mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
We can add warnings about dynamic exclusivity checks that may happen on an access, with explainers about why they happen for safety.
759 lines
26 KiB
C++
759 lines
26 KiB
C++
//===--- VariableNameUtils.cpp --------------------------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See https://swift.org/LICENSE.txt for license information
|
|
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "sil-variable-name-inference"
|
|
|
|
#include "swift/Basic/Assertions.h"
|
|
#include "swift/SILOptimizer/Utils/VariableNameUtils.h"
|
|
#include "swift/SIL/AddressWalker.h"
|
|
#include "swift/SIL/Test.h"
|
|
|
|
using namespace swift;
|
|
|
|
namespace {
|
|
struct AddressWalkerState {
|
|
bool foundError = false;
|
|
InstructionSet writes;
|
|
AddressWalkerState(SILFunction *fn) : writes(fn) {}
|
|
};
|
|
} // namespace
|
|
|
|
static SILValue
|
|
findRootValueForNonTupleTempAllocation(AllocationInst *allocInst,
|
|
AddressWalkerState &state) {
|
|
// These are instructions which we are ok with looking through when
|
|
// identifying our allocation. It must always refer to the entire allocation.
|
|
auto isAlloc = [&](SILValue value) -> bool {
|
|
if (auto *ieai = dyn_cast<InitExistentialAddrInst>(value))
|
|
value = ieai->getOperand();
|
|
return value == SILValue(allocInst);
|
|
};
|
|
|
|
// Walk from our allocation to one of our writes. Then make sure that the
|
|
// write writes to our entire value.
|
|
for (auto &inst : allocInst->getParent()->getRangeStartingAtInst(allocInst)) {
|
|
// See if we have a full tuple value.
|
|
|
|
if (!state.writes.contains(&inst))
|
|
continue;
|
|
|
|
if (auto *copyAddr = dyn_cast<CopyAddrInst>(&inst)) {
|
|
if (isAlloc(copyAddr->getDest()) &&
|
|
copyAddr->isInitializationOfDest()) {
|
|
return copyAddr->getSrc();
|
|
}
|
|
}
|
|
|
|
if (auto *si = dyn_cast<StoreInst>(&inst)) {
|
|
if (isAlloc(si->getDest()) &&
|
|
si->getOwnershipQualifier() != StoreOwnershipQualifier::Assign) {
|
|
return si->getSrc();
|
|
}
|
|
}
|
|
|
|
if (auto *sbi = dyn_cast<StoreBorrowInst>(&inst)) {
|
|
if (isAlloc(sbi->getDest()))
|
|
return sbi->getSrc();
|
|
}
|
|
|
|
// If we do not identify the write... return SILValue(). We weren't able
|
|
// to understand the write.
|
|
break;
|
|
}
|
|
|
|
return SILValue();
|
|
}
|
|
|
|
static SILValue findRootValueForTupleTempAllocation(AllocationInst *allocInst,
|
|
AddressWalkerState &state) {
|
|
SmallVector<SILValue, 8> tupleValues;
|
|
|
|
for (unsigned i : range(allocInst->getType().getNumTupleElements())) {
|
|
(void)i;
|
|
tupleValues.push_back(nullptr);
|
|
}
|
|
|
|
unsigned numEltsLeft = tupleValues.size();
|
|
|
|
// If we have an empty tuple, just return SILValue() for now.
|
|
//
|
|
// TODO: What does this pattern look like out of SILGen?
|
|
if (!numEltsLeft)
|
|
return SILValue();
|
|
|
|
// Walk from our allocation to one of our writes. Then make sure that the
|
|
// write writes to our entire value.
