Files
swift-mirror/lib/ClangImporter/SwiftLookupTable.cpp
Hiroshi Yamauchi be641d73ef Fix the GUID type not found error on Windows
Predefined declarations (like _GUID) are special forward declarations
inserted by Clang and aren't serialized into the pcm and their
definition pointers aren't retained across serialization and
deserialization, which causes this type not found error. Avoid putting
non-defining predefined declarations into the swift lookup table when
their definitions exist in the same module so that the definitions
will be associated with the base name and avoid this error.
2025-11-19 17:27:50 -08:00

2272 lines
80 KiB
C++

//===--- SwiftLookupTable.cpp - Swift Lookup Table ------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements support for Swift name lookup tables stored in Clang
// modules.
//
//===----------------------------------------------------------------------===//
#include "SwiftLookupTable.h"
#include "ImporterImpl.h"
#include "swift/AST/DiagnosticEngine.h"
#include "swift/AST/DiagnosticsClangImporter.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/Version.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/Parse/ParseDeclName.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Sema.h"
#include "clang/Serialization/ASTBitCodes.h"
#include "clang/Serialization/ASTReader.h"
#include "clang/Serialization/ASTWriter.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/BitcodeConvenience.h"
#include "llvm/Bitstream/BitstreamReader.h"
#include "llvm/Bitstream/BitstreamWriter.h"
#include "llvm/Support/DJB.h"
#include "llvm/Support/OnDiskHashTable.h"
using namespace swift;
using namespace importer;
using namespace llvm::support;
/// Determine whether the new declarations matches an existing declaration.
static bool matchesExistingDecl(clang::Decl *decl, clang::Decl *existingDecl) {
// If the canonical declarations are equivalent, we have a match.
if (decl->getCanonicalDecl() == existingDecl->getCanonicalDecl()) {
return true;
}
return false;
}
template <typename value_type, typename CharT>
[[nodiscard]] static inline value_type readNext(const CharT *&memory) {
return llvm::support::endian::readNext<value_type, llvm::endianness::little,
llvm::support::unaligned>(memory);
}
namespace {
using StoredSingleEntry = SwiftLookupTable::StoredSingleEntry;
class BaseNameToEntitiesTableReaderInfo;
class GlobalsAsMembersTableReaderInfo;
using SerializedBaseNameToEntitiesTable =
llvm::OnDiskIterableChainedHashTable<BaseNameToEntitiesTableReaderInfo>;
using SerializedGlobalsAsMembersTable =
llvm::OnDiskIterableChainedHashTable<BaseNameToEntitiesTableReaderInfo>;
using SerializedGlobalsAsMembersIndex =
llvm::OnDiskIterableChainedHashTable<GlobalsAsMembersTableReaderInfo>;
} // end anonymous namespace
namespace swift {
/// Module file extension writer for the Swift lookup tables.
class SwiftLookupTableWriter : public clang::ModuleFileExtensionWriter {
clang::ASTWriter &Writer;
ASTContext &swiftCtx;
importer::ClangSourceBufferImporter &buffersForDiagnostics;
const PlatformAvailability &availability;
ClangImporter::Implementation *importerImpl;
public:
SwiftLookupTableWriter(
clang::ModuleFileExtension *extension, clang::ASTWriter &writer,
ASTContext &ctx,
importer::ClangSourceBufferImporter &buffersForDiagnostics,
const PlatformAvailability &avail,
ClangImporter::Implementation *importerImpl)
: ModuleFileExtensionWriter(extension), Writer(writer), swiftCtx(ctx),
buffersForDiagnostics(buffersForDiagnostics), availability(avail),
importerImpl(importerImpl) {}
void writeExtensionContents(clang::Sema &sema,
llvm::BitstreamWriter &stream) override;
void populateTable(SwiftLookupTable &table, NameImporter &);
void populateTableWithDecl(SwiftLookupTable &table,
NameImporter &nameImporter, clang::Decl *decl);
};
/// Module file extension reader for the Swift lookup tables.
class SwiftLookupTableReader : public clang::ModuleFileExtensionReader {
clang::ASTReader &Reader;
clang::serialization::ModuleFile &ModuleFile;
std::function<void()> OnRemove;
std::unique_ptr<SerializedBaseNameToEntitiesTable> SerializedTable;
ArrayRef<clang::serialization::DeclID> Categories;
std::unique_ptr<SerializedGlobalsAsMembersTable> GlobalsAsMembersTable;
std::unique_ptr<SerializedGlobalsAsMembersIndex> GlobalsAsMembersIndex;
SwiftLookupTableReader(clang::ModuleFileExtension *extension,
clang::ASTReader &reader,
clang::serialization::ModuleFile &moduleFile,
std::function<void()> onRemove,
std::unique_ptr<SerializedBaseNameToEntitiesTable>
serializedTable,
ArrayRef<clang::serialization::DeclID> categories,
std::unique_ptr<SerializedGlobalsAsMembersTable>
globalsAsMembersTable,
std::unique_ptr<SerializedGlobalsAsMembersIndex>
globalsAsMembersIndex)
: ModuleFileExtensionReader(extension), Reader(reader),
ModuleFile(moduleFile), OnRemove(onRemove),
SerializedTable(std::move(serializedTable)), Categories(categories),
GlobalsAsMembersTable(std::move(globalsAsMembersTable)),
GlobalsAsMembersIndex(std::move(globalsAsMembersIndex)) {}
public:
/// Create a new lookup table reader for the given AST reader and stream
/// position.
static std::unique_ptr<SwiftLookupTableReader>
create(clang::ModuleFileExtension *extension, clang::ASTReader &reader,
clang::serialization::ModuleFile &moduleFile,
std::function<void()> onRemove, const llvm::BitstreamCursor &stream);
~SwiftLookupTableReader() override;
/// Retrieve the AST reader associated with this lookup table reader.
clang::ASTReader &getASTReader() const { return Reader; }
/// Retrieve the module file associated with this lookup table reader.
clang::serialization::ModuleFile &getModuleFile() { return ModuleFile; }
/// Retrieve the set of base names that are stored in the on-disk hash table.
SmallVector<SerializedSwiftName, 4> getBaseNames();
/// Retrieve the set of entries associated with the given base name.
///
/// \returns true if we found anything, false otherwise.
bool lookup(SerializedSwiftName baseName,
SmallVectorImpl<SwiftLookupTable::FullTableEntry> &entries);
/// Retrieve the declaration IDs of the categories.
ArrayRef<clang::serialization::DeclID> categories() const {
return Categories;
}
/// Retrieve the set of contexts that have globals-as-members
/// injected into them.
SmallVector<SwiftLookupTable::StoredContext, 4> getGlobalsAsMembersContexts();
SmallVector<SerializedSwiftName, 4> getGlobalsAsMembersBaseNames();
/// Retrieve the set of global declarations that are going to be
/// imported as members into the given context.
///
/// \returns true if we found anything, false otherwise.
bool lookupGlobalsAsMembersInContext(
SwiftLookupTable::StoredContext context,
SmallVectorImpl<StoredSingleEntry> &entries);
/// Retrieve the set of global declarations that are going to be imported as members under the given
/// Swift base name.
///
/// \returns true if we found anything, false otherwise.
bool lookupGlobalsAsMembers(
SerializedSwiftName baseName,
SmallVectorImpl<SwiftLookupTable::FullTableEntry> &entries);
};
} // namespace swift
DeclBaseName SerializedSwiftName::toDeclBaseName(ASTContext &Context) const {
switch (Kind) {
case DeclBaseName::Kind::Normal:
return Context.getIdentifier(Name);
case DeclBaseName::Kind::Subscript:
return DeclBaseName::createSubscript();
case DeclBaseName::Kind::Constructor:
return DeclBaseName::createConstructor();
case DeclBaseName::Kind::Destructor:
return DeclBaseName::createDestructor();
}
llvm_unreachable("unhandled kind");
}
bool SwiftLookupTable::contextRequiresName(ContextKind kind) {
switch (kind) {
case ContextKind::ObjCClass:
case ContextKind::ObjCProtocol:
case ContextKind::Tag:
case ContextKind::Typedef:
return true;
case ContextKind::TranslationUnit:
return false;
}
llvm_unreachable("Invalid ContextKind.");
}
/// Try to translate the given Clang declaration into a context.
static std::optional<SwiftLookupTable::StoredContext>
translateDeclToContext(const clang::NamedDecl *decl) {
// Tag declaration.
if (auto tag = dyn_cast<clang::TagDecl>(decl)) {
if (tag->getIdentifier())
return std::make_pair(SwiftLookupTable::ContextKind::Tag, tag->getName());
if (auto typedefDecl = tag->getTypedefNameForAnonDecl())
return std::make_pair(SwiftLookupTable::ContextKind::Tag,
typedefDecl->getName());
if (auto enumDecl = dyn_cast<clang::EnumDecl>(tag)) {
if (auto typedefType =
dyn_cast<clang::TypedefType>(getUnderlyingType(enumDecl))) {
if (importer::isUnavailableInSwift(typedefType->getDecl(), nullptr,
true)) {
return std::make_pair(SwiftLookupTable::ContextKind::Tag,
typedefType->getDecl()->getName());
}
}
}
return std::nullopt;
}
// Namespace declaration.
if (auto namespaceDecl = dyn_cast<clang::NamespaceDecl>(decl)) {
if (namespaceDecl->getIdentifier())
return std::make_pair(SwiftLookupTable::ContextKind::Tag,
namespaceDecl->getName());
return std::nullopt;
}
// Objective-C class context.
if (auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(decl))
return std::make_pair(SwiftLookupTable::ContextKind::ObjCClass,
objcClass->getName());
// Objective-C protocol context.
