Files
swift-mirror/include/swift/AST/Module.h
Alexis Laferrière 5a49e34426 Serialization: Error on xref to implementation-only dependencies
Introduce a last resort check reporting references to
implementation-only dependencies that would appear in the generated
swiftmodule. This check is applied at serialization, long after
exportability checking applied at typechecking. It should act as a back
stop to references missed by typechecking or @_implementationOnly decls
that should have been skipped.

This check is gated behind CheckImplementationOnlyStrict and should be
used with embedded only.

rdar://160697599
2025-11-11 13:03:16 -08:00

1344 lines
50 KiB
C++

//===--- Module.h - Swift Language Module ASTs ------------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the Module class and its subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_MODULE_H
#define SWIFT_MODULE_H
#include "swift/AST/AccessNotes.h"
#include "swift/AST/AttrKind.h"
#include "swift/AST/AvailabilityDomain.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DeclContext.h"
#include "swift/AST/Identifier.h"
#include "swift/AST/Import.h"
#include "swift/AST/LookupKinds.h"
#include "swift/AST/Type.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/BasicSourceInfo.h"
#include "swift/Basic/CXXStdlibKind.h"
#include "swift/Basic/Compiler.h"
#include "swift/Basic/Debug.h"
#include "swift/Basic/OptionSet.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/SourceLoc.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MD5.h"
#include <optional>
#include <set>
#include <unordered_map>
namespace clang {
class Module;
}
namespace swift {
enum class ArtificialMainKind : uint8_t;
class ASTContext;
class ASTWalker;
class CustomAvailabilityDomain;
class Decl;
class DeclAttribute;
class TypeDecl;
enum class DeclKind : uint8_t;
class DebuggerClient;
class DeclName;
class FileUnit;
class FuncDecl;
enum class LibraryLevel : uint8_t;
class LinkLibrary;
class ModuleLoader;
class NominalTypeDecl;
class EnumElementDecl;
class OperatorDecl;
class PostfixOperatorDecl;
class PrefixOperatorDecl;
class ProtocolConformance;
struct PrintOptions;
class SourceLookupCache;
class Type;
class ValueDecl;
class VisibleDeclConsumer;
/// Discriminator for file-units.
enum class FileUnitKind {
/// For a .swift source file.
Source,
/// For the compiler Builtin module.
Builtin,
/// A serialized Swift AST.
SerializedAST,
/// A synthesized file.
Synthesized,
/// An imported Clang module.
ClangModule,
/// A Clang module imported from DWARF.
DWARFModule
};
enum class SourceFileKind {
Library, ///< A normal .swift file.
Main, ///< A .swift file that can have top-level code.
SIL, ///< Came from a .sil file.
Interface, ///< Came from a .swiftinterface file, representing another module.
MacroExpansion, ///< Came from a macro expansion.
DefaultArgument, ///< Came from default argument at caller side
};
/// Contains information about where a particular path is used in
/// \c SourceFiles.
struct SourceFilePathInfo {
struct Comparator {
bool operator () (SourceLoc lhs, SourceLoc rhs) const {
return lhs.getOpaquePointerValue() <
rhs.getOpaquePointerValue();
}
};
SourceLoc physicalFileLoc{};
std::set<SourceLoc, Comparator> virtualFileLocs{}; // std::set for sorting
SourceFilePathInfo() = default;
void merge(const SourceFilePathInfo &other) {
if (other.physicalFileLoc.isValid()) {
assert(!physicalFileLoc.isValid());
physicalFileLoc = other.physicalFileLoc;
}
for (auto &elem : other.virtualFileLocs) {
virtualFileLocs.insert(elem);
}
}
bool operator == (const SourceFilePathInfo &other) const {
return physicalFileLoc == other.physicalFileLoc &&
virtualFileLocs == other.virtualFileLocs;
}
};
/// This is used to idenfity an external macro definition.
struct ExternalMacroPlugin {
std::string ModuleName;
enum Access {
Internal = 0,
Package,
Public,
};
Access MacroAccess;
};
/// Discriminator for resilience strategy.
enum class ResilienceStrategy : unsigned {
/// Public nominal types: fragile
/// Non-inlinable function bodies: resilient
///
/// This is the default behavior without any flags.
Default,
/// Public nominal types: resilient
/// Non-inlinable function bodies: resilient
///
/// This is the behavior with -enable-library-evolution.
Resilient
};
class OverlayFile;
/// A unit that allows grouping of modules by a package name.
///
/// PackageUnit is treated as an enclosing scope of ModuleDecl. Unlike other
/// DeclContext subclasses where a parent context is set in ctor, PackageUnit
/// (parent context) is set as a field in ModuleDecl (child context). It also has a
/// pointer back to the ModuleDecl, so that it can be used to return the module
/// in the existing DeclContext lookup functions, which assume ModuleDecl as
/// the top level context. Since both PackageUnit and ModuleDecl are created
/// in the ASTContext memory arena, i.e. they will be destroyed when the
/// ASTContext is destroyed, both pointng to each other is not considered risky.
///
/// See \c ModuleDecl
class PackageUnit: public DeclContext {
/// Identifies this package and used for the equality check
Identifier PackageName;
/// Non-null reference to ModuleDecl that points to this package.
/// Instead of having multiple ModuleDecls pointing to one PackageUnit, we
/// create one PackageUnit per ModuleDecl, to make it easier to look up the
/// module pointing to this package context, which is needed in the existing
/// DeclContext look up functions.
/// \see DeclContext::getModuleScopeContext
/// \see DeclContext::getParentModule
ModuleDecl &SourceModule;
PackageUnit(Identifier name, ModuleDecl &src)
: DeclContext(DeclContextKind::Package, nullptr), PackageName(name),
SourceModule(src) {}
public:
static PackageUnit *create(Identifier name, ModuleDecl &src,
ASTContext &ctx) {
return new (ctx) PackageUnit(name, src);
}
static bool classof(const DeclContext *DC) {
return DC->getContextKind() == DeclContextKind::Package;
}
static bool classof(const PackageUnit *PU) { return true; }
Identifier getName() const {
return PackageName;
}
ModuleDecl &getSourceModule() { return SourceModule; }
/// Equality check via package name instead of pointer comparison.