|
|
DestructureTupleInst *foundDestructure = nullptr;
|
|
SILValue foundRootAddress;
|
|
for (auto &inst : allocInst->getParent()->getRangeStartingAtInst(allocInst)) {
|
|
if (!state.writes.contains(&inst))
|
|
continue;
|
|
|
|
if (auto *copyAddr = dyn_cast<CopyAddrInst>(&inst)) {
|
|
if (copyAddr->isInitializationOfDest()) {
|
|
if (auto *tei = dyn_cast<TupleElementAddrInst>(copyAddr->getDest())) {
|
|
if (tei->getOperand() == allocInst) {
|
|
unsigned i = tei->getFieldIndex();
|
|
if (auto *otherTei = dyn_cast_or_null<TupleElementAddrInst>(
|
|
copyAddr->getSrc()->getDefiningInstruction())) {
|
|
// If we already were processing destructures, then we have a mix
|
|
// of struct/destructures... we do not support that, so bail.
|
|
if (foundDestructure)
|
|
return SILValue();
|
|
|
|
// Otherwise, update our root address. If we already had a root
|
|
// address and it doesn't match our tuple_element_addr's operand,
|
|
// bail. There is some sort of mix/match of tuple addresses that
|
|
// we do not support. We are looking for a specific SILGen
|
|
// pattern.
|
|
if (!foundRootAddress) {
|
|
foundRootAddress = otherTei->getOperand();
|
|
} else if (foundRootAddress != otherTei->getOperand()) {
|
|
return SILValue();
|
|
}
|
|
|
|
if (i != otherTei->getFieldIndex())
|
|
return SILValue();
|
|
if (tupleValues[i])
|
|
return SILValue();
|
|
tupleValues[i] = otherTei;
|
|
|
|
// If we have completely covered the tuple, break.
|
|
--numEltsLeft;
|
|
if (!numEltsLeft)
|
|
break;
|
|
|
|
// Otherwise, continue so we keep processing.
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto *si = dyn_cast<StoreInst>(&inst)) {
|
|
if (si->getOwnershipQualifier() != StoreOwnershipQualifier::Assign) {
|
|
// Check if we are updating the entire tuple value.
|
|
if (si->getDest() == allocInst) {
|
|
// If we already found a root address (meaning we were processing
|
|
// tuple_elt_addr), bail. We have some sort of unhandled mix of
|
|
// copy_addr and store.
|
|
if (foundRootAddress)
|
|
return SILValue();
|
|
|
|
// If we already found a destructure, return SILValue(). We are
|
|
// initializing twice.
|
|
if (foundDestructure)
|
|
return SILValue();
|
|
|
|
// We are looking for a pattern where we construct a tuple from
|
|
// destructured parts.
|
|
if (auto *ti = dyn_cast<TupleInst>(si->getSrc())) {
|
|
for (auto p : llvm::enumerate(ti->getOperandValues())) {
|
|
SILValue value = lookThroughOwnershipInsts(p.value());
|
|
if (auto *dti = dyn_cast_or_null<DestructureTupleInst>(
|
|
value->getDefiningInstruction())) {
|
|
// We should always go through the same dti.
|
|
if (foundDestructure && foundDestructure != dti)
|
|
return SILValue();
|
|
if (!foundDestructure)
|
|
foundDestructure = dti;
|
|
|
|
// If we have a mixmatch of indices, we cannot look through.
|
|
if (p.index() != dti->getIndexOfResult(value))
|
|
return SILValue();
|
|
if (tupleValues[p.index()])
|
|
return SILValue();
|
|
tupleValues[p.index()] = value;
|
|
|
|
// If we have completely covered the tuple, break.
|
|
--numEltsLeft;
|
|
if (!numEltsLeft)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we haven't completely covered the tuple, return SILValue(). We
|
|
// should completely cover the tuple.
|
|
if (numEltsLeft)
|
|
return SILValue();
|
|
|
|
// Otherwise, break since we are done.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we store to a tuple_element_addr, update for a single value.
|
|
if (auto *tei = dyn_cast<TupleElementAddrInst>(si->getDest())) {
|
|
if (tei->getOperand() == allocInst) {
|
|
unsigned i = tei->getFieldIndex();
|
|
if (auto *dti = dyn_cast_or_null<DestructureTupleInst>(
|
|
si->getSrc()->getDefiningInstruction())) {
|
|
// If we already found a root address (meaning we were processing
|
|
// tuple_elt_addr), bail. We have some sort of unhandled mix of
|
|
// copy_addr and store [init].