if (auto objcProtocol = dyn_cast<clang::ObjCProtocolDecl>(decl))
return std::make_pair(SwiftLookupTable::ContextKind::ObjCProtocol,
objcProtocol->getName());
// Typedefs.
if (auto typedefName = dyn_cast<clang::TypedefNameDecl>(decl)) {
// If this typedef is merely a restatement of a tag declaration's type,
// return the result for that tag.
if (auto tag = typedefName->getUnderlyingType()->getAsTagDecl())
return translateDeclToContext(const_cast<clang::TagDecl *>(tag));
// Otherwise, this must be a typedef mapped to a strong type.
return std::make_pair(SwiftLookupTable::ContextKind::Typedef,
typedefName->getName());
}
return std::nullopt;
}
auto SwiftLookupTable::translateDeclContext(const clang::DeclContext *dc)
-> std::optional<SwiftLookupTable::StoredContext> {
// Translation unit context.
if (dc->isTranslationUnit())
return std::make_pair(ContextKind::TranslationUnit, StringRef());
// Tag declaration context.
if (auto tag = dyn_cast<clang::TagDecl>(dc))
return translateDeclToContext(const_cast<clang::TagDecl *>(tag));
// Namespace declaration context.
if (auto namespaceDecl = dyn_cast<clang::NamespaceDecl>(dc))
return translateDeclToContext(
const_cast<clang::NamespaceDecl *>(namespaceDecl));
// Objective-C class context.
if (auto objcClass = dyn_cast<clang::ObjCInterfaceDecl>(dc))
return std::make_pair(ContextKind::ObjCClass, objcClass->getName());
// Objective-C protocol context.
if (auto objcProtocol = dyn_cast<clang::ObjCProtocolDecl>(dc))
return std::make_pair(ContextKind::ObjCProtocol, objcProtocol->getName());
return std::nullopt;
}
std::optional<SwiftLookupTable::StoredContext>
SwiftLookupTable::translateContext(EffectiveClangContext context) {
switch (context.getKind()) {
case EffectiveClangContext::DeclContext: {
return translateDeclContext(context.getAsDeclContext());
}
case EffectiveClangContext::TypedefContext:
return std::make_pair(ContextKind::Typedef,
context.getTypedefName()->getName());
case EffectiveClangContext::UnresolvedContext:
// Resolve the context.
if (auto decl = resolveContext(context.getUnresolvedName()))
return translateDeclToContext(decl);
return std::nullopt;
}
llvm_unreachable("Invalid EffectiveClangContext.");
}
/// Lookup an unresolved context name and resolve it to a Clang
/// declaration context or typedef name.
const clang::NamedDecl *
SwiftLookupTable::resolveContext(StringRef unresolvedName) {
SmallVector<StringRef, 1> nameComponents;
unresolvedName.split(nameComponents, '.');
EffectiveClangContext parentContext;
// Look for a context with the given Swift name.
for (auto nameComponent : nameComponents) {
auto entries =
parentContext
? lookup(SerializedSwiftName(nameComponent), parentContext)
: lookup(SerializedSwiftName(nameComponent),
std::make_pair(ContextKind::TranslationUnit, StringRef()));
bool entryFound = false;
for (auto entry : entries) {
if (auto decl = entry.dyn_cast<clang::NamedDecl *>()) {
if (isa<clang::TagDecl>(decl) ||
isa<clang::ObjCInterfaceDecl>(decl) ||
isa<clang::NamespaceDecl>(decl)) {
entryFound = true;
parentContext = EffectiveClangContext(cast<clang::DeclContext>(decl));
break;
}
if (auto typedefDecl = dyn_cast<clang::TypedefNameDecl>(decl)) {
entryFound = true;
parentContext = EffectiveClangContext(typedefDecl);
break;
}
}
}
// If we could not resolve this component of the qualified name, bail.
if (!entryFound)
break;
}
if (!parentContext)
return nullptr;
return parentContext.getAsDeclContext()
? cast<clang::NamedDecl>(parentContext.getAsDeclContext())
: parentContext.getTypedefName();
}
void SwiftLookupTable::addCategory(clang::ObjCCategoryDecl *category) {
// Force deserialization to occur before appending.
(void) categories();
// Add the category.
Categories.push_back(category);
}
bool SwiftLookupTable::resolveUnresolvedEntries(
SmallVectorImpl<SingleEntry> &unresolved) {
// Common case: nothing left to resolve.
unresolved.clear();
if (UnresolvedEntries.empty()) return false;
// Reprocess each of the unresolved entries to see if it can be
// resolved now that we're done. This occurs when a swift_name'd
// entity becomes a member of an entity that follows it in the
// translation unit, e.g., given:
//
// \code
// typedef enum FooSomeEnumeration __attribute__((Foo.SomeEnum)) {
// ...
// } FooSomeEnumeration;
//
// typedef struct Foo {
//
// } Foo;
// \endcode
//
// FooSomeEnumeration belongs inside "Foo", but we haven't actually
// seen "Foo" yet. Therefore, we will reprocess FooSomeEnumeration
// at the end, once "Foo" is available. There are several reasons
// this loop can execute:
//
// * Import-as-member places an entity inside of an another entity
// that comes later in the translation unit. The number of
// iterations that can be caused by this is bounded by the nesting
// depth. (At present, that depth is limited to 2).
//
// * An erroneous import-as-member will cause an extra iteration at
// the end, so that the loop can detect that nothing changed and
// return a failure.
while (true) {
// Take the list of unresolved entries to process.
auto prevNumUnresolvedEntries = UnresolvedEntries.size();
auto currentUnresolved = std::move(UnresolvedEntries);
UnresolvedEntries.clear();
// Process each of the currently-unresolved entries.
for (const auto &entry : currentUnresolved)
addEntry(std::get<0>(entry), std::get<1>(entry), std::get<2>(entry));
// Are we done?
if (UnresolvedEntries.empty()) return false;
// If nothing changed, fail: something is unresolvable, and the
// caller should complain.
if (UnresolvedEntries.size() == prevNumUnresolvedEntries) {
for (const auto &entry : UnresolvedEntries)
unresolved.push_back(std::get<1>(entry));
return true;
}
// Something got resolved, so loop again.
assert(UnresolvedEntries.size() < prevNumUnresolvedEntries);
}
}
/// Determine whether the entry is a global declaration that is being
/// mapped as a member of a particular type or extension thereof.
///
/// This should only return true when the entry isn't already nested
/// within a context. For example, it will return false for
/// enumerators, because those are naturally nested within the
/// enumeration declaration.
static bool isGlobalAsMember(SwiftLookupTable::SingleEntry entry,
SwiftLookupTable::StoredContext context) {
switch (context.first) {
case SwiftLookupTable::ContextKind::TranslationUnit:
// We're not mapping this as a member of anything.
return false;
case SwiftLookupTable::ContextKind::Tag:
case SwiftLookupTable::ContextKind::ObjCClass:
case SwiftLookupTable::ContextKind::ObjCProtocol:
case SwiftLookupTable::ContextKind::Typedef:
// We're mapping into a type context.
break;
}
// Macros are never stored within a non-translation-unit context in
// Clang.
if (isa<clang::MacroInfo *>(entry))
return true;
// We have a declaration.
auto *decl = cast<clang::NamedDecl *>(entry);
// Enumerators have the translation unit as their redeclaration context,
// but members of anonymous enums are still allowed to be in the
// global-as-member category.
if (isa<clang::EnumConstantDecl>(decl)) {
const auto *theEnum = cast<clang::EnumDecl>(decl->getDeclContext());
return !theEnum->hasNameForLinkage();
}
// If the redeclaration context is namespace-scope, then we're
// mapping as a member.
return decl->getDeclContext()->getRedeclContext()->isFileContext();
}
bool SwiftLookupTable::addLocalEntry(
SingleEntry newEntry,
SmallVectorImpl<StoredSingleEntry> &entries) {
// Check whether this entry matches any existing entry.
auto decl = newEntry.dyn_cast<clang::NamedDecl *>();
auto macro = newEntry.dyn_cast<clang::MacroInfo *>();
auto moduleMacro = newEntry.dyn_cast<clang::ModuleMacro *>();
for (auto &existingEntry : entries) {
// If it matches an existing declaration, there's nothing to do.
if (decl && existingEntry.isDeclEntry() &&
matchesExistingDecl(decl, mapStoredDecl(existingEntry)))
return false;
// If a textual macro matches an existing macro, just drop the new
// definition.
if (macro && existingEntry.isMacroEntry()) {
return false;
}
// If a module macro matches an existing macro, be a bit more discerning.
//
// Specifically, if the innermost explicit submodule containing the new
// macro contains the innermost explicit submodule containing the existing
// macro, the new one should replace the old one; if they're the same
// module, the old one should stay in place. Otherwise, they don't share an
// explicit module, and should be considered alternatives.
//
// Note that the above assumes that macro definitions are processed in
// reverse order, i.e. the first definition seen is the last in a
// translation unit.
if (moduleMacro && existingEntry.isMacroEntry()) {
SingleEntry decodedEntry = mapStoredMacro(existingEntry,
/*assumeModule*/true);
const auto *existingMacro = cast<clang::ModuleMacro *>(decodedEntry);
const clang::Module *newModule = moduleMacro->getOwningModule();
const clang::Module *existingModule = existingMacro->getOwningModule();
// A simple redeclaration: drop the new definition.
if (existingModule == newModule)
return false;
// A broader-scoped redeclaration: drop the old definition.
if (existingModule->isSubModuleOf(newModule)) {
// FIXME: What if there are /multiple/ old definitions we should be
// dropping? What if one of the earlier early exits makes us miss
// entries later in the list that would match this?
existingEntry = StoredSingleEntry(moduleMacro);
return false;
}
// Otherwise, just allow both definitions to coexist.