/// Returns false if the name is empty.
bool isSamePackageAs(PackageUnit *other) {
if (!other)
return false;
return !(getName().empty()) && getName() == other->getName();
}
};
/// The minimum unit of compilation.
///
/// A module is made up of several file-units, which are all part of the same
/// output binary and logical module (such as a single library or executable).
///
/// \sa FileUnit
class ModuleDecl
: public DeclContext, public TypeDecl, public ASTAllocated<ModuleDecl> {
friend class DirectOperatorLookupRequest;
friend class DirectPrecedenceGroupLookupRequest;
friend class CustomDerivativesRequest;
/// The ABI name of the module, if it differs from the module name.
mutable Identifier ModuleABIName;
/// A package this module belongs to. It's set as a property instead of a
/// parent decl context; otherwise it will break the existing decl context
/// lookup functions that assume ModuleDecl as the top level context.
PackageUnit *Package = nullptr;
/// Module name to use when referenced in clients module interfaces.
mutable Identifier ExportAsName;
mutable Identifier PublicModuleName;
/// Indicates a version of the Swift compiler used to generate
/// .swiftinterface file that this module was produced from (if any).
mutable version::Version InterfaceCompilerVersion;
public:
/// Produces the components of a given module's full name in reverse order.
///
/// For a Swift module, this will only ever have one component, but an
/// imported Clang module might actually be a submodule.
///
/// *Note: see `StringRef operator*()` for details on the returned name for printing
/// for a Swift module.
class ReverseFullNameIterator {
public:
// Make this look like a valid STL iterator.
using difference_type = int;
using value_type = StringRef;
using pointer = StringRef *;
using reference = StringRef;
using iterator_category = std::forward_iterator_tag;
private:
PointerUnion<const ModuleDecl *, const /* clang::Module */ void *> current;
public:
ReverseFullNameIterator() = default;
explicit ReverseFullNameIterator(const ModuleDecl *M);
explicit ReverseFullNameIterator(const clang::Module *clangModule) {
current = clangModule;
}
/// Returns the name of the current module.
/// Note that for a Swift module, it returns the current module's real (binary) name,
/// which can be different from the name if module aliasing was used (see `-module-alias`).
StringRef operator*() const;
ReverseFullNameIterator &operator++();
friend bool operator==(ReverseFullNameIterator left,
ReverseFullNameIterator right) {
return left.current == right.current;
}
friend bool operator!=(ReverseFullNameIterator left,
ReverseFullNameIterator right) {
return !(left == right);
}
/// This is a convenience function that writes the entire name, in forward
/// order, to \p out.
///
/// It calls `StringRef operator*()` under the hood (see for more detail on the
/// returned name for a Swift module).
void printForward(raw_ostream &out, StringRef delim = ".") const;
};
private:
/// If non-NULL, a plug-in that should be used when performing external
/// lookups.
// FIXME: Do we really need to bloat all modules with this?
DebuggerClient *DebugClient = nullptr;
/// The list of files in the module. This is guaranteed to be set once module
/// construction has completed. It must not be mutated afterwards.
std::optional<SmallVector<FileUnit *, 2>> Files;
llvm::SmallDenseMap<Identifier, SmallVector<OverlayFile *, 1>>
declaredCrossImports;
llvm::DenseMap<Identifier, SmallVector<Decl *, 2>> ObjCNameLookupCache;
/// A description of what should be implicitly imported by each file of this
/// module.
const ImplicitImportInfo ImportInfo;
std::unique_ptr<SourceLookupCache> Cache;
SourceLookupCache &getSourceLookupCache() const;
/// Tracks the file that will generate the module's entry point, either
/// because it contains a class marked with \@UIApplicationMain
/// or \@NSApplicationMain, or because it is a script file.
class EntryPointInfoTy {
enum class Flags {
DiagnosedMultipleMainClasses = 1 << 0,
DiagnosedMainClassWithScript = 1 << 1
};
llvm::PointerIntPair<FileUnit *, 2, OptionSet<Flags>> storage;
public:
EntryPointInfoTy() = default;
FileUnit *getEntryPointFile() const;
void setEntryPointFile(FileUnit *file);
bool hasEntryPoint() const;
bool markDiagnosedMultipleMainClasses();
bool markDiagnosedMainClassWithScript();
};
/// Information about the file responsible for the module's entry point,
/// if any.
///
/// \see EntryPointInfoTy
EntryPointInfoTy EntryPointInfo;
/// Used by the debugger to bypass resilient access to fields.
bool BypassResilience = false;
using AvailabilityDomainMap =
llvm::SmallDenseMap<Identifier, const CustomAvailabilityDomain *>;
AvailabilityDomainMap AvailabilityDomains;
public:
using PopulateFilesFn = llvm::function_ref<void(
ModuleDecl *, llvm::function_ref<void(FileUnit *)>)>;
private:
ModuleDecl(Identifier name, ASTContext &ctx, ImplicitImportInfo importInfo,
PopulateFilesFn populateFiles, bool isMainModule);
public:
/// Creates a new module with a given \p name.
///
/// \param importInfo Information about which modules should be implicitly
/// imported by each file of this module.
/// \param populateFiles A function which populates the files for the module.
/// Once called, the module's list of files may not change.
static ModuleDecl *create(Identifier name, ASTContext &ctx,
ImplicitImportInfo importInfo,
PopulateFilesFn populateFiles) {
return new (ctx) ModuleDecl(name, ctx, importInfo, populateFiles,
/*isMainModule*/ false);
}
/// Creates a new module with a given \p name.
///
/// \param populateFiles A function which populates the files for the module.