|
|
if (foundRootAddress)
|
|
return SILValue();
|
|
if (!foundDestructure) {
|
|
foundDestructure = dti;
|
|
} else if (foundDestructure != dti) {
|
|
return SILValue();
|
|
}
|
|
|
|
if (i != dti->getIndexOfResult(si->getSrc()))
|
|
return SILValue();
|
|
if (tupleValues[i])
|
|
return SILValue();
|
|
tupleValues[i] = si->getSrc();
|
|
|
|
// If we have completely covered the tuple, break.
|
|
--numEltsLeft;
|
|
if (!numEltsLeft)
|
|
break;
|
|
|
|
// Otherwise, continue so we keep processing.
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Found a write that we did not understand... bail.
|
|
break;
|
|
}
|
|
|
|
// Now check if we have a complete tuple with all elements coming from the
|
|
// same destructure_tuple. In such a case, we can look through the
|
|
// destructure_tuple.
|
|
if (numEltsLeft)
|
|
return SILValue();
|
|
|
|
if (foundDestructure)
|
|
return foundDestructure->getOperand();
|
|
if (foundRootAddress)
|
|
return foundRootAddress;
|
|
|
|
return SILValue();
|
|
}
|
|
|
|
SILValue VariableNameInferrer::getRootValueForTemporaryAllocation(
|
|
AllocationInst *allocInst) {
|
|
struct AddressWalker final : public TransitiveAddressWalker<AddressWalker> {
|
|
AddressWalkerState &state;
|
|
|
|
AddressWalker(AddressWalkerState &state) : state(state) {}
|
|
|
|
bool visitUse(Operand *use) {
|
|
if (use->getUser()->mayWriteToMemory())
|
|
state.writes.insert(use->getUser());
|
|
return true;
|
|
}
|
|
|
|
TransitiveUseVisitation visitTransitiveUseAsEndPointUse(Operand *use) {
|
|
if (isa<StoreBorrowInst>(use->getUser()))
|
|
return TransitiveUseVisitation::OnlyUser;
|
|
return TransitiveUseVisitation::OnlyUses;
|
|
}
|
|
|
|
void onError(Operand *use) { state.foundError = true; }
|
|
};
|
|
|
|
AddressWalkerState state(allocInst->getFunction());
|
|
AddressWalker walker(state);
|
|
if (std::move(walker).walk(allocInst) == AddressUseKind::Unknown ||
|
|
state.foundError)
|
|
return SILValue();
|
|
|
|
if (allocInst->getType().is<TupleType>())
|
|
return findRootValueForTupleTempAllocation(allocInst, state);
|
|
return findRootValueForNonTupleTempAllocation(allocInst, state);
|
|
}
|
|
|
|
SILValue
|
|
VariableNameInferrer::findDebugInfoProvidingValue(SILValue searchValue) {
|
|
// NOTE: This should only return a non-empty SILValue if we actually have a
|
|
// full path (including base name) in the variable name path.
|
|
if (!searchValue)
|
|
return SILValue();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Searching for debug info providing value for: "
|
|
<< searchValue);
|
|
ValueSet valueSet(searchValue->getFunction());
|
|
SILValue result = findDebugInfoProvidingValueHelper(searchValue, valueSet);
|
|
if (result) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Result: " << result);
|
|
} else {
|
|
LLVM_DEBUG(llvm::dbgs() << "Result: None\n");
|
|
}
|
|
return result;
|
|
}
|
|
|
|
SILValue VariableNameInferrer::findDebugInfoProvidingValuePhiArg(
|
|
SILValue incomingValue, ValueSet &visitedValues) {
|
|
// We use pushSnapShot to run recursively and if we fail to find a
|
|
// value, we just pop our list to the last snapshot end of list. If we
|
|
// succeed, we do not pop and just return recusive value. Our user
|
|
// will consume variableNamePath at this point.
