Files
swift-mirror/lib/PrintAsClang/PrintAsClang.cpp
Egor Zhdan 2db0e8aea8 Merge pull request #85439 from egorzhdan/egorzhdan/endif-objc
[cxx-interop] Emit `#endif // defined(__OBJC__)` with the comment consistently
2025-11-13 03:59:17 +00:00

719 lines
28 KiB
C++
Raw Permalink Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
//===--- PrintAsClang.cpp - Emit a header file for a Swift AST ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/PrintAsClang/PrintAsClang.h"
#include "ClangSyntaxPrinter.h"
#include "ModuleContentsWriter.h"
#include "SwiftToClangInteropContext.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/AttrKind.h"
#include "swift/AST/Module.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Version.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/Frontend/FrontendOptions.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/Module.h"
#include "clang/Lex/HeaderSearch.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
static void emitCxxConditional(raw_ostream &out,
llvm::function_ref<void()> cxxCase,
llvm::function_ref<void()> cCase = {}) {
out << "#if defined(__cplusplus)\n";
cxxCase();
if (cCase) {
out << "#else\n";
cCase();
}
out << "#endif\n";
}
static void emitObjCConditional(raw_ostream &out,
llvm::function_ref<void()> objcCase,
llvm::function_ref<void()> nonObjCCase = {}) {
out << "#if defined(__OBJC__)\n";
objcCase();
if (nonObjCCase) {
out << "#else\n";
nonObjCCase();
}
out << "#endif // defined(__OBJC__)\n";
}
static void emitExternC(raw_ostream &out,
llvm::function_ref<void()> cCase) {
emitCxxConditional(out, [&] {
out << "extern \"C\" {\n";
});
cCase();
emitCxxConditional(out, [&] {
out << "} // extern \"C\"\n";
});
}
static void writePtrauthPrologue(raw_ostream &os, ASTContext &ctx) {
emitCxxConditional(os, [&]() {
ClangSyntaxPrinter(ctx, os).printIgnoredDiagnosticBlock(
"non-modular-include-in-framework-module", [&] {
os << "#if defined(__arm64e__) && __has_include(<ptrauth.h>)\n";
os << "# include <ptrauth.h>\n";
os << "#else\n";
ClangSyntaxPrinter(ctx, os).printIgnoredDiagnosticBlock(
"reserved-macro-identifier", [&]() {
os << "# ifndef "
"__ptrauth_swift_value_witness_function_pointer\n";
os << "# define "
"__ptrauth_swift_value_witness_function_pointer(x)\n";
os << "# endif\n";
os << "# ifndef __ptrauth_swift_class_method_pointer\n";
os << "# define __ptrauth_swift_class_method_pointer(x)\n";
os << "# endif\n";
});
os << "#endif\n";
});
});
}
static void writePrologue(raw_ostream &out, ASTContext &ctx,
StringRef macroGuard) {
out << "// Generated by "
<< version::getSwiftFullVersion(ctx.LangOpts.EffectiveLanguageVersion)
<< "\n"
// Guard against recursive definition.