}
}
// Add an entry to this context.
if (decl)
entries.push_back(StoredSingleEntry(decl));
else if (macro)
entries.push_back(StoredSingleEntry(macro));
else
entries.push_back(StoredSingleEntry(moduleMacro));
return true;
}
void SwiftLookupTable::addEntry(DeclName name, SingleEntry newEntry,
EffectiveClangContext effectiveContext) {
assert(newEntry);
// Translate the context.
auto contextOpt = translateContext(effectiveContext);
if (!contextOpt) {
// We might be able to resolve this later.
if (isa<clang::NamedDecl *>(newEntry)) {
UnresolvedEntries.push_back(
std::make_tuple(name, newEntry, effectiveContext));
}
return;
}
auto updateTableWithEntry = [this](SingleEntry newEntry, StoredContext context,
TableType::value_type::second_type &entries){
for (auto &entry : entries) {
if (entry.Context == context) {
// We have entries for this context.
(void)addLocalEntry(newEntry, entry.DeclsOrMacros);
return;
} else {
(void)newEntry;
}
}
// This is a new context for this name. Add it.
auto decl = newEntry.dyn_cast<clang::NamedDecl *>();
auto macro = newEntry.dyn_cast<clang::MacroInfo *>();
auto moduleMacro = newEntry.dyn_cast<clang::ModuleMacro *>();
FullTableEntry entry;
entry.Context = context;
if (decl)
entry.DeclsOrMacros.push_back(StoredSingleEntry(decl));
else if (macro)
entry.DeclsOrMacros.push_back(StoredSingleEntry(macro));
else
entry.DeclsOrMacros.push_back(StoredSingleEntry(moduleMacro));
entries.push_back(entry);
};
// If this is a global imported as a member, record is as such.
auto context = *contextOpt;
if (isGlobalAsMember(newEntry, context)) {
// Populate cache from reader if necessary.
findOrCreate(GlobalsAsMembers, name.getBaseName(),
[](auto &results, auto &Reader, auto Name) {
return (void)Reader.lookupGlobalsAsMembers(Name, results);
});
updateTableWithEntry(newEntry, context,
GlobalsAsMembers[name.getBaseName()]);
// Populate the index as well.
auto &entries = GlobalsAsMembersIndex[context];
(void)addLocalEntry(newEntry, entries);
}
// Populate cache from reader if necessary.
findOrCreate(LookupTable, name.getBaseName(),
[](auto &results, auto &Reader, auto Name) {
return (void)Reader.lookup(Name, results);
});
updateTableWithEntry(newEntry, context, LookupTable[name.getBaseName()]);
}
SwiftLookupTable::TableType::iterator
SwiftLookupTable::findOrCreate(TableType &Table,
SerializedSwiftName baseName,
llvm::function_ref<CacheCallback> create) {
// If there is no base name, there is nothing to find.
if (baseName.empty()) return Table.end();
// Find entries for this base name.
auto known = Table.find(baseName);
// If we found something, we're done.
if (known != Table.end()) return known;
// If there's no reader, we've found all there is to find.
if (!Reader) return known;
// Lookup this base name in the module file.
SmallVector<FullTableEntry, 2> results;
create(results, *Reader, baseName);
// Add an entry to the table so we don't look again.
known = Table.insert({ std::move(baseName), std::move(results) }).first;
return known;
}
SmallVector<SwiftLookupTable::SingleEntry, 4>
SwiftLookupTable::lookup(SerializedSwiftName baseName,
std::optional<StoredContext> searchContext) {
SmallVector<SwiftLookupTable::SingleEntry, 4> result;
// Find the lookup table entry for this base name.
auto known = findOrCreate(LookupTable, baseName,
[](auto &results, auto &Reader, auto Name) {
return (void)Reader.lookup(Name, results);
});
if (known == LookupTable.end()) return result;
// Walk each of the entries.
for (auto &entry : known->second) {
// If we're looking in a particular context and it doesn't match the
// entry context, we're done.
if (searchContext && entry.Context != *searchContext)
continue;
// Map each of the declarations.
for (auto &stored : entry.DeclsOrMacros)
if (auto entry = mapStored(stored))
result.push_back(entry);
}
return result;
}
SmallVector<SwiftLookupTable::SingleEntry, 4>
SwiftLookupTable::lookupGlobalsAsMembersImpl(
SerializedSwiftName baseName, std::optional<StoredContext> searchContext) {
SmallVector<SwiftLookupTable::SingleEntry, 4> result;
// Find entries for this base name.
auto known = findOrCreate(GlobalsAsMembers, baseName,
[](auto &results, auto &Reader, auto Name) {
return (void)Reader.lookupGlobalsAsMembers(Name, results);
});
if (known == GlobalsAsMembers.end()) return result;
// Walk each of the entries.
for (auto &entry : known->second) {
// If we're looking in a particular context and it doesn't match the
// entry context, we're done.
if (searchContext && entry.Context != *searchContext)
continue;
// Map each of the declarations.
for (auto &stored : entry.DeclsOrMacros)
if (auto entry = mapStored(stored))
result.push_back(entry);
}
return result;
}
SmallVector<SwiftLookupTable::SingleEntry, 4>
SwiftLookupTable::allGlobalsAsMembersInContext(StoredContext context) {
SmallVector<SwiftLookupTable::SingleEntry, 4> result;
// Find entries for this base name.
auto known = GlobalsAsMembersIndex.find(context);
// If we didn't find anything...
if (known == GlobalsAsMembersIndex.end()) {
// If there's no reader, we've found all there is to find.
if (!Reader) return result;
// Lookup this base name in the module extension file.
SmallVector<StoredSingleEntry, 2> results;
(void)Reader->lookupGlobalsAsMembersInContext(context, results);
// Add an entry to the table so we don't look again.
known = GlobalsAsMembersIndex.insert({ std::move(context),
std::move(results) }).first;
}
// Map each of the results.
for (auto &entry : known->second) {
result.push_back(mapStored(entry));
}
return result;
}
SmallVector<SwiftLookupTable::SingleEntry, 4>
SwiftLookupTable::lookupGlobalsAsMembers(SerializedSwiftName baseName,
EffectiveClangContext searchContext) {
// Propagate the null search context.
if (!searchContext)
return lookupGlobalsAsMembersImpl(baseName, std::nullopt);
std::optional<StoredContext> storedContext = translateContext(searchContext);
if (!storedContext) return { };
return lookupGlobalsAsMembersImpl(baseName, *storedContext);
}
SmallVector<SwiftLookupTable::SingleEntry, 4>
SwiftLookupTable::allGlobalsAsMembersInContext(EffectiveClangContext context) {
if (!context) return { };
std::optional<StoredContext> storedContext = translateContext(context);
if (!storedContext) return { };
return allGlobalsAsMembersInContext(*storedContext);
}
SmallVector<SwiftLookupTable::SingleEntry, 4>
SwiftLookupTable::allGlobalsAsMembers() {
// If we have a reader, deserialize all of the globals-as-members data.
if (Reader) {
for (auto context : Reader->getGlobalsAsMembersContexts()) {
(void)allGlobalsAsMembersInContext(context);
}
}
// Collect all of the keys and sort them.
SmallVector<StoredContext, 8> contexts;
for (const auto &globalAsMember : GlobalsAsMembersIndex) {
contexts.push_back(globalAsMember.first);
}
llvm::array_pod_sort(contexts.begin(), contexts.end());
// Collect all of the results in order.
SmallVector<SwiftLookupTable::SingleEntry, 4> results;
for (const auto &context : contexts) {
for (auto &entry : GlobalsAsMembersIndex[context])
results.push_back(mapStored(entry));
}
return results;
}
SmallVector<SwiftLookupTable::SingleEntry, 4>
SwiftLookupTable::lookup(SerializedSwiftName baseName,
EffectiveClangContext searchContext) {
// Translate context.
std::optional<StoredContext> context;
if (searchContext) {
context = translateContext(searchContext);
if (!context) return { };
}
return lookup(baseName, context);
}
SmallVector<SerializedSwiftName, 4> SwiftLookupTable::allBaseNames() {
// If we have a reader, enumerate its base names.
if (Reader) return Reader->getBaseNames();
// Otherwise, walk the lookup table.
SmallVector<SerializedSwiftName, 4> result;
for (const auto &entry : LookupTable) {
result.push_back(entry.first);
}
return result;
}
SmallVector<clang::NamedDecl *, 4>
SwiftLookupTable::lookupObjCMembers(SerializedSwiftName baseName) {
SmallVector<clang::NamedDecl *, 4> result;
// Find the lookup table entry for this base name.
auto known = findOrCreate(LookupTable, baseName,
[](auto &results, auto &Reader, auto Name) {
return (void)Reader.lookup(Name, results);
});
if (known == LookupTable.end()) return result;
// Walk each of the entries.
for (auto &entry : known->second) {
// If we're looking in a particular context and it doesn't match the
// entry context, we're done.
switch (entry.Context.first) {
case ContextKind::TranslationUnit:
case ContextKind::Tag:
continue;
case ContextKind::ObjCClass:
case ContextKind::ObjCProtocol:
case ContextKind::Typedef:
break;
}
// Map each of the declarations.
for (auto &stored : entry.DeclsOrMacros) {
assert(stored.isDeclEntry() && "Not a declaration?");
result.push_back(mapStoredDecl(stored));
}
}
return result;
}
SmallVector<clang::NamedDecl *, 4>
SwiftLookupTable::lookupMemberOperators(SerializedSwiftName baseName) {
SmallVector<clang::NamedDecl *, 4> result;
// Find the lookup table entry for this base name.
auto known = findOrCreate(LookupTable, baseName,
[](auto &results, auto &Reader, auto Name) {
return (void)Reader.lookup(Name, results);
});
if (known == LookupTable.end())
return result;
// Walk each of the entries.