|
|
LLVM_DEBUG(llvm::dbgs() << "Before pushing a snap shot!\n";
|
|
variableNamePath.print(llvm::dbgs()));
|
|
|
|
unsigned oldSnapShotIndex = variableNamePath.pushSnapShot();
|
|
LLVM_DEBUG(llvm::dbgs() << "After pushing a snap shot!\n";
|
|
variableNamePath.print(llvm::dbgs()));
|
|
|
|
if (SILValue recursiveValue =
|
|
findDebugInfoProvidingValueHelper(incomingValue, visitedValues)) {
|
|
LLVM_DEBUG(llvm::dbgs() << "Returned: " << recursiveValue);
|
|
variableNamePath.returnSnapShot(oldSnapShotIndex);
|
|
return recursiveValue;
|
|
}
|
|
|
|
variableNamePath.popSnapShot(oldSnapShotIndex);
|
|
LLVM_DEBUG(llvm::dbgs() << "After popping a snap shot!\n";
|
|
variableNamePath.print(llvm::dbgs()));
|
|
return SILValue();
|
|
}
|
|
|
|
static BeginBorrowInst *hasOnlyBorrowingNonDestroyUse(SILValue searchValue) {
|
|
BeginBorrowInst *result = nullptr;
|
|
for (auto *use : searchValue->getUses()) {
|
|
if (isIncidentalUse(use->getUser()))
|
|
continue;
|
|
if (use->isConsuming()) {
|
|
if (!isa<DestroyValueInst>(use->getUser()))
|
|
return nullptr;
|
|
continue;
|
|
}
|
|
|
|
auto *bbi = dyn_cast<BeginBorrowInst>(use->getUser());
|
|
if (!bbi || !bbi->isFromVarDecl())
|
|
return nullptr;
|
|
if (result)
|
|
return nullptr;
|
|
result = bbi;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
namespace {
|
|
|
|
constexpr StringLiteral UnknownDeclString = "<unknown decl>";
|
|
|
|
} // namespace
|
|
|
|
SILValue VariableNameInferrer::findDebugInfoProvidingValueHelper(
|
|
SILValue searchValue, ValueSet &visitedValues) {
|
|
assert(searchValue);
|
|
|
|
while (true) {
|
|
assert(searchValue);
|
|
|
|
// If we already visited the value, return SILValue(). This prevents issues
|
|
// caused by looping phis. We treat this as a failure and visit the either
|
|
// phi values.
|
|
if (!visitedValues.insert(searchValue))
|
|
return SILValue();
|
|
|
|
LLVM_DEBUG(llvm::dbgs() << "Value: " << *searchValue);
|
|
|
|
// Before we do anything, lets see if we have an explicit match due to a
|
|
// debug_value use.
|
|
if (auto *use = getAnyDebugUse(searchValue)) {
|
|
if (auto debugVar = DebugVarCarryingInst(use->getUser())) {
|
|
assert(debugVar.getKind() == DebugVarCarryingInst::Kind::DebugValue);
|
|
variableNamePath.push_back(debugVar.getName());
|
|
|
|
// We return the value, not the debug_info.
|
|
return searchValue;
|
|
}
|
|
}
|
|
|
|
// If we are in Ownership SSA, see if we have an owned value that has one
|
|
// use, a move_value [var decl]. In such a case, check the move_value [var
|
|
// decl] for a debug_value.
|
|
//
|
|
// This pattern comes up if we are asked to get a name for an apply that is
|
|
// used to initialize a value. The name will not yet be associated with the
|
|
// value so we have to compensate.
|
|
//
|
|
// NOTE: This is a heuristic. Feel free to tweak accordingly.