/// Once called, the module's list of files may not change.
static ModuleDecl *create(Identifier name, ASTContext &ctx,
PopulateFilesFn populateFiles) {
return new (ctx) ModuleDecl(name, ctx, ImplicitImportInfo(), populateFiles,
/*isMainModule*/ false);
}
/// Creates a new main module with a given \p name. The main module is the
/// module being built by the compiler, containing the primary source files.
///
/// \param importInfo Information about which modules should be implicitly
/// imported by each file of this module.
/// \param populateFiles A function which populates the files for the module.
/// Once called, the module's list of files may not change.
static ModuleDecl *createMainModule(ASTContext &ctx, Identifier name,
ImplicitImportInfo iinfo,
PopulateFilesFn populateFiles) {
return new (ctx) ModuleDecl(name, ctx, iinfo, populateFiles,
/*isMainModule*/ true);
}
/// Creates an empty module with a given \p name.
static ModuleDecl *createEmpty(Identifier name, ASTContext &ctx) {
return create(name, ctx, ImplicitImportInfo(), [](auto, auto) {});
}
using Decl::getASTContext;
/// Retrieves information about which modules are implicitly imported by
/// each file of this module.
const ImplicitImportInfo &getImplicitImportInfo() const { return ImportInfo; }
/// Retrieve a list of modules that each file of this module implicitly
/// imports.
ImplicitImportList getImplicitImports() const;
/// Retrieve the access notes to apply for the module, or \c nullptr if there
/// are no access notes.
const AccessNotesFile *getAccessNotes() const;
/// Return whether the module was imported with resilience disabled. The
/// debugger does this to access private fields.
bool getBypassResilience() const { return BypassResilience; }
/// Only to be called by MemoryBufferSerializedModuleLoader.
void setBypassResilience() { BypassResilience = true; }
ArrayRef<FileUnit *> getFiles() const {
ASSERT(Files.has_value() &&
"Attempting to query files before setting them");
return *Files;
}
/// Produces the source file that contains the given source location, or
/// \c nullptr if the source location isn't in this module.
SourceFile *getSourceFileContainingLocation(SourceLoc loc);
/// Creates a map from \c #filePath strings to corresponding \c #fileID
/// strings, diagnosing any conflicts.
///
/// A given \c #filePath string always maps to exactly one \c #fileID string,
/// but it is possible for \c #sourceLocation directives to introduce
/// duplicates in the opposite direction. If there are such conflicts, this
/// method will diagnose the conflict and choose a "winner" among the paths
/// in a reproducible way. The \c bool paired with the \c #fileID string is
/// \c true for paths which did not have a conflict or won a conflict, and
/// \c false for paths which lost a conflict. Thus, if you want to generate a
/// reverse mapping, you should drop or special-case the \c #fileID strings
/// that are paired with \c false.
llvm::StringMap<std::pair<std::string, /*isWinner=*/bool>>
computeFileIDMap(bool shouldDiagnose) const;
/// Add a file declaring a cross-import overlay.
void addCrossImportOverlayFile(StringRef file);
/// Collect cross-import overlay names from a given YAML file path.
static llvm::SmallSetVector<Identifier, 4>
collectCrossImportOverlay(ASTContext &ctx, StringRef file,
StringRef moduleName, StringRef& bystandingModule);
/// If this method returns \c false, the module does not declare any
/// cross-import overlays.
///
/// This is a quick check you can use to bail out of expensive logic early;
/// however, a \c true return doesn't guarantee that the module declares
/// cross-import overlays--it only means that it \em might declare some.
///
/// (Specifically, this method checks if the module loader found any
/// swiftoverlay files, but does not load the files to see if they list any
/// overlay modules.)
bool mightDeclareCrossImportOverlays() const;
/// Append to \p overlayNames the names of all modules that this module
/// declares should be imported when \p bystanderName is imported.
///
/// This operation is asymmetric: you will get different results if you
/// reverse the positions of the two modules involved in the cross-import.
void findDeclaredCrossImportOverlays(
Identifier bystanderName, SmallVectorImpl<Identifier> &overlayNames,
SourceLoc diagLoc) const;
/// Get the list of all modules this module declares a cross-import with.
void getDeclaredCrossImportBystanders(
SmallVectorImpl<Identifier> &bystanderNames);
/// Returns the name that should be used for this module in a module
/// selector. For separately-imported overlays, this will be the declaring
/// module's name.
Identifier getNameForModuleSelector();
/// Retrieve the ABI name of the module, which is used for metadata and
/// mangling.
Identifier getABIName() const;
/// Set the ABI name of the module;
void setABIName(Identifier name);
/// Get the package name of this module
/// FIXME: remove this and bump module version rdar://104723918
Identifier getPackageName() const {
if (auto pkg = getPackage())
return pkg->getName();
return Identifier();
}
bool inSamePackage(ModuleDecl *other) {
return other != nullptr &&
!getPackageName().empty() &&
getPackageName() == other->getPackageName();
}
/// Get the package associated with this module
PackageUnit *getPackage() const { return Package; }
/// Set the package this module is associated with
/// FIXME: rename this with setPackage(name) rdar://104723918
void setPackageName(Identifier name);
Identifier getExportAsName() const { return ExportAsName; }
void setExportAsName(Identifier name) {
ExportAsName = name;
}
/// Public facing name for this module in diagnostics and documentation.
///
/// This always returns a valid name as it defaults to the module name if
/// no public module name is set.
///
/// If `onlyIfImported`, return the normal module name when the module
/// corresponding to the public module name isn't imported. Users working
/// in between both modules will then see the normal module name,
/// this may be more useful for diagnostics at that level.
Identifier getPublicModuleName(bool onlyIfImported) const;
void setPublicModuleName(Identifier name) {
PublicModuleName = name;
}
/// See \c InterfaceCompilerVersion
version::Version getSwiftInterfaceCompilerVersion() const {
return InterfaceCompilerVersion;
}
void setSwiftInterfaceCompilerVersion(version::Version version) {
InterfaceCompilerVersion = version;
}
/// Retrieve the actual module name of an alias used for this module (if any).