<< "#ifndef " << macroGuard << "\n"
<< "#define " << macroGuard
<< "\n"
"#pragma clang diagnostic push\n"
"#pragma clang diagnostic ignored \"-Wgcc-compat\"\n"
"\n"
"#if !defined(__has_include)\n"
"# define __has_include(x) 0\n"
"#endif\n"
"#if !defined(__has_attribute)\n"
"# define __has_attribute(x) 0\n"
"#endif\n"
"#if !defined(__has_feature)\n"
"# define __has_feature(x) 0\n"
"#endif\n"
"#if !defined(__has_warning)\n"
"# define __has_warning(x) 0\n"
"#endif\n"
"\n"
"#if __has_include(<swift/objc-prologue.h>)\n"
"# include <swift/objc-prologue.h>\n"
"#endif\n"
"\n"
"#pragma clang diagnostic ignored \"-Wauto-import\"\n";
emitObjCConditional(out,
[&] { out << "#include <Foundation/Foundation.h>\n"; });
emitCxxConditional(
out,
[&] {
out << "#include <cstdint>\n"
"#include <cstddef>\n"
"#include <cstdbool>\n"
"#include <cstring>\n";
out << "#include <stdlib.h>\n";
out << "#include <new>\n";
out << "#include <type_traits>\n";
},
[&] {
out << "#include <stdint.h>\n"
"#include <stddef.h>\n"
"#include <stdbool.h>\n"
"#include <string.h>\n";
});
writePtrauthPrologue(out, ctx);
out << "\n"
"#if !defined(SWIFT_TYPEDEFS)\n"
"# define SWIFT_TYPEDEFS 1\n"
"# if __has_include(<uchar.h>)\n"
"# include <uchar.h>\n"
"# elif !defined(__cplusplus)\n"
"typedef unsigned char char8_t;\n"
"typedef uint_least16_t char16_t;\n"
"typedef uint_least32_t char32_t;\n"
"# endif\n"
#define MAP_SIMD_TYPE(C_TYPE, SCALAR_TYPE, _) \
"typedef " #SCALAR_TYPE " swift_" #C_TYPE "2" \
" __attribute__((__ext_vector_type__(2)));\n" \
"typedef " #SCALAR_TYPE " swift_" #C_TYPE "3" \
" __attribute__((__ext_vector_type__(3)));\n" \
"typedef " #SCALAR_TYPE " swift_" #C_TYPE "4" \
" __attribute__((__ext_vector_type__(4)));\n"
#include "swift/ClangImporter/SIMDMappedTypes.def"
"#endif\n"
"\n";
#define CLANG_MACRO_BODY(NAME, BODY) \
out << "#if !defined(" NAME ")\n" \
BODY "\n" \
"#endif\n";
#define CLANG_MACRO(NAME, ARGS, VALUE) CLANG_MACRO_BODY(NAME, "# define " NAME ARGS " " VALUE)
#define CLANG_MACRO_ALTERNATIVE(NAME, ARGS, CONDITION, VALUE, ALTERNATIVE) CLANG_MACRO_BODY(NAME, \
"# if " CONDITION "\n" \
"# define " NAME ARGS " " VALUE "\n" \
"# else\n" \
"# define " NAME ARGS " " ALTERNATIVE "\n" \
"# endif")
#define CLANG_MACRO_OBJC(NAME, ARGS, VALUE) \
out << "#if defined(__OBJC__)\n" \
"#if !defined(" NAME ")\n" \
"# define " NAME ARGS " " VALUE "\n" \
"#endif\n" \
"#endif\n";
#define CLANG_MACRO_CXX(NAME, ARGS, VALUE, ALTERNATIVE) \
out << "#if defined(__cplusplus)\n" \
"# define " NAME ARGS " " VALUE "\n" \
"#else\n" \
"# define " NAME ARGS " " ALTERNATIVE "\n" \
"#endif\n";
#define CLANG_MACRO_CXX_BODY(NAME, BODY) \
out << "#if defined(__cplusplus)\n" \
BODY "\n" \
"#endif\n";
#include "swift/PrintAsClang/ClangMacros.def"
// SWIFT_IMPORT_STDLIB_SYMBOL's expansion can't be calculated in the
// preprocessor, so write its definition here
auto emitMacro = [&](StringRef name, StringRef value = "") {
out << "#if !defined(" << name << ")\n";
out << "# define " << name << " " << value << "\n";
out << "#endif\n";
};
if (ctx.getStdlibModule()->isStaticLibrary()) {
emitMacro("SWIFT_IMPORT_STDLIB_SYMBOL");
} else {
out << "#if defined(_WIN32)\n";
emitMacro("SWIFT_IMPORT_STDLIB_SYMBOL", "__declspec(dllimport)");
out << "#else\n";
emitMacro("SWIFT_IMPORT_STDLIB_SYMBOL");
out << "#endif\n";
}
static_assert(SWIFT_MAX_IMPORTED_SIMD_ELEMENTS == 4,
"need to add SIMD typedefs here if max elements is increased");
// For C compilers which dont support nullability attributes, ignore them;
// for ones which do, suppress warnings about them being an extension.