|
|
if (auto *singleUse = searchValue->getSingleUse()) {
|
|
if (auto *mvi = dyn_cast<MoveValueInst>(singleUse->getUser())) {
|
|
if (mvi->isFromVarDecl()) {
|
|
if (auto *debugUse = getAnyDebugUse(mvi)) {
|
|
if (auto debugVar = DebugVarCarryingInst(debugUse->getUser())) {
|
|
assert(debugVar.getKind() ==
|
|
DebugVarCarryingInst::Kind::DebugValue);
|
|
variableNamePath.push_back(debugVar.getName());
|
|
|
|
// We return the value, not the debug_info.
|
|
return searchValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto *bbi = hasOnlyBorrowingNonDestroyUse(searchValue)) {
|
|
if (auto *debugUse = getAnyDebugUse(bbi)) {
|
|
if (auto debugVar = DebugVarCarryingInst(debugUse->getUser())) {
|
|
assert(debugVar.getKind() == DebugVarCarryingInst::Kind::DebugValue);
|
|
variableNamePath.push_back(debugVar.getName());
|
|
|
|
// We return the value, not the debug_info.
|
|
return searchValue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto *allocInst = dyn_cast<AllocationInst>(searchValue)) {
|
|
// If the instruction itself doesn't carry any variable info, see
|
|
// whether it's copied from another place that does.
|
|
auto allocInstHasInfo = [](AllocationInst *allocInst) {
|
|
if (allocInst->getDecl())
|
|
return true;
|
|
auto debugVar = DebugVarCarryingInst(allocInst);
|
|
return debugVar && debugVar.maybeGetName().has_value();
|
|
};
|
|
|
|
if (!allocInstHasInfo(allocInst)) {
|
|
if (auto value = getRootValueForTemporaryAllocation(allocInst)) {
|
|
searchValue = value;
|
|
continue;
|
|
}
|
|
|
|
return SILValue();
|
|
}
|
|
|
|
variableNamePath.push_back(DebugVarCarryingInst(allocInst).getName());
|
|
return allocInst;
|
|
}
|
|
|
|
if (auto *abi = dyn_cast<AllocBoxInst>(searchValue)) {
|
|
variableNamePath.push_back(DebugVarCarryingInst(abi).getName());
|
|
return abi;
|
|
}
|
|
|
|
// If we have a store_borrow, always look at the dest. We are going to see
|
|
// if we can determine if dest is a temporary alloc_stack.
|
|
if (auto *sbi = dyn_cast<StoreBorrowInst>(searchValue)) {
|
|
searchValue = sbi->getDest();
|
|
continue;
|
|
}
|
|
|
|
if (auto *globalAddrInst = dyn_cast<GlobalAddrInst>(searchValue)) {
|
|
variableNamePath.push_back(VarDeclCarryingInst(globalAddrInst).getName());
|
|
return globalAddrInst;
|
|
}
|
|
|
|
if (auto *oeInst = dyn_cast<OpenExistentialAddrInst>(searchValue)) {
|
|
searchValue = oeInst->getOperand();
|
|
continue;
|
|
}
|
|
|
|
if (auto *rei = dyn_cast<RefElementAddrInst>(searchValue)) {
|
|
variableNamePath.push_back(VarDeclCarryingInst(rei).getName());
|
|
searchValue = rei->getOperand();
|
|
continue;
|
|
}
|
|
|
|
if (auto *sei = dyn_cast<StructExtractInst>(searchValue)) {
|
|
variableNamePath.push_back(getNameFromDecl(sei->getField()));
|
|
searchValue = sei->getOperand();
|
|
continue;
|
|
}
|
|
|
|
if (auto *uedi = dyn_cast<UncheckedEnumDataInst>(searchValue)) {
|
|
variableNamePath.push_back(getNameFromDecl(uedi->getElement()));
|
|
searchValue = uedi->getOperand();
|
|
continue;
|
|
}
|
|
|
|
if (auto *tei = dyn_cast<TupleExtractInst>(searchValue)) {
|
|
variableNamePath.push_back(getStringRefForIndex(tei->getFieldIndex()));
|
|
searchValue = tei->getOperand();
|
|
continue;
|
|
}
|
|
|
|
if (auto *sei = dyn_cast<StructElementAddrInst>(searchValue)) {
|
|
variableNamePath.push_back(getNameFromDecl(sei->getField()));
|
|
searchValue = sei->getOperand();
|
|
continue;
|
|
}
|
|
|
|
if (auto *tei = dyn_cast<TupleElementAddrInst>(searchValue)) {
|
|
variableNamePath.push_back(getStringRefForIndex(tei->getFieldIndex()));
|
|
searchValue = tei->getOperand();
|
|
continue;
|
|
}
|
|
|
|
if (auto *utedai = dyn_cast<UncheckedTakeEnumDataAddrInst>(searchValue)) {
|
|
variableNamePath.push_back(getNameFromDecl(utedai->getElement()));
|
|
searchValue = utedai->getOperand();
|
|
continue;
|
|
}
|
|
|
|
// Enums only have a single possible parent and is used sometimes like a
|
|
// transformation (e.x.: constructing an optional). We want to look through
|
|
// them and add the case to the variableNamePath.