///
/// For example, if '-module-alias Foo=Bar' is passed in when building the
/// main module, and this module is (a) not the main module and (b) is named
/// Foo, then it returns the real (physically on-disk) module name Bar.
///
/// If no module aliasing is set, it will return getName(), i.e. Foo.
Identifier getRealName() const;
/// User-defined module version number.
llvm::VersionTuple UserModuleVersion;
void setUserModuleVersion(llvm::VersionTuple UserVer) {
UserModuleVersion = UserVer;
}
llvm::VersionTuple getUserModuleVersion() const {
return UserModuleVersion;
}
void addAllowableClientName(Identifier name) {
allowableClientNames.push_back(name);
}
ArrayRef<Identifier> getAllowableClientNames() const {
return allowableClientNames;
}
bool allowImportedBy(ModuleDecl *importer) const;
private:
/// An array of module names that are allowed to import this one.
/// Any module can import this one if empty.
std::vector<Identifier> allowableClientNames;
/// A cache of this module's underlying module and required bystander if it's
/// an underscored cross-import overlay.
std::optional<std::pair<ModuleDecl *, Identifier>>
declaringModuleAndBystander;
/// A cache of this module's visible Clang modules
/// parameterized by the Swift interface print mode.
using VisibleClangModuleSet = llvm::DenseMap<const clang::Module *, ModuleDecl *>;
std::unordered_map<PrintOptions::InterfaceMode, VisibleClangModuleSet> CachedVisibleClangModuleSet;
/// If this module is an underscored cross import overlay, gets the underlying
/// module that declared it (which may itself be a cross-import overlay),
/// along with the name of the required bystander module. Used by tooling to
/// present overlays as if they were part of their underlying module.
std::pair<ModuleDecl *, Identifier> getDeclaringModuleAndBystander();
public:
/// If this is a traditional (non-cross-import) overlay, get its underlying
/// module if one exists.
ModuleDecl *getUnderlyingModuleIfOverlay() const;
/// Returns true if this module is the Clang overlay of \p other.
bool isClangOverlayOf(ModuleDecl *other) const;
/// Returns true if this module is the same module or either module is a clang
/// overlay of the other.
bool isSameModuleLookingThroughOverlays(ModuleDecl *other);
/// Returns true if this module is an underscored cross import overlay
/// declared by \p other or its underlying clang module, either directly or
/// transitively (via intermediate cross-import overlays - for cross-imports
/// involving more than two modules).
bool isCrossImportOverlayOf(ModuleDecl *other);
/// If this module is an underscored cross-import overlay, returns the
/// non-underscored underlying module that declares it as an overlay, either
/// directly or transitively (via intermediate cross-import overlays - for
/// cross-imports involving more than two modules).
ModuleDecl *getDeclaringModuleIfCrossImportOverlay();
/// If this module is an underscored cross-import overlay of \p declaring or
/// its underlying clang module, either directly or transitively, populates
/// \p bystanderNames with the set of bystander modules that must be present
/// alongside \p declaring for the overlay to be imported and returns true.
/// Returns false otherwise.
bool getRequiredBystandersIfCrossImportOverlay(
ModuleDecl *declaring, SmallVectorImpl<Identifier> &bystanderNames);
/// Computes all Clang modules that are visible from this moule.
/// This includes any modules that are imported transitively through public
/// (`@_exported`) imports.
///
/// The computed map associates each visible Clang module with the
/// corresponding Swift module.
const VisibleClangModuleSet &
getVisibleClangModules(PrintOptions::InterfaceMode contentMode);
/// Walks and loads the declared, underscored cross-import overlays of this
/// module and its underlying clang module, transitively, to find all cross
/// import overlays this module underlies.
///
/// This is used by tooling to present these overlays as part of this module.
void findDeclaredCrossImportOverlaysTransitive(
SmallVectorImpl<ModuleDecl *> &overlays);
/// Returns true if this module is the Clang header import module.
bool isClangHeaderImportModule() const;
/// Convenience accessor for clients that know what kind of file they're
/// dealing with.
SourceFile &getMainSourceFile() const;
/// Convenience accessor for clients that know what kind of file they're
/// dealing with.
FileUnit &getMainFile(FileUnitKind expectedKind) const;
DebuggerClient *getDebugClient() const { return DebugClient; }
void setDebugClient(DebuggerClient *R) {
assert(!DebugClient && "Debugger client already set");
DebugClient = R;
}
/// Returns true if this module is compiled as static library.
bool isStaticLibrary() const {
return Bits.ModuleDecl.StaticLibrary;
}
void setStaticLibrary(bool isStatic = true) {
Bits.ModuleDecl.StaticLibrary = isStatic;
}
/// Returns true if this module was or is being compiled for testing.
bool isTestingEnabled() const {
return Bits.ModuleDecl.TestingEnabled;
}
void setTestingEnabled(bool enabled = true) {
Bits.ModuleDecl.TestingEnabled = enabled;
}
// Returns true if this module is compiled with implicit dynamic.
bool isImplicitDynamicEnabled() const {
return Bits.ModuleDecl.ImplicitDynamicEnabled;
}
void setImplicitDynamicEnabled(bool enabled = true) {
Bits.ModuleDecl.ImplicitDynamicEnabled = enabled;
}
/// Returns true if this module was or is begin compile with
/// `-enable-private-imports`.
bool arePrivateImportsEnabled() const {
return Bits.ModuleDecl.PrivateImportsEnabled;
}
void setPrivateImportsEnabled(bool enabled = true) {
Bits.ModuleDecl.PrivateImportsEnabled = true;
}
/// Returns true if there was an error trying to load this module.
bool failedToLoad() const {
return Bits.ModuleDecl.FailedToLoad;
}
void setFailedToLoad(bool failed = true) {
Bits.ModuleDecl.FailedToLoad = failed;
}
bool hasResolvedImports() const {
return Bits.ModuleDecl.HasResolvedImports;
}
void setHasResolvedImports() {
Bits.ModuleDecl.HasResolvedImports = true;
}
ResilienceStrategy getResilienceStrategy() const {
return ResilienceStrategy(Bits.ModuleDecl.RawResilienceStrategy);
}
void setResilienceStrategy(ResilienceStrategy strategy) {
Bits.ModuleDecl.RawResilienceStrategy = unsigned(strategy);
}
/// Distribution level of the module.