for (auto &entry : known->second) {
// We're only looking for C++ operators
if (entry.Context.first != ContextKind::Tag) {
continue;
}
// Map each of the declarations.
for (auto &stored : entry.DeclsOrMacros) {
assert(stored.isDeclEntry() && "Not a declaration?");
result.push_back(mapStoredDecl(stored));
}
}
return result;
}
ArrayRef<clang::ObjCCategoryDecl *> SwiftLookupTable::categories() {
if (!Categories.empty() || !Reader) return Categories;
// Map categories known to the reader.
for (auto declID : Reader->categories()) {
auto localID = clang::LocalDeclID::get(Reader->getASTReader(),
Reader->getModuleFile(), declID);
auto category = cast_or_null<clang::ObjCCategoryDecl>(
Reader->getASTReader().GetLocalDecl(Reader->getModuleFile(), localID));
if (category)
Categories.push_back(category);
}
return Categories;
}
static void printName(clang::NamedDecl *named, llvm::raw_ostream &out) {
// If there is a name, print it.
if (!named->getDeclName().isEmpty()) {
// If we have an Objective-C method, print the class name along
// with '+'/'-'.
if (auto objcMethod = dyn_cast<clang::ObjCMethodDecl>(named)) {
out << (objcMethod->isInstanceMethod() ? '-' : '+') << '[';
if (auto classDecl = objcMethod->getClassInterface()) {
classDecl->printName(out);
out << ' ';
} else if (auto proto = dyn_cast<clang::ObjCProtocolDecl>(
objcMethod->getDeclContext())) {
proto->printName(out);
out << ' ';
}
named->printName(out);
out << ']';
return;
}
// If we have an Objective-C property, print the class name along
// with the property name.
if (auto objcProperty = dyn_cast<clang::ObjCPropertyDecl>(named)) {
auto dc = objcProperty->getDeclContext();
if (auto classDecl = dyn_cast<clang::ObjCInterfaceDecl>(dc)) {
classDecl->printName(out);
out << '.';
} else if (auto categoryDecl = dyn_cast<clang::ObjCCategoryDecl>(dc)) {
categoryDecl->getClassInterface()->printName(out);
out << '.';
} else if (auto proto = dyn_cast<clang::ObjCProtocolDecl>(dc)) {
proto->printName(out);
out << '.';
}
named->printName(out);
return;
}
named->printName(out);
return;
}
// If this is an anonymous tag declaration with a typedef name, use that.
if (auto tag = dyn_cast<clang::TagDecl>(named)) {
if (auto typedefName = tag->getTypedefNameForAnonDecl()) {
printName(typedefName, out);
return;
}
}
}
void SwiftLookupTable::deserializeAll() {
if (!Reader) return;
for (auto baseName : Reader->getBaseNames()) {
(void)lookup(baseName, std::nullopt);
}
for (auto baseName : Reader->getGlobalsAsMembersBaseNames()) {
(void)lookupGlobalsAsMembersImpl(baseName, std::nullopt);
}
(void)categories();
for (auto context : Reader->getGlobalsAsMembersContexts()) {
(void)allGlobalsAsMembersInContext(context);
}
}
/// Print a stored context to the given output stream for debugging purposes.
static void printStoredContext(SwiftLookupTable::StoredContext context,
llvm::raw_ostream &out) {
switch (context.first) {
case SwiftLookupTable::ContextKind::TranslationUnit:
out << "TU";
break;
case SwiftLookupTable::ContextKind::Tag:
case SwiftLookupTable::ContextKind::ObjCClass:
case SwiftLookupTable::ContextKind::ObjCProtocol:
case SwiftLookupTable::ContextKind::Typedef:
out << context.second;
break;
}
}
/// Print a stored entry (Clang macro or declaration) for debugging purposes.
static void printStoredEntry(const SwiftLookupTable *table,
StoredSingleEntry &entry,
llvm::raw_ostream &out) {
if (entry.isSerializationIDEntry()) {
if (entry.isDeclEntry()) {
llvm::errs() << "decl ID #" << entry.getSerializationID();
} else {
auto moduleID = entry.getModuleID();
if (moduleID == 0) {
llvm::errs() << "macro ID #" << entry.getSerializationID();
} else {
llvm::errs() << "macro with name ID #"
<< entry.getSerializationID() << "in submodule #"
<< moduleID;
}
}
} else if (entry.isMacroEntry()) {
llvm::errs() << "Macro";
} else {
auto decl = const_cast<SwiftLookupTable *>(table)->mapStoredDecl(entry);
printName(decl, llvm::errs());
}
}
void SwiftLookupTable::dump() const {
dump(llvm::errs());
}
void SwiftLookupTable::dump(raw_ostream &os) const {
// Dump the base name -> full table entry mappings.
SmallVector<SerializedSwiftName, 4> baseNames;
for (const auto &entry : LookupTable) {
baseNames.push_back(entry.first);
}
llvm::array_pod_sort(baseNames.begin(), baseNames.end());
os << "Base name -> entry mappings:\n";
for (auto baseName : baseNames) {
switch (baseName.Kind) {
case DeclBaseName::Kind::Normal:
os << " " << baseName.Name << ":\n";
break;
case DeclBaseName::Kind::Subscript:
os << " subscript:\n";
break;
case DeclBaseName::Kind::Constructor:
os << " init:\n";
break;
case DeclBaseName::Kind::Destructor:
os << " deinit:\n";
break;
}
const auto &entries = LookupTable.find(baseName)->second;
for (const auto &entry : entries) {
os << " ";
printStoredContext(entry.Context, os);
os << ": ";
llvm::interleave(
entry.DeclsOrMacros.begin(), entry.DeclsOrMacros.end(),
[this, &os](StoredSingleEntry entry) {
printStoredEntry(this, entry, os);
},
[&os] { os << ", "; });
os << "\n";
}
}
if (!Categories.empty()) {
os << "Categories: ";
llvm::interleave(
Categories.begin(), Categories.end(),
[&os](clang::ObjCCategoryDecl *category) {
os << category->getClassInterface()->getName() << "("
<< category->getName() << ")";
},
[&os] { os << ", "; });
os << "\n";
} else if (Reader && !Reader->categories().empty()) {
os << "Categories: ";
llvm::interleave(
Reader->categories().begin(), Reader->categories().end(),
[&os](clang::serialization::DeclID declID) {
os << "decl ID #" << declID;
},
[&os] { os << ", "; });
os << "\n";
}
if (!GlobalsAsMembersIndex.empty()) {
os << "Globals-as-members mapping:\n";
SmallVector<StoredContext, 4> contexts;
for (const auto &entry : GlobalsAsMembersIndex) {
contexts.push_back(entry.first);
}
llvm::array_pod_sort(contexts.begin(), contexts.end());
for (auto context : contexts) {
os << " ";
printStoredContext(context, os);
os << ": ";
const auto &entries = GlobalsAsMembersIndex.find(context)->second;
llvm::interleave(
entries.begin(), entries.end(),
[this, &os](StoredSingleEntry entry) {
printStoredEntry(this, entry, os);
},
[&os] { os << ", "; });
os << "\n";
}
}
}
// ---------------------------------------------------------------------------
// Serialization
// ---------------------------------------------------------------------------
using llvm::BCArray;
using llvm::BCBlob;
using llvm::BCFixed;
using llvm::BCGenericRecordLayout;
using llvm::BCRecordLayout;
using llvm::BCVBR;
namespace {
enum RecordTypes {
/// Record that contains the mapping from base names to entities with that
/// name.
BASE_NAME_TO_ENTITIES_RECORD_ID
= clang::serialization::FIRST_EXTENSION_RECORD_ID,
/// Record that contains the list of Objective-C category/extension IDs.
CATEGORIES_RECORD_ID,
/// Record that contains the mapping from contexts to the list of
/// globals that will be injected as members into those contexts.
GLOBALS_AS_MEMBERS_RECORD_ID,
/// Record that contains the mapping from contexts to the list of
/// globals that will be injected as members into those contexts.
GLOBALS_AS_MEMBERS_INDEX_RECORD_ID,
};
using BaseNameToEntitiesTableRecordLayout
= BCRecordLayout<BASE_NAME_TO_ENTITIES_RECORD_ID, BCVBR<16>, BCBlob>;
using CategoriesRecordLayout
= llvm::BCRecordLayout<CATEGORIES_RECORD_ID, BCBlob>;
using GlobalsAsMembersTableRecordLayout
= BCRecordLayout<GLOBALS_AS_MEMBERS_RECORD_ID, BCVBR<16>, BCBlob>;
using GlobalsAsMembersIndexRecordLayout
= BCRecordLayout<GLOBALS_AS_MEMBERS_INDEX_RECORD_ID, BCVBR<16>, BCBlob>;
constexpr size_t SizeOfEmittedStoredSingleEntry
= sizeof(StoredSingleEntry::SerializationID)
+ sizeof(StoredSingleEntry::SubmoduleID);
static void emitStoredSingleEntry(SwiftLookupTable::SingleEntry &mappedEntry,
clang::ASTWriter &astWriter,
endian::Writer &blobWriter) {
StoredSingleEntry ids;
// Construct a StoredSingleEntry with the ID(s) for `mappedEntry`.
if (auto *decl = mappedEntry.dyn_cast<clang::NamedDecl *>()) {
ids = StoredSingleEntry::forSerializedDecl(
astWriter.getDeclID(decl).getRawValue());
} else if (auto *macro = mappedEntry.dyn_cast<clang::MacroInfo *>()) {
ids = StoredSingleEntry::forSerializedMacro(
astWriter.getMacroRef(macro, /*Name=*/nullptr));
} else {
auto *moduleMacro = cast<clang::ModuleMacro *>(mappedEntry);
StoredSingleEntry::SerializationID nameID =
astWriter.getIdentifierRef(moduleMacro->getName());
StoredSingleEntry::SubmoduleID submoduleID =
astWriter.getLocalOrImportedSubmoduleID(moduleMacro->getOwningModule());
ids = StoredSingleEntry::forSerializedMacro(nameID, submoduleID);
}
// Write it out.