|
|
if (auto *e = dyn_cast<EnumInst>(searchValue)) {
|
|
if (e->hasOperand()) {
|
|
variableNamePath.push_back(getNameFromDecl(e->getElement()));
|
|
searchValue = e->getOperand();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (auto *dti = dyn_cast_or_null<DestructureTupleInst>(
|
|
searchValue->getDefiningInstruction())) {
|
|
variableNamePath.push_back(
|
|
getStringRefForIndex(*dti->getIndexOfResult(searchValue)));
|
|
searchValue = dti->getOperand();
|
|
continue;
|
|
}
|
|
|
|
if (auto *dsi = dyn_cast_or_null<DestructureStructInst>(
|
|
searchValue->getDefiningInstruction())) {
|
|
unsigned index = *dsi->getIndexOfResult(searchValue);
|
|
variableNamePath.push_back(
|
|
getNameFromDecl(dsi->getStructDecl()->getStoredProperties()[index]));
|
|
searchValue = dsi->getOperand();
|
|
continue;
|
|
}
|
|
|
|
if (auto *fArg = dyn_cast<SILFunctionArgument>(searchValue)) {
|
|
if (auto *decl = fArg->getDecl()) {
|
|
variableNamePath.push_back(decl->getBaseName().userFacingName());
|
|
return fArg;
|
|
}
|
|
}
|
|
|
|
// If we have a phi argument, visit each of the incoming values and pick the
|
|
// first one that gives us a name.
|
|
if (auto *phiArg = dyn_cast<SILPhiArgument>(searchValue)) {
|
|
if (auto *term = phiArg->getSingleTerminator()) {
|
|
if (auto *swi = dyn_cast<SwitchEnumInst>(term)) {
|
|
if (auto value = findDebugInfoProvidingValuePhiArg(swi->getOperand(),
|
|
visitedValues))
|
|
return value;
|
|
}
|
|
}
|
|
|
|
SmallVector<SILValue, 8> incomingValues;
|
|
if (phiArg->getIncomingPhiValues(incomingValues)) {
|
|
for (auto value : incomingValues) {
|
|
if (auto resultValue =
|
|
findDebugInfoProvidingValuePhiArg(value, visitedValues))
|
|
return resultValue;
|
|
}
|
|
}
|
|
}
|
|
|
|
auto getNamePathComponentFromCallee = [&](FullApplySite call) -> SILValue {
|
|
// Use the name of the property being accessed if we can get to it.