out << "#if !__has_feature(nullability)\n"
"# define _Nonnull\n"
"# define _Nullable\n"
"# define _Null_unspecified\n"
"#elif !defined(__OBJC__)\n"
"# pragma clang diagnostic ignored \"-Wnullability-extension\"\n"
"#endif\n"
"#if !__has_feature(nullability_nullable_result)\n"
"# define _Nullable_result _Nullable\n"
"#endif\n";
}
static int compareImportModulesByName(const ImportModuleTy *left,
const ImportModuleTy *right, bool isCxx) {
auto *leftSwiftModule = left->dyn_cast<ModuleDecl *>();
auto *rightSwiftModule = right->dyn_cast<ModuleDecl *>();
if (leftSwiftModule && !rightSwiftModule)
return -compareImportModulesByName(right, left, isCxx);
if (leftSwiftModule && rightSwiftModule)
return leftSwiftModule->getName().compare(rightSwiftModule->getName());
auto *leftClangModule = cast<const clang::Module *>(*left);
assert((isCxx || leftClangModule->isSubModule()) &&
"top-level modules should use a normal swift::ModuleDecl");
if (rightSwiftModule) {
// Because the Clang module is a submodule, its full name will never be
// equal to a Swift module's name, even if the top-level name is the same;
// it will always come before or after.
if (leftClangModule->getTopLevelModuleName() <
rightSwiftModule->getName().str()) {
return -1;
}
return 1;
}
auto *rightClangModule = cast<const clang::Module *>(*right);
assert((isCxx || rightClangModule->isSubModule()) &&
"top-level modules should use a normal swift::ModuleDecl");
SmallVector<StringRef, 8> leftReversePath(
ModuleDecl::ReverseFullNameIterator(leftClangModule), {});
SmallVector<StringRef, 8> rightReversePath(
ModuleDecl::ReverseFullNameIterator(rightClangModule), {});
assert(leftReversePath != rightReversePath &&
"distinct Clang modules should not have the same full name");
if (std::lexicographical_compare(leftReversePath.rbegin(),
leftReversePath.rend(),
rightReversePath.rbegin(),
rightReversePath.rend())) {
return -1;
}
return 1;
}
// Makes the provided path absolute and removes any "." or ".." segments from
// the path
static llvm::SmallString<128> normalizePath(const llvm::StringRef path) {
llvm::SmallString<128> result = path;
llvm::sys::path::remove_dots(result, /* remove_dot_dot */ true);
llvm::sys::fs::make_absolute(result);
return result;
}
// Collect the set of header includes needed to import the given Clang module
// into an ObjectiveC program. Modeled after collectModuleHeaderIncludes in the
// Clang frontend (FrontendAction.cpp)
// Augment requiredTextualIncludes with the set of headers required.
static void collectClangModuleHeaderIncludes(
const clang::Module *clangModule, clang::FileManager &fileManager,
llvm::SmallSet<llvm::SmallString<128>, 10> &requiredTextualIncludes,
llvm::SmallSet<const clang::Module *, 10> &visitedModules,
const llvm::SmallSet<llvm::SmallString<128>, 10> &includeDirs,
const llvm::StringRef cwd) {
if (!visitedModules.insert(clangModule).second)
return;
auto addHeader = [&](llvm::StringRef headerPath,
llvm::StringRef pathRelativeToRootModuleDir) {
if (!clangModule->Directory)
return;
llvm::SmallString<128> textualInclude = normalizePath(headerPath);
llvm::SmallString<128> containingSearchDirPath;
for (auto &includeDir : includeDirs) {
if (textualInclude.str().starts_with(includeDir)) {
if (includeDir.size() > containingSearchDirPath.size()) {
containingSearchDirPath = includeDir;
}
}
}
if (!containingSearchDirPath.empty()) {
llvm::SmallString<128> prefixToRemove =
llvm::formatv("{0}/", containingSearchDirPath);