auto idsData = ids.getData();
blobWriter.write<StoredSingleEntry::SerializationID>(idsData.first);
blobWriter.write<StoredSingleEntry::SubmoduleID>(idsData.second);
}
/// Trait used to write the on-disk hash table for the base name -> entities
/// mapping.
class BaseNameToEntitiesTableWriterInfo {
static_assert(sizeof(DeclBaseName::Kind) <= sizeof(uint8_t),
"kind serialized as uint8_t");
SwiftLookupTable &Table;
clang::ASTWriter &Writer;
public:
using key_type = SerializedSwiftName;
using key_type_ref = key_type;
using data_type = SmallVector<SwiftLookupTable::FullTableEntry, 2>;
using data_type_ref = data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
BaseNameToEntitiesTableWriterInfo(SwiftLookupTable &table,
clang::ASTWriter &writer)
: Table(table), Writer(writer)
{
}
hash_value_type ComputeHash(key_type_ref key) {
return static_cast<hash_value_type>(key.Kind) + llvm::djbHash(key.Name);
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
uint32_t keyLength = sizeof(uint8_t); // For the flag of the name's kind
if (key.Kind == DeclBaseName::Kind::Normal) {
keyLength += key.Name.size(); // The name's length
}
assert(keyLength == static_cast<uint16_t>(keyLength));
// # of entries
uint32_t dataLength = sizeof(uint16_t);
// Storage per entry.
for (const auto &entry : data) {
// Context info.
dataLength += 1;
if (SwiftLookupTable::contextRequiresName(entry.Context.first)) {
dataLength += sizeof(uint16_t) + entry.Context.second.size();
}
// # of entries.
dataLength += sizeof(uint16_t);
// Actual entries.
dataLength += (SizeOfEmittedStoredSingleEntry
* entry.DeclsOrMacros.size());
}
endian::Writer writer(out, llvm::endianness::little);
writer.write<uint16_t>(keyLength);
writer.write<uint32_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
endian::Writer writer(out, llvm::endianness::little);
writer.write<uint8_t>((uint8_t)key.Kind);
if (key.Kind == swift::DeclBaseName::Kind::Normal)
writer.OS << key.Name;
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
endian::Writer writer(out, llvm::endianness::little);
// # of entries
writer.write<uint16_t>(data.size());
assert(data.size() == static_cast<uint16_t>(data.size()));
bool isModule = Writer.getLangOpts().isCompilingModule();
for (auto &fullEntry : data) {
// Context.
writer.write<uint8_t>(static_cast<uint8_t>(fullEntry.Context.first));
if (SwiftLookupTable::contextRequiresName(fullEntry.Context.first)) {
writer.write<uint16_t>(fullEntry.Context.second.size());
out << fullEntry.Context.second;
}
// # of entries.
writer.write<uint16_t>(fullEntry.DeclsOrMacros.size());
// Write the declarations and macros.
for (auto &entry : fullEntry.DeclsOrMacros) {
auto mappedEntry = Table.mapStored(entry, isModule);
emitStoredSingleEntry(mappedEntry, Writer, writer);
}
}
}
};
/// Trait used to write the on-disk hash table for the
/// globals-as-members mapping.
class GlobalsAsMembersTableWriterInfo {
SwiftLookupTable &Table;
clang::ASTWriter &Writer;
public:
using key_type = std::pair<SwiftLookupTable::ContextKind, StringRef>;
using key_type_ref = key_type;
using data_type = SmallVector<StoredSingleEntry, 2>;
using data_type_ref = data_type &;
using hash_value_type = uint32_t;
using offset_type = unsigned;
GlobalsAsMembersTableWriterInfo(SwiftLookupTable &table,
clang::ASTWriter &writer)
: Table(table), Writer(writer)
{
}
hash_value_type ComputeHash(key_type_ref key) {
return static_cast<hash_value_type>(key.first) +
llvm::djbHash(key.second);
}
std::pair<unsigned, unsigned> EmitKeyDataLength(raw_ostream &out,
key_type_ref key,
data_type_ref data) {
// The length of the key.
uint32_t keyLength = 1;
if (SwiftLookupTable::contextRequiresName(key.first))
keyLength += key.second.size();
assert(keyLength == static_cast<uint16_t>(keyLength));
// # of entries
uint32_t dataLength =
sizeof(uint16_t) + SizeOfEmittedStoredSingleEntry * data.size();
assert(dataLength == static_cast<uint32_t>(dataLength));
endian::Writer writer(out, llvm::endianness::little);
writer.write<uint16_t>(keyLength);
writer.write<uint32_t>(dataLength);
return { keyLength, dataLength };
}
void EmitKey(raw_ostream &out, key_type_ref key, unsigned len) {
endian::Writer writer(out, llvm::endianness::little);
writer.write<uint8_t>(static_cast<unsigned>(key.first) - 2);
if (SwiftLookupTable::contextRequiresName(key.first))
out << key.second;
}
void EmitData(raw_ostream &out, key_type_ref key, data_type_ref data,
unsigned len) {
endian::Writer writer(out, llvm::endianness::little);
// # of entries
writer.write<uint16_t>(data.size());
// Actual entries.
bool isModule = Writer.getLangOpts().isCompilingModule();
for (auto &entry : data) {
auto mappedEntry = Table.mapStored(entry, isModule);
emitStoredSingleEntry(mappedEntry, Writer, writer);
}
}
};
} // end anonymous namespace
void SwiftLookupTableWriter::writeExtensionContents(
clang::Sema &sema,
llvm::BitstreamWriter &stream) {
NameImporter nameImporter(swiftCtx, availability, sema, importerImpl);
// Populate the lookup table.
SwiftLookupTable table(nullptr);
populateTable(table, nameImporter);
SmallVector<uint64_t, 64> ScratchRecord;
// First, gather the sorted list of base names.
SmallVector<SerializedSwiftName, 2> baseNames;
for (const auto &entry : table.LookupTable)
baseNames.push_back(entry.first);
llvm::array_pod_sort(baseNames.begin(), baseNames.end());
// Form the mapping from base names to entities with their context.
{
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<BaseNameToEntitiesTableWriterInfo>
generator;
BaseNameToEntitiesTableWriterInfo info(table, Writer);
for (auto baseName : baseNames)
generator.insert(baseName, table.LookupTable[baseName], info);
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, llvm::endianness::little);
tableOffset = generator.Emit(blobStream, info);
}
BaseNameToEntitiesTableRecordLayout layout(stream);
layout.emit(ScratchRecord, tableOffset, hashTableBlob);
}
// Write the categories, if there are any.
if (!table.Categories.empty()) {
SmallVector<clang::serialization::DeclID, 4> categoryIDs;
for (auto category : table.Categories) {
categoryIDs.push_back(Writer.getDeclID(category).getRawValue());
}
StringRef blob(reinterpret_cast<const char *>(categoryIDs.data()),
categoryIDs.size() * sizeof(clang::serialization::DeclID));
CategoriesRecordLayout layout(stream);
layout.emit(ScratchRecord, blob);
}
// Write the globals-as-members table, if non-empty.
if (!table.GlobalsAsMembers.empty()) {
// First, gather the sorted list of base names.
SmallVector<SerializedSwiftName, 2> baseNames;
for (const auto &entry : table.GlobalsAsMembers)
baseNames.push_back(entry.first);
llvm::array_pod_sort(baseNames.begin(), baseNames.end());
// Form the mapping from base names to entities with their context.
{
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<BaseNameToEntitiesTableWriterInfo>
generator;
BaseNameToEntitiesTableWriterInfo info(table, Writer);
for (auto baseName : baseNames)
generator.insert(baseName, table.GlobalsAsMembers[baseName], info);
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, llvm::endianness::little);
tableOffset = generator.Emit(blobStream, info);
}
GlobalsAsMembersTableRecordLayout layout(stream);
layout.emit(ScratchRecord, tableOffset, hashTableBlob);
}
}
// Write the globals-as-members index, if non-empty.
if (!table.GlobalsAsMembersIndex.empty()) {
// Sort the keys.
SmallVector<SwiftLookupTable::StoredContext, 4> contexts;
for (const auto &entry : table.GlobalsAsMembersIndex) {
contexts.push_back(entry.first);
}
llvm::array_pod_sort(contexts.begin(), contexts.end());
// Create the on-disk hash table.
llvm::SmallString<4096> hashTableBlob;
uint32_t tableOffset;
{
llvm::OnDiskChainedHashTableGenerator<GlobalsAsMembersTableWriterInfo>
generator;
GlobalsAsMembersTableWriterInfo info(table, Writer);
for (auto context : contexts)
generator.insert(context, table.GlobalsAsMembersIndex[context], info);
llvm::raw_svector_ostream blobStream(hashTableBlob);
// Make sure that no bucket is at offset 0
endian::write<uint32_t>(blobStream, 0, llvm::endianness::little);
tableOffset = generator.Emit(blobStream, info);
}
GlobalsAsMembersIndexRecordLayout layout(stream);
layout.emit(ScratchRecord, tableOffset, hashTableBlob);
}
}
namespace {
StoredSingleEntry readNextStoredSingleEntry(const uint8_t *&data) {
std::pair<StoredSingleEntry::SerializationID,
StoredSingleEntry::SubmoduleID> ids;
ids.first = readNext<StoredSingleEntry::SerializationID>(data);
ids.second = readNext<StoredSingleEntry::SubmoduleID>(data);
return StoredSingleEntry(ids);
}
/// Used to deserialize the on-disk base name -> entities table.