|
|
if (call.getSubstCalleeType()->hasSelfParam()) {
|
|
if (auto *f = dyn_cast<FunctionRefBaseInst>(call.getCallee())) {
|
|
if (auto dc = f->getInitiallyReferencedFunction()->getDeclContext()) {
|
|
variableNamePath.push_back(getNameFromDecl(dc->getAsDecl()));
|
|
return call.getSelfArgument();
|
|
}
|
|
}
|
|
|
|
if (auto *mi = dyn_cast<MethodInst>(call.getCallee())) {
|
|
variableNamePath.push_back(
|
|
getNameFromDecl(mi->getMember().getDecl()));
|
|
return call.getSelfArgument();
|
|
}
|
|
}
|
|
|
|
return SILValue();
|
|
};
|
|
|
|
// Read or modify accessor.
|
|
if (auto bai = dyn_cast_or_null<BeginApplyInst>(
|
|
searchValue->getDefiningInstruction())) {
|
|
if (auto selfParam = getNamePathComponentFromCallee(bai)) {
|
|
searchValue = selfParam;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (options.contains(Flag::InferSelfThroughAllAccessors)) {
|
|
if (auto *inst = searchValue->getDefiningInstruction()) {
|
|
if (auto fas = FullApplySite::isa(inst)) {
|
|
if (auto selfParam = getNamePathComponentFromCallee(fas)) {
|
|
searchValue = selfParam;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Borrow/mutate accessor
|
|
if (searchValue->isBorrowAccessorResult()) {
|
|
if (auto fas =
|
|
FullApplySite::isa(searchValue->getDefiningInstruction())) {
|
|
if (auto selfParam = getNamePathComponentFromCallee(fas)) {
|
|
searchValue = selfParam;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Addressor accessor.
|
|
if (auto ptrToAddr =
|
|
dyn_cast<PointerToAddressInst>(stripAccessMarkers(searchValue))) {
|
|
// The addressor can either produce the raw pointer itself or an
|
|
// `UnsafePointer` stdlib type wrapping it.
|
|
ApplyInst *addressorInvocation;
|
|
if (auto structExtract =
|
|
dyn_cast<StructExtractInst>(ptrToAddr->getOperand())) {
|
|
addressorInvocation = dyn_cast<ApplyInst>(structExtract->getOperand());
|
|
} else {
|
|
addressorInvocation = dyn_cast<ApplyInst>(ptrToAddr->getOperand());
|
|
}
|
|
|
|
if (addressorInvocation) {
|
|
if (auto selfParam =
|
|
getNamePathComponentFromCallee(addressorInvocation)) {
|
|
searchValue = selfParam;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look through a function conversion thunk if we have one.
|
|
if (auto *pai = dyn_cast<PartialApplyInst>(searchValue)) {
|
|
if (auto *fn = pai->getCalleeFunction()) {
|
|
if (fn->isThunk() && ApplySite(pai).getNumArguments() == 1) {
|
|
SILValue value = ApplySite(pai).getArgument(0);
|
|
if (value->getType().isFunction()) {
|
|
searchValue = value;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise, try to see if we have a single value instruction we can look
|
|
// through.
|
|
if (isa<BeginBorrowInst>(searchValue) || isa<LoadInst>(searchValue) ||
|
|
isa<LoadBorrowInst>(searchValue) || isa<BeginAccessInst>(searchValue) ||
|
|
isa<MarkUnresolvedNonCopyableValueInst>(searchValue) ||
|
|
isa<ProjectBoxInst>(searchValue) || isa<CopyValueInst>(searchValue) ||
|
|
isa<ExplicitCopyValueInst>(searchValue) ||
|
|
isa<ConvertFunctionInst>(searchValue) ||
|
|
isa<MarkUninitializedInst>(searchValue) ||
|
|
isa<MarkDependenceInst>(searchValue) ||
|
|
isa<CopyableToMoveOnlyWrapperAddrInst>(searchValue) ||
|
|
isa<MoveOnlyWrapperToCopyableAddrInst>(searchValue) ||
|
|
isa<MoveOnlyWrapperToCopyableValueInst>(searchValue) ||
|
|
isa<CopyableToMoveOnlyWrapperValueInst>(searchValue) ||
|
|
isa<EndInitLetRefInst>(searchValue) ||
|
|
isa<ConvertEscapeToNoEscapeInst>(searchValue) ||
|
|
isa<ConvertFunctionInst>(searchValue)) {
|
|
searchValue = cast<SingleValueInstruction>(searchValue)->getOperand(0);
|
|
continue;
|
|
}
|
|
|
|
// Return SILValue() if we ever get to the bottom to signal we failed to
|
|
// find anything.