llvm::sys::path::replace_path_prefix(textualInclude, prefixToRemove, "");
} else {
// If we cannot find find the module map on the search path,
// fallback to including the header using the provided path relative
// to the module map
textualInclude = pathRelativeToRootModuleDir;
}
if (clangModule->getTopLevelModule()->IsFramework) {
llvm::SmallString<32> frameworkName =
clangModule->getTopLevelModuleName();
llvm::SmallString<64> oldFrameworkPrefix =
llvm::formatv("{0}.framework/Headers", frameworkName);
llvm::sys::path::replace_path_prefix(textualInclude, oldFrameworkPrefix,
frameworkName);
}
requiredTextualIncludes.insert(textualInclude);
};
if (std::optional<clang::Module::Header> umbrellaHeader =
clangModule->getUmbrellaHeaderAsWritten()) {
addHeader(umbrellaHeader->Entry.getFileEntry().tryGetRealPathName(),
umbrellaHeader->PathRelativeToRootModuleDirectory);
} else if (std::optional<clang::Module::DirectoryName> umbrellaDir =
clangModule->getUmbrellaDirAsWritten()) {
SmallString<128> nativeUmbrellaDirPath;
std::error_code errorCode;
llvm::sys::path::native(umbrellaDir->Entry.getName(),
nativeUmbrellaDirPath);
llvm::vfs::FileSystem &fileSystem = fileManager.getVirtualFileSystem();
for (llvm::vfs::recursive_directory_iterator
dir(fileSystem, nativeUmbrellaDirPath, errorCode),
end;
dir != end && !errorCode; dir.increment(errorCode)) {
if (llvm::StringSwitch<bool>(llvm::sys::path::extension(dir->path()))
.Cases(".h", ".H", ".hh", ".hpp", true)
.Default(false)) {
// Compute path to the header relative to the root of the module
// (location of the module map) First compute the relative path from
// umbrella directory to header file
SmallVector<StringRef> pathComponents;
auto pathIt = llvm::sys::path::rbegin(dir->path());
for (int i = 0; i != dir.level() + 1; ++i, ++pathIt)
pathComponents.push_back(*pathIt);
// Then append this to the path from module root to umbrella dir
SmallString<128> relativeHeaderPath;
if (umbrellaDir->PathRelativeToRootModuleDirectory != ".")
relativeHeaderPath += umbrellaDir->PathRelativeToRootModuleDirectory;
for (auto it = pathComponents.rbegin(), end = pathComponents.rend();
it != end; ++it) {
llvm::sys::path::append(relativeHeaderPath, *it);
}
addHeader(dir->path(), relativeHeaderPath);
}
}
} else {
for (clang::Module::HeaderKind headerKind :
{clang::Module::HK_Normal, clang::Module::HK_Textual}) {
for (const clang::Module::Header &header :
clangModule->getHeaders(headerKind)) {
addHeader(header.Entry.getFileEntry().tryGetRealPathName(),
header.PathRelativeToRootModuleDirectory);
}
}
for (auto submodule : clangModule->submodules()) {
if (submodule->IsExplicit)
continue;
collectClangModuleHeaderIncludes(submodule, fileManager,
requiredTextualIncludes, visitedModules,
includeDirs, cwd);
}
}
}
static void
writeImports(raw_ostream &out, llvm::SmallPtrSetImpl<ImportModuleTy> &imports,
ModuleDecl &M, StringRef bridgingHeader,
const FrontendOptions &frontendOpts,
clang::HeaderSearch &clangHeaderSearchInfo,
const llvm::StringMap<StringRef> &exposedModuleHeaderNames,
bool useCxxImport = false,
bool useNonModularIncludes = false) {
useNonModularIncludes |= frontendOpts.EmitClangHeaderWithNonModularIncludes;
// Note: we can't use has_feature(modules) as it's always enabled in C++20
// mode.
out << "#if __has_feature(objc_modules)\n";
out << "#if __has_warning(\"-Watimport-in-framework-header\")\n"
<< "#pragma clang diagnostic ignored \"-Watimport-in-framework-header\"\n"
<< "#endif\n";
// Sort alphabetically for determinism and consistency.