class BaseNameToEntitiesTableReaderInfo {
public:
using internal_key_type = SerializedSwiftName;
using external_key_type = internal_key_type;
using data_type = SmallVector<SwiftLookupTable::FullTableEntry, 2>;
using hash_value_type = uint32_t;
using offset_type = unsigned;
internal_key_type GetInternalKey(external_key_type key) {
return key;
}
external_key_type GetExternalKey(internal_key_type key) {
return key;
}
hash_value_type ComputeHash(internal_key_type key) {
return static_cast<hash_value_type>(key.Kind) + llvm::djbHash(key.Name);
}
static bool EqualKey(internal_key_type lhs, internal_key_type rhs) {
return lhs == rhs;
}
static std::pair<unsigned, unsigned>
ReadKeyDataLength(const uint8_t *&data) {
unsigned keyLength = readNext<uint16_t>(data);
unsigned dataLength = readNext<uint32_t>(data);
return { keyLength, dataLength };
}
static internal_key_type ReadKey(const uint8_t *data, unsigned length) {
uint8_t kind = readNext<uint8_t>(data);
switch (kind) {
case (uint8_t)DeclBaseName::Kind::Normal: {
StringRef str(reinterpret_cast<const char *>(data),
length - sizeof(uint8_t));
return SerializedSwiftName(str);
}
case (uint8_t)DeclBaseName::Kind::Subscript:
return SerializedSwiftName(DeclBaseName::Kind::Subscript);
case (uint8_t)DeclBaseName::Kind::Constructor:
return SerializedSwiftName(DeclBaseName::Kind::Constructor);
case (uint8_t)DeclBaseName::Kind::Destructor:
return SerializedSwiftName(DeclBaseName::Kind::Destructor);
default:
llvm_unreachable("Unknown kind for DeclBaseName");
}
}
static data_type ReadData(internal_key_type key, const uint8_t *data,
unsigned length) {
data_type result;
// # of entries.
unsigned numEntries = readNext<uint16_t>(data);
result.reserve(numEntries);
// Read all of the entries.
while (numEntries--) {
SwiftLookupTable::FullTableEntry entry;
// Read the context.
entry.Context.first =
static_cast<SwiftLookupTable::ContextKind>(readNext<uint8_t>(data));
if (SwiftLookupTable::contextRequiresName(entry.Context.first)) {
uint16_t length = readNext<uint16_t>(data);
entry.Context.second = StringRef((const char *)data, length);
data += length;
}
// Read the declarations and macros.
unsigned numDeclsOrMacros = readNext<uint16_t>(data);
while (numDeclsOrMacros--) {
entry.DeclsOrMacros.push_back(readNextStoredSingleEntry(data));
}
result.push_back(entry);
}
return result;
}
};
/// Used to deserialize the on-disk globals-as-members table.
class GlobalsAsMembersTableReaderInfo {
public:
using internal_key_type = SwiftLookupTable::StoredContext;
using external_key_type = internal_key_type;
using data_type = SmallVector<StoredSingleEntry, 2>;
using hash_value_type = uint32_t;
using offset_type = unsigned;
internal_key_type GetInternalKey(external_key_type key) {
return key;
}
external_key_type GetExternalKey(internal_key_type key) {
return key;
}
hash_value_type ComputeHash(internal_key_type key) {
return static_cast<hash_value_type>(key.first) + llvm::djbHash(key.second);
}
static bool EqualKey(internal_key_type lhs, internal_key_type rhs) {
return lhs == rhs;
}
static std::pair<unsigned, unsigned>
ReadKeyDataLength(const uint8_t *&data) {
unsigned keyLength = readNext<uint16_t>(data);
unsigned dataLength = readNext<uint32_t>(data);
return { keyLength, dataLength };
}
static internal_key_type ReadKey(const uint8_t *data, unsigned length) {
return internal_key_type(
static_cast<SwiftLookupTable::ContextKind>(*data + 2),
StringRef((const char *)data + 1, length - 1));
}
static data_type ReadData(internal_key_type key, const uint8_t *data,
unsigned length) {
data_type result;
// # of entries.
unsigned numEntries = readNext<uint16_t>(data);
result.reserve(numEntries);
// Read all of the entries.
while (numEntries--) {
result.push_back(readNextStoredSingleEntry(data));
}
return result;
}
};
} // end anonymous namespace
clang::NamedDecl *SwiftLookupTable::mapStoredDecl(StoredSingleEntry &entry) {
assert(entry.isDeclEntry() && "Not a declaration entry");
// If we have an AST node here, just cast it.
if (entry.isASTNodeEntry()) {
return static_cast<clang::NamedDecl *>(entry.getASTNode());
}
// Otherwise, resolve the declaration.
assert(Reader && "Cannot resolve the declaration without a reader");
auto declID = entry.getSerializationID();
auto localID = clang::LocalDeclID::get(Reader->getASTReader(),
Reader->getModuleFile(), declID);
auto decl = cast_or_null<clang::NamedDecl>(
Reader->getASTReader().GetLocalDecl(Reader->getModuleFile(), localID));
// Update the entry now that we've resolved the declaration.
entry = StoredSingleEntry(decl);
return decl;
}
static bool isPCH(SwiftLookupTableReader &reader) {
return reader.getModuleFile().Kind == clang::serialization::MK_PCH;
}
SwiftLookupTable::SingleEntry
SwiftLookupTable::mapStoredMacro(StoredSingleEntry &entry, bool assumeModule) {
assert(entry.isMacroEntry() && "Not a macro entry");
// If we have an AST node here, just cast it.
if (entry.isASTNodeEntry()) {
if (assumeModule || (Reader && !isPCH(*Reader)))
return static_cast<clang::ModuleMacro *>(entry.getASTNode());
else
return static_cast<clang::MacroInfo *>(entry.getASTNode());
}
// Otherwise, resolve the macro.
assert(Reader && "Cannot resolve the macro without a reader");
clang::ASTReader &astReader = Reader->getASTReader();
if (!assumeModule && entry.getModuleID() == 0) {
assert(isPCH(*Reader));
// Not a module, and the second key is actually a macroID.
auto macro =
astReader.getMacro(astReader.getGlobalMacroID(Reader->getModuleFile(),
entry.getSerializationID()));
// Update the entry now that we've resolved the macro.
entry = StoredSingleEntry(macro);
return macro;
}
// FIXME: Clang should help us out here, but it doesn't. It can only give us
// MacroInfos and not ModuleMacros.
assert(!isPCH(*Reader));
clang::IdentifierInfo *name =
astReader.getLocalIdentifier(Reader->getModuleFile(),
entry.getSerializationID());
auto submoduleID = astReader.getGlobalSubmoduleID(Reader->getModuleFile(),
entry.getModuleID());
clang::Module *submodule = astReader.getSubmodule(submoduleID);
assert(submodule);
clang::Preprocessor &pp = Reader->getASTReader().getPreprocessor();
// Force the ModuleMacro to be loaded if this module is visible.
(void)pp.getLeafModuleMacros(name);
clang::ModuleMacro *macro = pp.getModuleMacro(submodule, name);
// This might still be NULL if the module has been imported but not made
// visible. We need a better answer here.
if (macro)
entry = StoredSingleEntry(macro);
return macro;
}
SwiftLookupTable::SingleEntry
SwiftLookupTable::mapStored(StoredSingleEntry &entry, bool assumeModule) {
if (entry.isDeclEntry())
return mapStoredDecl(entry);
return mapStoredMacro(entry, assumeModule);
}
SwiftLookupTableReader::~SwiftLookupTableReader() {
OnRemove();
}
std::unique_ptr<SwiftLookupTableReader>
SwiftLookupTableReader::create(clang::ModuleFileExtension *extension,
clang::ASTReader &reader,
clang::serialization::ModuleFile &moduleFile,
std::function<void()> onRemove,
const llvm::BitstreamCursor &stream)
{
// Look for the base name -> entities table record.
SmallVector<uint64_t, 64> scratch;
auto cursor = stream;
llvm::Expected<llvm::BitstreamEntry> maybeNext = cursor.advance();
if (!maybeNext) {
// FIXME this drops the error on the floor.
consumeError(maybeNext.takeError());
return nullptr;
}
llvm::BitstreamEntry next = maybeNext.get();
std::unique_ptr<SerializedBaseNameToEntitiesTable> serializedTable;
std::unique_ptr<SerializedGlobalsAsMembersIndex> globalsAsMembersIndex;
std::unique_ptr<SerializedGlobalsAsMembersTable> globalsAsMembersTable;
ArrayRef<clang::serialization::DeclID> categories;
while (next.Kind != llvm::BitstreamEntry::EndBlock) {
if (next.Kind == llvm::BitstreamEntry::Error)
return nullptr;
if (next.Kind == llvm::BitstreamEntry::SubBlock) {
// Unknown sub-block, possibly for use by a future version of the
// API notes format.
if (cursor.SkipBlock())
return nullptr;
maybeNext = cursor.advance();
if (!maybeNext) {
// FIXME this drops the error on the floor.
consumeError(maybeNext.takeError());
return nullptr;
}
next = maybeNext.get();
continue;
}
scratch.clear();
StringRef blobData;
llvm::Expected<unsigned> maybeKind =
cursor.readRecord(next.ID, scratch, &blobData);
if (!maybeKind) {
// FIXME this drops the error on the floor.
consumeError(maybeNext.takeError());
return nullptr;
}
unsigned kind = maybeKind.get();
switch (kind) {
case BASE_NAME_TO_ENTITIES_RECORD_ID: {
// Already saw base name -> entities table.