LibraryLevel getLibraryLevel() const;
/// Returns true if this module was or is being compiled for testing.
bool hasIncrementalInfo() const { return Bits.ModuleDecl.HasIncrementalInfo; }
void setHasIncrementalInfo(bool enabled = true) {
Bits.ModuleDecl.HasIncrementalInfo = enabled;
}
/// Returns true if this module was built with
/// -experimental-hermetic-seal-at-link.
bool hasHermeticSealAtLink() const {
return Bits.ModuleDecl.HasHermeticSealAtLink;
}
void setHasHermeticSealAtLink(bool enabled = true) {
Bits.ModuleDecl.HasHermeticSealAtLink = enabled;
}
/// Returns true if this module was built with embedded Swift
bool isEmbeddedSwiftModule() const {
return Bits.ModuleDecl.IsEmbeddedSwiftModule;
}
void setIsEmbeddedSwiftModule(bool enabled = true) {
Bits.ModuleDecl.IsEmbeddedSwiftModule = enabled;
}
/// Returns true if this module was built with C++ interoperability enabled.
bool hasCxxInteroperability() const {
return Bits.ModuleDecl.HasCxxInteroperability;
}
void setHasCxxInteroperability(bool enabled = true) {
Bits.ModuleDecl.HasCxxInteroperability = enabled;
}
CXXStdlibKind getCXXStdlibKind() const {
return static_cast<CXXStdlibKind>(Bits.ModuleDecl.CXXStdlibKind);
}
void setCXXStdlibKind(CXXStdlibKind kind) {
Bits.ModuleDecl.CXXStdlibKind = static_cast<uint8_t>(kind);
}
/// \returns true if this module is a system module; note that the StdLib is
/// considered a system module.
bool isSystemModule() const {
return Bits.ModuleDecl.IsSystemModule;
}
void setIsSystemModule(bool flag = true);
/// \returns true if this module is part of the stdlib or contained within
/// the SDK. If no SDK was specified, falls back to whether the module was
/// specified as a system module (ie. it's on the system search path).
bool isNonUserModule() const;
public:
/// Returns true if the module was rebuilt from a module interface instead
/// of being built from the full source.
bool isBuiltFromInterface() const {
return Bits.ModuleDecl.IsBuiltFromInterface;
}
void setIsBuiltFromInterface(bool flag = true) {
Bits.ModuleDecl.IsBuiltFromInterface = flag;
}
/// Returns true if -allow-non-resilient-access was passed
/// and the module is built from source.
bool allowNonResilientAccess() const {
return Bits.ModuleDecl.AllowNonResilientAccess &&
!Bits.ModuleDecl.IsBuiltFromInterface;
}
void setAllowNonResilientAccess(bool flag = true) {
Bits.ModuleDecl.AllowNonResilientAccess = flag;
}
/// Returns true if -package-cmo was passed, which
/// enables serialization of package, public, and inlinable decls in a
/// package. This requires -allow-non-resilient-access.
bool serializePackageEnabled() const {
return Bits.ModuleDecl.SerializePackageEnabled &&
allowNonResilientAccess();
}
void setSerializePackageEnabled(bool flag = true) {
Bits.ModuleDecl.SerializePackageEnabled = flag;
}
/// Returns true if this module is a non-Swift module that was imported into
/// Swift.
///
/// Right now that's just Clang modules.
bool isNonSwiftModule() const {
return Bits.ModuleDecl.IsNonSwiftModule;
}
/// \see #isNonSwiftModule
void setIsNonSwiftModule(bool flag = true) {
Bits.ModuleDecl.IsNonSwiftModule = flag;
}
bool isMainModule() const {
return Bits.ModuleDecl.IsMainModule;
}
/// Whether this module has been compiled with comprehensive checking for
/// concurrency, e.g., Sendable checking.
bool isConcurrencyChecked() const {
return Bits.ModuleDecl.IsConcurrencyChecked;
}
void setIsConcurrencyChecked(bool value = true) {
Bits.ModuleDecl.IsConcurrencyChecked = value;
}
/// Whether this module has enabled strict memory safety checking.
bool strictMemorySafety() const {
return Bits.ModuleDecl.StrictMemorySafety;
}
void setStrictMemorySafety(bool value = true) {
Bits.ModuleDecl.StrictMemorySafety = value;
}
/// Whether this module uses deferred code generation.
bool deferredCodeGen() const {
return Bits.ModuleDecl.DeferredCodeGen;
}
void setDeferredCodeGen(bool value = true) {
Bits.ModuleDecl.DeferredCodeGen = value;
}
bool isObjCNameLookupCachePopulated() const {
return Bits.ModuleDecl.ObjCNameLookupCachePopulated;
}
void setIsObjCNameLookupCachePopulated(bool value) {
Bits.ModuleDecl.ObjCNameLookupCachePopulated = value;
}
/// For the main module, retrieves the list of primary source files being
/// compiled, that is, the files we're generating code for.
ArrayRef<SourceFile *> getPrimarySourceFiles() const;
/// Retrieve the top-level module. If this module is already top-level, this
/// returns itself. If this is a submodule such as \c Foo.Bar.Baz, this
/// returns the module \c Foo.
ModuleDecl *getTopLevelModule(bool overlay = false);
/// Returns whether or not this module is a submodule of the given module.