SmallVector<ImportModuleTy, 8> sortedImports{imports.begin(),
imports.end()};
std::stable_sort(
sortedImports.begin(), sortedImports.end(),
[&](const ImportModuleTy &left, const ImportModuleTy &right) -> bool {
return compareImportModulesByName(&left, &right, useCxxImport) < 0;
});
auto isUnderlyingModule = [&M, bridgingHeader](ModuleDecl *import) -> bool {
if (bridgingHeader.empty())
return import != &M && import->getName() == M.getName();
return import->isClangHeaderImportModule();
};
clang::FileSystemOptions fileSystemOptions;
clang::FileManager fileManager{fileSystemOptions};
llvm::SmallSet<llvm::SmallString<128>, 10>
requiredTextualIncludes; // Only included without modules.
llvm::SmallVector<StringRef, 1> textualIncludes; // always included.
llvm::SmallSet<const clang::Module *, 10> visitedModules;
llvm::SmallSet<llvm::SmallString<128>, 10> includeDirs;
llvm::vfs::FileSystem &fileSystem = fileManager.getVirtualFileSystem();
llvm::ErrorOr<std::string> cwd = fileSystem.getCurrentWorkingDirectory();
if (useNonModularIncludes) {
assert(cwd && "Access to current working directory required");
for (auto searchDir = clangHeaderSearchInfo.search_dir_begin();
searchDir != clangHeaderSearchInfo.search_dir_end(); ++searchDir) {
includeDirs.insert(normalizePath(searchDir->getName()));
}
const clang::Module *foundationModule = clangHeaderSearchInfo.lookupModule(
"Foundation", clang::SourceLocation(), false, false);
const clang::Module *darwinModule = clangHeaderSearchInfo.lookupModule(
"Darwin", clang::SourceLocation(), false, false);
std::function<void(const clang::Module *)>
collectTransitiveSubmoduleClosure;
collectTransitiveSubmoduleClosure = [&](const clang::Module *module) {
if (!module)
return;
visitedModules.insert(module);
for (auto submodule : module->submodules()) {
collectTransitiveSubmoduleClosure(submodule);
}
};
collectTransitiveSubmoduleClosure(foundationModule);
collectTransitiveSubmoduleClosure(darwinModule);
}
// Track printed names to handle overlay modules.
llvm::SmallPtrSet<Identifier, 8> seenImports;
bool includeUnderlying = false;
StringRef importDirective =
useCxxImport ? "#pragma clang module import" : "@import";
StringRef importDirectiveLineEnd = useCxxImport ? "\n" : ";\n";
for (auto import : sortedImports) {
if (auto *swiftModule = import.dyn_cast<ModuleDecl *>()) {
if (useCxxImport) {
// Do not import Swift modules into the C++ section of the generated
// header unless explicitly exposed.
auto it = exposedModuleHeaderNames.find(swiftModule->getName().str());
if (it != exposedModuleHeaderNames.end())
textualIncludes.push_back(it->getValue());
continue;
}
auto Name = swiftModule->getName();
if (isUnderlyingModule(swiftModule)) {
includeUnderlying = true;
continue;
}
if (seenImports.insert(Name).second) {
out << importDirective << ' ' << Name.str() << importDirectiveLineEnd;
if (useNonModularIncludes) {
if (const clang::Module *underlyingClangModule =
swiftModule->findUnderlyingClangModule()) {
collectClangModuleHeaderIncludes(
underlyingClangModule, fileManager, requiredTextualIncludes,
visitedModules, includeDirs, cwd.get());
} else if ((underlyingClangModule =
clangHeaderSearchInfo.lookupModule(
Name.str(), clang::SourceLocation(), true,
true))) {
collectClangModuleHeaderIncludes(
underlyingClangModule, fileManager, requiredTextualIncludes,
visitedModules, includeDirs, cwd.get());
}
}
}
} else {
const auto *clangModule = cast<const clang::Module *>(import);
assert((useCxxImport || clangModule->isSubModule()) &&
"top-level modules should use a normal swift::ModuleDecl");
out << importDirective << ' ';
ModuleDecl::ReverseFullNameIterator(clangModule).printForward(out);
out << importDirectiveLineEnd;
if (useNonModularIncludes) {
collectClangModuleHeaderIncludes(
clangModule, fileManager, requiredTextualIncludes, visitedModules,
includeDirs, cwd.get());
}
}
}