if (serializedTable)
return nullptr;
uint32_t tableOffset;
BaseNameToEntitiesTableRecordLayout::readRecord(scratch, tableOffset);
auto base = reinterpret_cast<const uint8_t *>(blobData.data());
serializedTable.reset(
SerializedBaseNameToEntitiesTable::Create(base + tableOffset,
base + sizeof(uint32_t),
base));
break;
}
case GLOBALS_AS_MEMBERS_INDEX_RECORD_ID: {
// Already saw globals as members index.
if (globalsAsMembersIndex)
return nullptr;
uint32_t tableOffset;
GlobalsAsMembersIndexRecordLayout::readRecord(scratch, tableOffset);
auto base = reinterpret_cast<const uint8_t *>(blobData.data());
globalsAsMembersIndex.reset(
SerializedGlobalsAsMembersIndex::Create(base + tableOffset,
base + sizeof(uint32_t),
base));
break;
}
case CATEGORIES_RECORD_ID: {
// Already saw categories; input is malformed.
if (!categories.empty()) return nullptr;
auto start =
reinterpret_cast<const clang::serialization::DeclID *>(blobData.data());
unsigned numElements
= blobData.size() / sizeof(clang::serialization::DeclID);
categories = llvm::ArrayRef(start, numElements);
break;
}
case GLOBALS_AS_MEMBERS_RECORD_ID: {
// Already saw globals-as-members table.
if (globalsAsMembersTable)
return nullptr;
uint32_t tableOffset;
GlobalsAsMembersTableRecordLayout::readRecord(scratch, tableOffset);
auto base = reinterpret_cast<const uint8_t *>(blobData.data());
globalsAsMembersTable.reset(
SerializedGlobalsAsMembersTable::Create(base + tableOffset,
base + sizeof(uint32_t),
base));
break;
}
default:
// Unknown record, possibly for use by a future version of the
// module format.
break;
}
maybeNext = cursor.advance();
if (!maybeNext) {
// FIXME this drops the error on the floor.
consumeError(maybeNext.takeError());
return nullptr;
}
next = maybeNext.get();
}
if (!serializedTable) return nullptr;
// Create the reader.
// Note: This doesn't use std::make_unique because the constructor is
// private.
return std::unique_ptr<SwiftLookupTableReader>(
new SwiftLookupTableReader(extension, reader, moduleFile, onRemove,
std::move(serializedTable), categories,
std::move(globalsAsMembersTable),
std::move(globalsAsMembersIndex)));
}
SmallVector<SerializedSwiftName, 4> SwiftLookupTableReader::getBaseNames() {
SmallVector<SerializedSwiftName, 4> results;
for (auto key : SerializedTable->keys()) {
results.push_back(key);
}
return results;
}
bool SwiftLookupTableReader::lookup(
SerializedSwiftName baseName,
SmallVectorImpl<SwiftLookupTable::FullTableEntry> &entries) {
// Look for an entry with this base name.
auto known = SerializedTable->find(baseName);
if (known == SerializedTable->end()) return false;
// Grab the results.
entries = std::move(*known);
return true;
}
SmallVector<SwiftLookupTable::StoredContext, 4>
SwiftLookupTableReader::getGlobalsAsMembersContexts() {
SmallVector<SwiftLookupTable::StoredContext, 4> results;
if (!GlobalsAsMembersIndex) return results;
for (auto key : GlobalsAsMembersIndex->keys()) {
results.push_back(key);
}
return results;
}
bool SwiftLookupTableReader::lookupGlobalsAsMembersInContext(
SwiftLookupTable::StoredContext context,
SmallVectorImpl<StoredSingleEntry> &entries) {
if (!GlobalsAsMembersIndex) return false;
// Look for an entry with this context name.
auto known = GlobalsAsMembersIndex->find(context);
if (known == GlobalsAsMembersIndex->end()) return false;
// Grab the results.
entries = std::move(*known);
return true;
}
SmallVector<SerializedSwiftName, 4>
SwiftLookupTableReader::getGlobalsAsMembersBaseNames() {
SmallVector<SerializedSwiftName, 4> results;
if (!GlobalsAsMembersTable) return {};
for (auto key : GlobalsAsMembersTable->keys()) {
results.push_back(key);
}
return results;
}
bool SwiftLookupTableReader::lookupGlobalsAsMembers(
SerializedSwiftName baseName,
SmallVectorImpl<SwiftLookupTable::FullTableEntry> &entries) {
if (!GlobalsAsMembersTable) return false;
// Look for an entry with this context name.
auto known = GlobalsAsMembersTable->find(baseName);
if (known == GlobalsAsMembersTable->end()) return false;
// Grab the results.
entries = std::move(*known);
return true;
}
clang::ModuleFileExtensionMetadata
SwiftNameLookupExtension::getExtensionMetadata() const {
clang::ModuleFileExtensionMetadata metadata;
metadata.BlockName = "swift.lookup";
metadata.MajorVersion = SWIFT_LOOKUP_TABLE_VERSION_MAJOR;
metadata.MinorVersion = SWIFT_LOOKUP_TABLE_VERSION_MINOR;
metadata.UserInfo =
version::getSwiftFullVersion(swiftCtx.LangOpts.EffectiveLanguageVersion);
return metadata;
}
void
SwiftNameLookupExtension::hashExtension(ExtensionHashBuilder &HBuilder) const {
HBuilder.add(StringRef("swift.lookup"));
HBuilder.add(SWIFT_LOOKUP_TABLE_VERSION_MAJOR);
HBuilder.add(SWIFT_LOOKUP_TABLE_VERSION_MINOR);
HBuilder.add(version::getSwiftFullVersion());
}
void importer::addEntryToLookupTable(SwiftLookupTable &table,
clang::NamedDecl *named,
NameImporter &nameImporter) {
auto &clangContext = nameImporter.getClangContext();
clang::PrettyStackTraceDecl trace(
named, named->getLocation(), clangContext.getSourceManager(),
"while adding SwiftName lookup table entries for clang declaration");
// Determine whether this declaration is suppressed in Swift.
if (shouldSuppressDeclImport(named))
return;
// Leave incomplete struct/enum/union types out of the table, unless they
// are types that will be imported as reference types (e.g., CF types or
// those that use SWIFT_SHARED_REFERENCE).
if (auto *tagDecl = dyn_cast<clang::TagDecl>(named)) {
// We add entries for ClassTemplateSpecializations that don't have
// definition. It's possible that the decl will be instantiated by
// SwiftDeclConverter later on. We cannot force instantiating
// ClassTemplateSPecializations here because we're currently writing the
// AST, so we cannot modify it.
if (!isa<clang::ClassTemplateSpecializationDecl>(named) &&
!tagDecl->getDefinition() &&
!(isa<clang::RecordDecl>(tagDecl) &&
hasImportAsRefAttr(cast<clang::RecordDecl>(tagDecl)))) {
return;
}
}
// If we have a name to import as, add this entry to the table.
auto currentVersion =
ImportNameVersion::fromOptions(nameImporter.getLangOpts());
auto failed = nameImporter.forEachDistinctImportName(
named, currentVersion,
[&](ImportedName importedName, ImportNameVersion version) {
table.addEntry(importedName.getDeclName(), named,
importedName.getEffectiveContext());
// Also add the subscript entry, if needed.
if (version == currentVersion && importedName.isSubscriptAccessor()) {
table.addEntry(DeclName(nameImporter.getContext(),
DeclBaseName::createSubscript(),
{Identifier()}),
named, importedName.getEffectiveContext());
}
if (auto swiftNameAttr = named->getAttr<clang::SwiftNameAttr>()) {
auto parsedDeclName = parseDeclName(swiftNameAttr->getName());
auto swiftDeclName =
parsedDeclName.formDeclName(nameImporter.getContext());
if (importedName.getDeclName() != swiftDeclName)
table.addEntry(swiftDeclName, named,
importedName.getEffectiveContext());
}
return true;
});
if (failed) {
if (auto category = dyn_cast<clang::ObjCCategoryDecl>(named)) {
// If the category is invalid, don't add it.
if (category->isInvalidDecl())
return;
table.addCategory(category);
}
}
// Class template instantiations are imported lazily, however, the lookup
// table must include their mangled name (__CxxTemplateInst...) to make it
// possible to find these decls during deserialization. For any C++ typedef
// that defines a name for a class template instantiation (e.g. std::string),
// import the mangled name of this instantiation, and add it to the table.
auto addTemplateSpecialization =
[&](clang::ClassTemplateSpecializationDecl *specializationDecl) {
auto name = nameImporter.importName(specializationDecl, currentVersion);
// Avoid adding duplicate entries into the table.
auto existingEntries =
table.lookup(DeclBaseName(name.getDeclName().getBaseName()),
name.getEffectiveContext());
if (existingEntries.empty()) {
table.addEntry(name.getDeclName(), specializationDecl,
name.getEffectiveContext());
}
};
if (auto typedefNameDecl = dyn_cast<clang::TypedefNameDecl>(named)) {
auto underlyingDecl = typedefNameDecl->getUnderlyingType()->getAsTagDecl();
if (auto specializationDecl =
dyn_cast_or_null<clang::ClassTemplateSpecializationDecl>(
underlyingDecl)) {
addTemplateSpecialization(specializationDecl);
}
}
if (auto valueDecl = dyn_cast<clang::ValueDecl>(named)) {
auto valueTypeDecl = valueDecl->getType()->getAsTagDecl();
if (auto specializationDecl =
dyn_cast_or_null<clang::ClassTemplateSpecializationDecl>(
valueTypeDecl)) {
addTemplateSpecialization(specializationDecl);
}
}
// Walk the members of any context that can have nested members.