|
|
return SILValue();
|
|
}
|
|
}
|
|
|
|
StringRef VariableNameInferrer::getNameFromDecl(Decl *d) {
|
|
if (d) {
|
|
if (auto accessor = dyn_cast<AccessorDecl>(d)) {
|
|
return accessor->getStorage()->getBaseName().userFacingName();
|
|
}
|
|
if (auto vd = dyn_cast<ValueDecl>(d)) {
|
|
return vd->getBaseName().userFacingName();
|
|
}
|
|
}
|
|
|
|
return UnknownDeclString;
|
|
}
|
|
|
|
void VariableNameInferrer::drainVariableNamePath() {
|
|
if (variableNamePath.empty())
|
|
return;
|
|
|
|
// Walk backwards, constructing our string.
|
|
while (true) {
|
|
resultingString += variableNamePath.pop_back_val();
|
|
|
|
if (variableNamePath.empty())
|
|
return;
|
|
|
|
resultingString += '.';
|
|
}
|
|
}
|
|
|
|
std::optional<Identifier> VariableNameInferrer::inferName(SILValue value) {
|
|
auto *fn = value->getFunction();
|
|
if (!fn)
|
|
return {};
|
|
VariableNameInferrer::Options options;
|
|
options |= VariableNameInferrer::Flag::InferSelfThroughAllAccessors;
|
|
SmallString<64> resultingName;
|
|
VariableNameInferrer inferrer(fn, options, resultingName);
|
|
if (!inferrer.inferByWalkingUsesToDefsReturningRoot(value))
|
|
return {};
|
|
return fn->getASTContext().getIdentifier(resultingName);
|
|
}
|
|
|
|
std::optional<std::pair<Identifier, SILValue>>
|
|
VariableNameInferrer::inferNameAndRoot(SILValue value) {
|
|
auto *fn = value->getFunction();
|
|
if (!fn)
|
|
return {};
|
|
VariableNameInferrer::Options options;
|
|
options |= VariableNameInferrer::Flag::InferSelfThroughAllAccessors;
|
|
SmallString<64> resultingName;
|
|
VariableNameInferrer inferrer(fn, options, resultingName);
|
|
SILValue rootValue = inferrer.inferByWalkingUsesToDefsReturningRoot(value);
|
|
if (!rootValue)
|
|
return {};
|
|
return {{fn->getASTContext().getIdentifier(resultingName), rootValue}};
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MARK: Tests
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace swift::test {
|
|
|
|
// Arguments:
|
|
// - SILValue: value to emit a name for.
|
|
// Dumps:
|
|
// - The inferred name
|
|
// - The inferred value.
|
|
static FunctionTest VariableNameInferrerTests(
|
|
"variable_name_inference", [](auto &function, auto &arguments, auto &test) {
|
|
auto value = arguments.takeValue();
|
|
SmallString<64> finalString;
|
|
VariableNameInferrer::Options options;
|
|
options |= VariableNameInferrer::Flag::InferSelfThroughAllAccessors;
|
|
VariableNameInferrer inferrer(&function, options, finalString);
|
|
SILValue rootValue =
|
|
inferrer.inferByWalkingUsesToDefsReturningRoot(value);
|
|
llvm::outs() << "Input Value: " << *value;
|
|
if (!rootValue) {
|
|
llvm::outs() << "Name: 'unknown'\nRoot: 'unknown'\n";
|
|
return;
|
|
}
|
|
llvm::outs() << "Name: '" << finalString << "'\nRoot: " << rootValue;
|
|
});
|
|
} // namespace swift::test
|