if (useNonModularIncludes && !requiredTextualIncludes.empty()) {
out << "#elif defined(__OBJC__)\n";
for (auto header : requiredTextualIncludes)
out << "#import <" << header << ">\n";
out << "#else\n";
for (auto header : requiredTextualIncludes)
out << "#include <" << header << ">\n";
}
out << "#endif\n\n";
for (const auto header : textualIncludes) {
out << "#include <" << header << ">\n";
}
if (includeUnderlying) {
if (bridgingHeader.empty())
out << "#import <" << M.getName().str() << '/' << M.getName().str()
<< ".h>\n\n";
else {
out << "#if defined(__OBJC__)\n";
out << "#import \"" << bridgingHeader << "\"\n";
out << "#else\n";
out << "#include \"" << bridgingHeader << "\"\n";
out << "#endif\n\n";
}
}
}
static void writePostImportPrologue(raw_ostream &os, ModuleDecl &M) {
os << "#pragma clang diagnostic ignored \"-Wproperty-attribute-mismatch\"\n"
"#pragma clang diagnostic ignored \"-Wduplicate-method-arg\"\n"
"#if __has_warning(\"-Wpragma-clang-attribute\")\n"
"# pragma clang diagnostic ignored \"-Wpragma-clang-attribute\"\n"
"#endif\n"
"#pragma clang diagnostic ignored \"-Wunknown-pragmas\"\n"
"#pragma clang diagnostic ignored \"-Wnullability\"\n"
"#pragma clang diagnostic ignored "
"\"-Wdollar-in-identifier-extension\"\n"
"#pragma clang diagnostic ignored "
"\"-Wunsafe-buffer-usage\"\n"
"\n"
"#if __has_attribute(external_source_symbol)\n"
"# pragma push_macro(\"any\")\n"
"# undef any\n"
"# pragma clang attribute push("
"__attribute__((external_source_symbol(language=\"Swift\", "
"defined_in=\""
<< M.getNameStr()
<< "\",generated_declaration))), "
"apply_to=any(function,enum,objc_interface,objc_category,"
"objc_protocol))\n"
"# pragma pop_macro(\"any\")\n"
"#endif\n\n";
}
static void writeObjCEpilogue(raw_ostream &os) {
// Pop out of `external_source_symbol` attribute
// before emitting the C++ section as the C++ section
// might include other files in it.
os << "#if __has_attribute(external_source_symbol)\n"
"# pragma clang attribute pop\n"
"#endif\n";
}
static void writeEpilogue(raw_ostream &os) {
os << "#pragma clang diagnostic pop\n"
// For the macro guard against recursive definition
"#endif\n";
}
static std::string computeMacroGuard(const ModuleDecl *M) {
return (llvm::Twine(M->getNameStr().upper()) + "_SWIFT_H").str();
}
bool swift::printAsClangHeader(raw_ostream &os, ModuleDecl *M,
StringRef bridgingHeader,
const FrontendOptions &frontendOpts,
const IRGenOptions &irGenOpts,
clang::HeaderSearch &clangHeaderSearchInfo) {
llvm::PrettyStackTraceString trace("While generating Clang header");
SwiftToClangInteropContext interopContext(*M, irGenOpts);
writePrologue(os, M->getASTContext(), computeMacroGuard(M));
// C content (@c)
std::string moduleContentsScratch;
{
SmallPtrSet<ImportModuleTy, 8> imports;
llvm::raw_string_ostream cModuleContents{moduleContentsScratch};
printModuleContentsAsC(cModuleContents, imports, *M, interopContext,
frontendOpts.ClangHeaderMinAccess);
llvm::StringMap<StringRef> exposedModuleHeaderNames;
writeImports(os, imports, *M, bridgingHeader, frontendOpts,
clangHeaderSearchInfo, exposedModuleHeaderNames,
/*useCxxImport=*/false, /*useNonModularIncludes*/true);
emitExternC(os, [&] { os << "\n" << cModuleContents.str(); });
moduleContentsScratch.clear();
}
// Objective-C content
SmallPtrSet<ImportModuleTy, 8> imports;
llvm::raw_string_ostream objcModuleContents{moduleContentsScratch};
printModuleContentsAsObjC(objcModuleContents, imports, *M, interopContext,
frontendOpts.ClangHeaderMinAccess);
emitObjCConditional(os, [&] {
llvm::StringMap<StringRef> exposedModuleHeaderNames;
writeImports(os, imports, *M, bridgingHeader, frontendOpts,
clangHeaderSearchInfo, exposedModuleHeaderNames);
});
writePostImportPrologue(os, *M);
emitObjCConditional(os, [&] { os << "\n" << objcModuleContents.str(); });
writeObjCEpilogue(os);
// C++ content
emitCxxConditional(os, [&] {
// FIXME: Expose Swift with @expose by default.