if (isa<clang::TagDecl>(named) || isa<clang::ObjCInterfaceDecl>(named) ||
isa<clang::ObjCProtocolDecl>(named) ||
isa<clang::ObjCCategoryDecl>(named)) {
clang::DeclContext *dc = cast<clang::DeclContext>(named);
for (auto member : dc->decls()) {
if (auto friendDecl = dyn_cast<clang::FriendDecl>(member))
if (auto underlyingDecl = friendDecl->getFriendDecl())
member = underlyingDecl;
if (auto namedMember = dyn_cast<clang::NamedDecl>(member))
addEntryToLookupTable(table, namedMember, nameImporter);
}
}
if (isa<clang::NamespaceDecl>(named)) {
llvm::SmallPtrSet<clang::Decl *, 8> alreadyAdded;
alreadyAdded.insert(named->getCanonicalDecl());
auto dc = cast<clang::DeclContext>(named);
for (auto member : dc->decls()) {
auto canonicalMember = isa<clang::NamespaceDecl>(member)
? member
: member->getCanonicalDecl();
if (!alreadyAdded.insert(canonicalMember).second)
continue;
if (auto namedMember = dyn_cast<clang::NamedDecl>(canonicalMember)) {
// Make sure we're looking at the definition, otherwise, there won't
// be any members to add.
if (auto recordDecl = dyn_cast<clang::RecordDecl>(namedMember))
if (auto def = recordDecl->getDefinition())
namedMember = def;
addEntryToLookupTable(table, namedMember, nameImporter);
}
}
}
if (auto usingDecl = dyn_cast<clang::UsingDecl>(named)) {
for (auto usingShadowDecl : usingDecl->shadows()) {
if (isa<clang::CXXMethodDecl>(usingShadowDecl->getTargetDecl()))
addEntryToLookupTable(table, usingShadowDecl, nameImporter);
}
}
}
/// Returns the nearest parent of \p module that is marked \c explicit in its
/// module map. If \p module is itself explicit, it is returned; if no module
/// in the parent chain is explicit, the top-level module is returned.
static const clang::Module *
getExplicitParentModule(const clang::Module *module) {
while (!module->IsExplicit && module->Parent)
module = module->Parent;
return module;
}
void importer::addMacrosToLookupTable(SwiftLookupTable &table,
NameImporter &nameImporter) {
auto &pp = nameImporter.getClangPreprocessor();
auto *tu = nameImporter.getClangContext().getTranslationUnitDecl();
bool isModule = pp.getLangOpts().isCompilingModule();
for (const auto &macro : pp.macros(false)) {
auto maybeAddMacro = [&](clang::MacroInfo *info,
clang::ModuleMacro *moduleMacro) {
// If this is a #undef, return.
if (!info)
return;
// If we hit a builtin macro, we're done.
if (info->isBuiltinMacro())
return;
// If we hit a macro with invalid or predefined location, we're done.
auto loc = info->getDefinitionLoc();
if (loc.isInvalid())
return;
if (pp.getSourceManager().getFileID(loc) == pp.getPredefinesFileID())
return;
// If we're in a module, we really need moduleMacro to be valid.
if (isModule && !moduleMacro) {
// FIXME: "public" visibility macros should actually be added to the
// table.
return;
}
// Add this entry.
auto name = nameImporter.importMacroName(macro.first, info);
if (name.empty())
return;
if (moduleMacro)
table.addEntry(name, moduleMacro, tu);
else
table.addEntry(name, info, tu);
};
ArrayRef<clang::ModuleMacro *> moduleMacros =
macro.second.getActiveModuleMacros(pp, macro.first);
if (moduleMacros.empty()) {
// Handle the bridging header case.
clang::MacroDirective *MD = pp.getLocalMacroDirective(macro.first);
if (!MD)
continue;
maybeAddMacro(MD->getMacroInfo(), nullptr);
} else {
clang::Module *currentModule = pp.getCurrentModule();
SmallVector<clang::ModuleMacro *, 8> worklist;
llvm::copy_if(moduleMacros, std::back_inserter(worklist),
[currentModule](const clang::ModuleMacro *next) -> bool {
return next->getOwningModule()->isSubModuleOf(currentModule);
});
while (!worklist.empty()) {
clang::ModuleMacro *moduleMacro = worklist.pop_back_val();
maybeAddMacro(moduleMacro->getMacroInfo(), moduleMacro);
// Also visit overridden macros that are in a different explicit
// submodule. This isn't a perfect way to tell if these two macros are
// supposed to be independent, but it's close enough in practice.
clang::Module *owningModule = moduleMacro->getOwningModule();
auto *explicitParent = getExplicitParentModule(owningModule);
llvm::copy_if(moduleMacro->overrides(), std::back_inserter(worklist),
[&](const clang::ModuleMacro *next) -> bool {
const clang::Module *nextModule =
getExplicitParentModule(next->getOwningModule());
if (!nextModule->isSubModuleOf(currentModule))
return false;
return nextModule != explicitParent;
});
}
}
}
}
void importer::finalizeLookupTable(
SwiftLookupTable &table, NameImporter &nameImporter,
ClangSourceBufferImporter &buffersForDiagnostics) {
// Resolve any unresolved entries.
SmallVector<SwiftLookupTable::SingleEntry, 4> unresolved;
if (table.resolveUnresolvedEntries(unresolved)) {
// Complain about unresolved entries that remain.
for (auto entry : unresolved) {
auto *decl = cast<clang::NamedDecl *>(entry);
auto swiftName = decl->getAttr<clang::SwiftNameAttr>();
if (swiftName
// Clang didn't previously attach SwiftNameAttrs to forward
// declarations, but this changed and we started diagnosing spurious
// warnings on @class declarations. Suppress them.
// FIXME: Can we avoid processing these decls in the first place?
&& !importer::isForwardDeclOfType(decl)) {
clang::SourceLocation diagLoc = swiftName->getLocation();
if (!diagLoc.isValid())
diagLoc = decl->getLocation();
SourceLoc swiftSourceLoc = buffersForDiagnostics.resolveSourceLocation(
nameImporter.getClangContext().getSourceManager(), diagLoc);
DiagnosticEngine &swiftDiags = nameImporter.getContext().Diags;
swiftDiags.diagnose(swiftSourceLoc, diag::unresolvable_clang_decl,
decl->getNameAsString(), swiftName->getName());
StringRef moduleName =
nameImporter.getClangContext().getLangOpts().CurrentModule;
if (!moduleName.empty()) {
swiftDiags.diagnose(swiftSourceLoc,
diag::unresolvable_clang_decl_is_a_framework_bug,
moduleName);
}
}
}
}
}
void SwiftLookupTableWriter::populateTableWithDecl(SwiftLookupTable &table,
NameImporter &nameImporter,
clang::Decl *decl) {
// Skip anything from an AST file.
if (decl->isFromASTFile())
return;
// Exclude a predefined declaration that's not a definition if its
// definition exists in the same module so that the definition will
// be associated with the base name, noting predefined declarations
// won't be serialized into the pcm and its state including its
// definition pointer won't be reconstructed after deserialization,
// which would cause a type not found error.
if (Writer.isDeclPredefined(decl))
if (auto tagDecl = dyn_cast<clang::TagDecl>(decl))
if (!tagDecl->isThisDeclarationADefinition() && tagDecl->getDefinition())
return;
// Iterate into extern "C" {} type declarations.
if (auto linkageDecl = dyn_cast<clang::LinkageSpecDecl>(decl)) {
for (auto *decl : linkageDecl->noload_decls()) {
populateTableWithDecl(table, nameImporter, decl);
}
return;
}
// Skip non-named declarations.
auto named = dyn_cast<clang::NamedDecl>(decl);
if (!named)
return;
// Add this entry to the lookup table.
addEntryToLookupTable(table, named, nameImporter);
}
void SwiftLookupTableWriter::populateTable(SwiftLookupTable &table,
NameImporter &nameImporter) {
auto &sema = nameImporter.getClangSema();
for (auto decl : sema.Context.getTranslationUnitDecl()->noload_decls()) {
populateTableWithDecl(table, nameImporter, decl);
}
// Add macros to the lookup table.
addMacrosToLookupTable(table, nameImporter);
// Finalize the lookup table, which may fail.
finalizeLookupTable(table, nameImporter, buffersForDiagnostics);
}
std::unique_ptr<clang::ModuleFileExtensionWriter>
SwiftNameLookupExtension::createExtensionWriter(clang::ASTWriter &writer) {
return std::make_unique<SwiftLookupTableWriter>(this, writer, swiftCtx,
buffersForDiagnostics,
availability, importerImpl);
}
std::unique_ptr<clang::ModuleFileExtensionReader>
SwiftNameLookupExtension::createExtensionReader(
const clang::ModuleFileExtensionMetadata &metadata,
clang::ASTReader &reader, clang::serialization::ModuleFile &mod,
const llvm::BitstreamCursor &stream) {
// Make sure we have a compatible block. Since these values are part
// of the hash, it should never be wrong.
assert(metadata.BlockName == "swift.lookup");
assert(metadata.MajorVersion == SWIFT_LOOKUP_TABLE_VERSION_MAJOR);
assert(metadata.MinorVersion == SWIFT_LOOKUP_TABLE_VERSION_MINOR);
std::function<void()> onRemove = [](){};
std::unique_ptr<SwiftLookupTable> *target = nullptr;
if (mod.Kind == clang::serialization::MK_PCH) {
// PCH imports unconditionally overwrite the provided pchLookupTable.
target = &pchLookupTable;
} else {
// Check whether we already have an entry in the set of lookup tables.
target = &lookupTables[mod.ModuleName];
if (*target) return nullptr;
// Local function used to remove this entry when the reader goes away.
std::string moduleName = mod.ModuleName;
onRemove = [this, moduleName]() {
lookupTables.erase(moduleName);
};
}
// Create the reader.
auto tableReader = SwiftLookupTableReader::create(this, reader, mod, onRemove,
stream);
if (!tableReader) return nullptr;
// Create the lookup table.
target->reset(new SwiftLookupTable(tableReader.get()));
// Return the new reader.
return std::move(tableReader);
}