/// If `this == M`, this returns false. If this is a submodule such as
/// `Foo.Bar.Baz`, and the given module is either `Foo` or `Foo.Bar`, this
/// returns true.
bool isSubmoduleOf(const ModuleDecl *M) const;
private:
std::string CacheKey;
public:
void setCacheKey(const std::string &key) { CacheKey = key; }
StringRef getCacheKey() const { return CacheKey; }
bool isResilient() const {
return getResilienceStrategy() != ResilienceStrategy::Default;
}
/// True if this module is resilient AND also does _not_ allow
/// non-resilient access; the module can allow such access if
/// package optimization is enabled so its client modules within
/// the same package can have a direct access to decls in this
/// module even if it's built resiliently.
bool isStrictlyResilient() const {
return isResilient() && !allowNonResilientAccess();
}
/// Look up a (possibly overloaded) value set at top-level scope
/// (but with the specified access path, which may come from an import decl)
/// within the current module.
///
/// This does a simple local lookup, not recursively looking through imports.
void lookupValue(DeclName Name, NLKind LookupKind,
OptionSet<ModuleLookupFlags> Flags,
SmallVectorImpl<ValueDecl*> &Result) const;
/// Look up a (possibly overloaded) value set at top-level scope
/// (but with the specified access path, which may come from an import decl)
/// within the current module.
///
/// This does a simple local lookup, not recursively looking through imports.
void lookupValue(DeclName Name, NLKind LookupKind,
SmallVectorImpl<ValueDecl*> &Result) const {
lookupValue(Name, LookupKind, {}, Result);
}
/// Look up a local type declaration by its mangled name.
///
/// This does a simple local lookup, not recursively looking through imports.
TypeDecl *lookupLocalType(StringRef MangledName) const;
/// Look up an opaque return type by the mangled name of the declaration
/// that defines it.
OpaqueTypeDecl *lookupOpaqueResultType(StringRef MangledName);
/// Find ValueDecls in the module and pass them to the given consumer object.
///
/// This does a simple local lookup, not recursively looking through imports.
void lookupVisibleDecls(ImportPath::Access AccessPath,
VisibleDeclConsumer &Consumer,
NLKind LookupKind) const;
private:
void populateObjCNameLookupCache();
public:
/// Finds top-levels decls of this module by @objc provided name.
/// Decls that have no @objc attribute are not considered.
///
/// This does a simple local lookup, not recursively looking through imports.
/// The order of the results is not guaranteed to be meaningful.
///
/// \param Results Vector collecting the decls.
///
/// \param name The @objc simple name to look for. Declarations with matching
/// name and "anonymous" @objc attribute, as well a matching named @objc
/// attribute will be added to Results.
void lookupTopLevelDeclsByObjCName(SmallVectorImpl<Decl *> &Results,
DeclName name);
/// This is a hack for 'main' file parsing and the integrated REPL.
///
/// FIXME: Refactor main file parsing to not pump the parser incrementally.
/// FIXME: Remove the integrated REPL.
void clearLookupCache();
/// Finds all class members defined in this module.
///
/// This does a simple local lookup, not recursively looking through imports.
void lookupClassMembers(ImportPath::Access accessPath,
VisibleDeclConsumer &consumer) const;
/// Finds class members defined in this module with the given name.
///
/// This does a simple local lookup, not recursively looking through imports.
void lookupClassMember(ImportPath::Access accessPath,
DeclName name,
SmallVectorImpl<ValueDecl*> &results) const;
/// Find a member named \p name in \p container that was declared in this
/// module.
///
/// \p container may be \c this for a top-level lookup.
///
/// If \p privateDiscriminator is non-empty, only matching private decls are
/// returned; otherwise, only non-private decls are returned.
void lookupMember(SmallVectorImpl<ValueDecl*> &results,
DeclContext *container, DeclName name,
Identifier privateDiscriminator) const;
/// Find all Objective-C methods with the given selector.
void lookupObjCMethods(
ObjCSelector selector,
SmallVectorImpl<AbstractFunctionDecl *> &results) const;
/// Find all SPI names imported from \p importedModule by this module,
/// collecting the identifiers in \p spiGroups.
void lookupImportedSPIGroups(
const ModuleDecl *importedModule,
llvm::SmallSetVector<Identifier, 4> &spiGroups) const;
/// Returns true if any import of \p importedModule has the `@preconcurrency`
/// attribute.
bool isModuleImportedPreconcurrency(const ModuleDecl *importedModule) const;
/// Finds the custom availability domain defined by this module with the
/// given identifier and if one exists adds it to results.
void
lookupAvailabilityDomains(Identifier identifier,
SmallVectorImpl<AvailabilityDomain> &results) const;
// Is \p attr accessible as an explicitly imported SPI from this module?
bool isImportedAsSPI(const AbstractSpecializeAttr *attr,
const ValueDecl *targetDecl) const;
// Is \p spiGroup accessible as an explicitly imported SPI from this module?
bool isImportedAsSPI(Identifier spiGroup, const ModuleDecl *fromModule) const;
/// Is \p module imported as \c @_weakLinked from this module?
bool isImportedAsWeakLinked(const ModuleDecl *module) const;
/// \sa getImportedModules
enum class ImportFilterKind {
/// Include imports declared with `@_exported`.
Exported = 1 << 0,
/// Include "regular" imports with an effective access level of `public`.
Default = 1 << 1,
/// Include imports declared with `@_implementationOnly`.
ImplementationOnly = 1 << 2,
/// Include imports declared with an access level of `package`.
PackageOnly = 1 << 3,
/// Include imports with an effective access level of `internal` or lower.
InternalOrBelow = 1 << 4,
/// Include imports declared with `@_spiOnly`.
SPIOnly = 1 << 5,
/// Include imports shadowed by a cross-import overlay. Unshadowed imports
/// are included whether or not this flag is specified.
