonedResults.size());
|
|
for (auto i : indices(instResults))
|
|
valueMap[instResults[i]] = clonedResults[i];
|
|
}
|
|
}
|
|
|
|
preheaderBranch->dropAllReferences();
|
|
preheaderBranch->eraseFromParent();
|
|
|
|
// If there were any uses of instructions in the duplicated loop entry check
|
|
// block rewrite them using the ssa updater.
|
|
rewriteNewLoopEntryCheckBlock(header, preheader, valueMap, pm);
|
|
|
|
loop->moveToHeader(newHeader);
|
|
|
|
// Now the original preheader dominates all of headers children and the
|
|
// original latch dominates the header.
|
|
updateDomTree(domInfo, preheader, latch, header);
|
|
|
|
assert(domInfo->getNode(newHeader)->getIDom() == domInfo->getNode(preheader));
|
|
assert(!domInfo->dominates(header, exit)
|
|
|| domInfo->getNode(exit)->getIDom() == domInfo->getNode(preheader));
|
|
assert(domInfo->getNode(header)->getIDom() == domInfo->getNode(latch)
|
|
|| ((header == latch)
|
|
&& domInfo->getNode(header)->getIDom()
|
|
== domInfo->getNode(preheader)));
|
|
|
|
// Beautify the IR. Move the old header to after the old latch as it is now
|
|
// the latch.
|
|
header->getParent()->moveBlockAfter(header, latch);
|
|
|
|
// Merge the old latch with the old header if possible.
|
|
if (mergeBasicBlockWithSuccessor(latch, domInfo, loopInfo))
|
|
newHeader = latch; // The old Header is gone. Latch is now the Header.
|
|
|
|
// Cloning the header into the preheader created critical edges from the
|
|
// preheader and original header to both the new header and loop exit.
|
|
splitCriticalEdgesFrom(preheader, domInfo, loopInfo);
|
|
splitCriticalEdgesFrom(newHeader, domInfo, loopInfo);
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << " to " << *loop);
|
|
LLVM_DEBUG(loop->getHeader()->getParent()->dump());
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class LoopRotation : public SILFunctionTransform {
|
|
|
|
void run() override {
|
|
#ifndef SWIFT_ENABLE_SWIFT_IN_SWIFT
|
|
// This pass results in verification failures when Swift sources are not
|
|
// enabled.
|
|
LLVM_DEBUG(llvm::dbgs() << "Loop Rotate disabled in C++-only Swift compiler\n");
|
|
return;
|
|
#endif // !SWIFT_ENABLE_SWIFT_IN_SWIFT
|
|
SILFunction *f = getFunction();
|
|
SILLoopAnalysis *loopAnalysis = PM->getAnalysis<SILLoopAnalysis>();
|
|
DominanceAnalysis *domAnalysis = PM->getAnalysis<DominanceAnalysis>();
|
|
SILLoopInfo *loopInfo = loopAnalysis->get(f);
|
|
DominanceInfo *domInfo = domAnalysis->get(f);
|
|
|
|
if (loopInfo->empty()) {
|
|
LLVM_DEBUG(llvm::dbgs() << "No loops in " << f->getName() << "\n");
|
|
return;
|
|
}
|
|
LLVM_DEBUG(llvm::dbgs() << "Rotating loops in " << f->getName() << "\n");
|
|
|
|
bool changed = false;
|
|
for (auto *LoopIt : *loopInfo) {
|
|
// Rotate loops recursively bottom-up in the loop tree.
|
|
SmallVector<SILLoop *, 8> worklist;
|
|
worklist.push_back(LoopIt);
|
|
for (unsigned i = 0; i < worklist.size(); ++i) {
|
|
auto *L = worklist[i];
|
|
for (auto *SubLoop : *L)
|
|
worklist.push_back(SubLoop);
|
|
}
|
|
|
|
while (!worklist.empty()) {
|
|
SILLoop *loop = worklist.pop_back_val();
|
|
changed |= canonicalizeLoop(loop, domInfo, loopInfo);
|
|
changed |=
|
|
rotateLoopAtMostUpToLatch(loop, domInfo, loopInfo, getPassManager());
|
|
}
|
|
}
|
|
|
|
if (changed) {
|
|
updateAllGuaranteedPhis(PM, f);
|
|
// We preserve loop info and the dominator tree.
|
|
domAnalysis->lockInvalidation();
|
|
loopAnalysis->lockInvalidation();
|
|
PM->invalidateAnalysis(f, SILAnalysis::InvalidationKind::FunctionBody);
|
|
domAnalysis->unlockInvalidation();
|
|
loopAnalysis->unlockInvalidation();
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
SILTransform *swift::createLoopRotate() {
|
|
return new LoopRotation();
|
|
}
|