ShadowedByCrossImportOverlay = 1 << 6
};
/// \sa getImportedModules
using ImportFilter = OptionSet<ImportFilterKind>;
/// Returns an \c ImportFilter with all elements of \c ImportFilterKind.
constexpr static ImportFilter getImportFilterAll() {
return {ImportFilterKind::Exported,
ImportFilterKind::Default,
ImportFilterKind::ImplementationOnly,
ImportFilterKind::PackageOnly,
ImportFilterKind::InternalOrBelow,
ImportFilterKind::SPIOnly,
ImportFilterKind::ShadowedByCrossImportOverlay};
}
/// Import kinds visible to the module declaring them.
///
/// This leaves out \c ShadowedByCrossImportOverlay as even if present in
/// the sources it's superseded by the cross-overlay as the local import.
constexpr static ImportFilter getImportFilterLocal() {
return {ImportFilterKind::Exported,
ImportFilterKind::Default,
ImportFilterKind::ImplementationOnly,
ImportFilterKind::PackageOnly,
ImportFilterKind::InternalOrBelow,
ImportFilterKind::SPIOnly};
}
/// Looks up which modules are imported by this module.
///
/// \p filter controls whether public, private, or any imports are included
/// in this list.
void getImportedModules(SmallVectorImpl<ImportedModule> &imports,
ImportFilter filter) const;
/// Looks up which external macros are defined by this file.
void getExternalMacros(SmallVectorImpl<ExternalMacroPlugin> &macros) const;
/// Lists modules that are not imported from a file and used in API.
void getImplicitImportsForModuleInterface(
SmallVectorImpl<ImportedModule> &imports) const;
/// Looks up which modules are imported by this module, ignoring any that
/// won't contain top-level decls.
///
/// This is a performance hack. Do not use for anything but name lookup.
/// May go away in the future.
void
getImportedModulesForLookup(SmallVectorImpl<ImportedModule> &imports) const;
/// Has \p module been imported via an '@_implementationOnly' import and
/// not by anything more visible?
///
/// If \p assumeImported, assume that \p module was imported and avoid the
/// work to confirm it is imported at all. Transitive modules not reexported
/// are not considered imported here and may lead to false positive without
/// this setting.
bool isImportedImplementationOnly(const ModuleDecl *module,
bool assumeImported = true) const;
/// Finds all top-level decls of this module.
///
/// This does a simple local lookup, not recursively looking through imports.
/// The order of the results is not guaranteed to be meaningful.
void getTopLevelDecls(SmallVectorImpl<Decl*> &Results) const;
/// Finds all top-level decls of this module including auxiliary decls.
void
getTopLevelDeclsWithAuxiliaryDecls(SmallVectorImpl<Decl *> &Results) const;
void getExportedPrespecializations(SmallVectorImpl<Decl *> &results) const;
/// Finds top-level decls of this module filtered by their attributes.
///
/// This does a simple local lookup, not recursively looking through imports.
/// The order of the results is not guaranteed to be meaningful.
///
/// \param Results Vector collecting the decls.
///
/// \param matchAttributes Check on the attributes of a decl to
/// filter which decls to fully deserialize. Only decls with accepted
/// attributes are deserialized and added to Results.
void getTopLevelDeclsWhereAttributesMatch(
SmallVectorImpl<Decl*> &Results,
llvm::function_ref<bool(DeclAttributes)> matchAttributes) const;
/// Finds all local type decls of this module.
///
/// This does a simple local lookup, not recursively looking through imports.
/// The order of the results is not guaranteed to be meaningful.
void getLocalTypeDecls(SmallVectorImpl<TypeDecl*> &Results) const;
/// Finds all operator decls of this module.
///
/// This does a simple local lookup, not recursively looking through imports.
/// The order of the results is not guaranteed to be meaningful.
void getOperatorDecls(SmallVectorImpl<OperatorDecl *> &results) const;
/// Finds all precedence group decls of this module.
///
/// This does a simple local lookup, not recursively looking through imports.
/// The order of the results is not guaranteed to be meaningful.
void getPrecedenceGroups(SmallVectorImpl<PrecedenceGroupDecl*> &Results) const;
/// Finds all top-level decls that should be displayed to a client of this
/// module.
///
/// This includes types, variables, functions, and extensions.
/// This does a simple local lookup, not recursively looking through imports.
/// The order of the results is not guaranteed to be meaningful.
///
/// This can differ from \c getTopLevelDecls, e.g. it returns decls from a
/// shadowed clang module. It does not force synthesized top-level decls that
/// should be printed to be added; use \c swift::getTopLevelDeclsForDisplay()
/// for that.
void getDisplayDecls(SmallVectorImpl<Decl*> &results, bool recursive = false) const;
struct ImportCollector {
SmallPtrSet<const ModuleDecl *, 4> imports;
llvm::SmallDenseMap<const ModuleDecl *, SmallPtrSet<Decl *, 4>, 4>
qualifiedImports;
AccessLevel minimumDocVisibility = AccessLevel::Private;
llvm::function_ref<bool(const ModuleDecl *)> importFilter = nullptr;
void collect(const ImportedModule &importedModule);
ImportCollector() = default;
ImportCollector(AccessLevel minimumDocVisibility)
: minimumDocVisibility(minimumDocVisibility) {}
};
void
getDisplayDeclsRecursivelyAndImports(SmallVectorImpl<Decl *> &results,
ImportCollector &importCollector) const;
using LinkLibraryCallback = llvm::function_ref<void(LinkLibrary)>;
/// Generate the list of libraries needed to link this module, based on its
/// imports.
void collectLinkLibraries(LinkLibraryCallback callback) const;
/// Get the path for the file that this module came from, or an empty
/// string if this is not applicable.
StringRef getModuleFilename() const;
/// Get the path to the file defining this module, what we consider the
/// source of truth about the module. Usually a swiftinterface file for a
/// resilient module, a swiftmodule for a non-resilient module, or the
/// modulemap for a clang module. Returns an empty string if not applicable.
StringRef getModuleSourceFilename() const;
/// Get the path to the file loaded by the compiler. Usually the binary
/// swiftmodule file or a pcm in the cache. Returns an empty string if not
/// applicable.
StringRef getModuleLoadedFilename() const;
/// \returns true if this module is the "swift" standard library module.
bool isStdlibModule() const;
/// \returns true if this module is the "Cxx" module.
bool isCxxModule() const;
/// \returns true if this module is the "_Concurrency" standard library module.
bool isConcurrencyModule() const;
/// \returns true if this module has standard substitutions for mangling.
bool hasStandardSubstitutions() const;
/// \returns true if this module is the "SwiftShims" module;
bool isSwiftShimsModule() const;
/// \returns true if this module is the "builtin" module.
bool isBuiltinModule() const;
/// \returns true if this module is the "SwiftOnoneSupport" module;
bool isOnoneSupportModule() const;
/// \returns true if this module is the "Foundation" module;
bool isFoundationModule() const;
/// \returns true if traversal was aborted, false otherwise.
bool walk(ASTWalker &Walker);
/// Register the file responsible for generating this module's entry point.
///
/// \returns true if there was a problem adding this file.
bool registerEntryPointFile(FileUnit *file, SourceLoc diagLoc,
std::optional<ArtificialMainKind> kind);
/// \returns true if this module has a main entry point.
bool hasEntryPoint() const {
return EntryPointInfo.hasEntryPoint();
}
NominalTypeDecl *getMainTypeDecl() const;
/// Returns the associated clang module if one exists.
const clang::Module *findUnderlyingClangModule() const;
/// Returns a generator with the components of this module's full,
/// hierarchical name.
///
/// For a Swift module, this will only ever have one component, but an
/// imported Clang module might actually be a submodule.
///
/// *Note: see `StringRef operator*()` for details on the returned name for printing
/// for a Swift module.
ReverseFullNameIterator getReverseFullModuleName() const {
return ReverseFullNameIterator(this);
}
/// Calls \p callback for each source file of the module.
void collectBasicSourceFileInfo(
llvm::function_ref<void(const BasicSourceFileInfo &)> callback) const;
void collectSerializedSearchPath(
llvm::function_ref<void(StringRef)> callback) const;
/// Retrieve a fingerprint value that summarizes the contents of this module.
///
/// This interface hash a of a module is guaranteed to change if the interface
/// hash of any of its (primary) source files changes. For example, when
/// building incrementally, the interface hash of this module will change when
/// the primaries contributing to its content changes. In contrast, when
/// a module is deserialized, the hash of every source file contributes to
/// the module's interface hash. It therefore serves as an effective, if
/// coarse-grained, way of determining when top-level changes to a module's
/// contents have been made.
Fingerprint getFingerprint() const;
/// Returns an approximation of whether the given module could be
/// redistributed and consumed by external clients.
///
/// FIXME: The scope of this computation should be limited entirely to
/// RenamedDeclRequest. Unfortunately, it has been co-opted to support the
/// \c SerializeOptionsForDebugging hack. Once this information can be
/// transferred from module files to the dSYMs, remove this.
bool isExternallyConsumed() const;
SWIFT_DEBUG_DUMPER(dumpDisplayDecls());
SWIFT_DEBUG_DUMPER(dumpTopLevelDecls());
SourceRange getSourceRange() const { return SourceRange(); }
/// Returns the language version that was used to compile this module.
/// An empty `Version` is returned if the information is not available.
version::Version getLanguageVersionBuiltWith() const;
void setAvailabilityDomains(const AvailabilityDomainMap &&map) {
AvailabilityDomains = std::move(map);
}
static bool classof(const DeclContext *DC) {
if (auto D = DC->getAsDecl())
return classof(D);
return false;
}
static bool classof(const Decl *D) {
return D->getKind() == DeclKind::Module;
}
using ASTAllocated<ModuleDecl>::operator new;
using ASTAllocated<ModuleDecl>::operator delete;
};
/// Wraps either a swift module or a clang one.
/// FIXME: Should go away once swift modules can support submodules natively.
class ModuleEntity {
llvm::PointerUnion<const ModuleDecl *, const /* clang::Module */ void *> Mod;
public:
ModuleEntity() = default;
ModuleEntity(const ModuleDecl *Mod) : Mod(Mod) {}
ModuleEntity(const clang::Module *Mod) : Mod(static_cast<const void *>(Mod)){}
/// @param useRealNameIfAliased Whether to use the module's real name in case
/// module aliasing is used. For example, if a file
/// has `import Foo` and `-module-alias Foo=Bar` is
/// passed, treat Foo as an alias and Bar as the real
/// module name as its dependency. This only applies
/// to Swift modules.
/// @return The module name; for Swift modules, the real module name could be
/// different from the name if module aliasing is used.
StringRef getName(bool useRealNameIfAliased = false) const;
/// For Swift modules, it returns the same result as \c ModuleEntity::getName(bool).
/// For Clang modules, it returns the result of \c clang::Module::getFullModuleName.
std::string getFullName(bool useRealNameIfAliased = false) const;
bool isSystemModule() const;
bool isNonUserModule() const;
bool isBuiltinModule() const;
const ModuleDecl *getAsSwiftModule() const;
const clang::Module *getAsClangModule() const;
void *getOpaqueValue() const {
assert(!Mod.isNull());
return Mod.getOpaqueValue();
}
explicit operator bool() const { return !Mod.isNull(); }
};
inline bool DeclContext::isModuleContext() const {
if (auto D = getAsDecl())
return ModuleDecl::classof(D);
return false;
}
inline bool DeclContext::isModuleScopeContext() const {
if (ParentAndKind.getInt() == ASTHierarchy::FileUnit)
return true;
return isModuleContext();
}
inline bool DeclContext::isPackageContext() const {
return ParentAndKind.getInt() == ASTHierarchy::Package;
}
/// Extract the source location from the given module declaration.
inline SourceLoc extractNearestSourceLoc(const ModuleDecl *mod) {
return extractNearestSourceLoc(static_cast<const Decl *>(mod));
}
} // end namespace swift
#endif