bool enableCxx = frontendOpts.ClangHeaderExposedDecls.has_value() ||
M->DeclContext::getASTContext().LangOpts.EnableCXXInterop;
if (!enableCxx)
return;
llvm::StringSet<> exposedModules;
for (const auto &mod : frontendOpts.clangHeaderExposedImports)
exposedModules.insert(mod.moduleName);
// Include the shim header only in the C++ mode.
ClangSyntaxPrinter(M->getASTContext(), os).printIncludeForShimHeader(
"_SwiftCxxInteroperability.h");
// Explicit @expose attribute is required only when the user specifies
// -clang-header-expose-decls flag.
// FIXME: should we detect any presence of @expose and require it then?
bool requiresExplicitExpose =
frontendOpts.ClangHeaderExposedDecls.has_value() &&
(*frontendOpts.ClangHeaderExposedDecls ==
FrontendOptions::ClangHeaderExposeBehavior::HasExposeAttr ||
*frontendOpts.ClangHeaderExposedDecls ==
FrontendOptions::ClangHeaderExposeBehavior::
HasExposeAttrOrImplicitDeps);
// Swift stdlib dependencies are emitted into the same header when
// -clang-header-expose-decls flag is not specified, or when it allows
// implicit dependency emission.
bool addStdlibDepsInline =
!frontendOpts.ClangHeaderExposedDecls.has_value() ||
*frontendOpts.ClangHeaderExposedDecls ==
FrontendOptions::ClangHeaderExposeBehavior::
HasExposeAttrOrImplicitDeps ||
*frontendOpts.ClangHeaderExposedDecls ==
FrontendOptions::ClangHeaderExposeBehavior::AllPublic;
std::string moduleContentsBuf;
llvm::raw_string_ostream moduleContents{moduleContentsBuf};
auto deps = printModuleContentsAsCxx(
moduleContents, *M, interopContext,
frontendOpts.ClangHeaderMinAccess.value_or(AccessLevel::Public),
/*requiresExposedAttribute=*/requiresExplicitExpose, exposedModules);
// FIXME: In ObjC++ mode, we do not need to reimport duplicate modules.
llvm::StringMap<StringRef> exposedModuleHeaderNames;
for (const auto &mod : frontendOpts.clangHeaderExposedImports)
exposedModuleHeaderNames.insert({mod.moduleName, mod.headerName});
writeImports(os, deps.imports, *M, bridgingHeader, frontendOpts,
clangHeaderSearchInfo, exposedModuleHeaderNames,
/*useCxxImport=*/true);
// Embed the standard library directly.
if (addStdlibDepsInline && deps.dependsOnStandardLibrary) {
assert(!M->isStdlibModule());
SwiftToClangInteropContext interopContext(
*M->getASTContext().getStdlibModule(), irGenOpts);
auto macroGuard = computeMacroGuard(M->getASTContext().getStdlibModule());
os << "#ifndef " << macroGuard << "\n";
os << "#define " << macroGuard << "\n";
printModuleContentsAsCxx(os, *M->getASTContext().getStdlibModule(),
interopContext, AccessLevel::Public,
/*requiresExposedAttribute=*/true,
exposedModules);
os << "#endif // " << macroGuard << "\n";
}
os << moduleContents.str();
});
writeEpilogue(os);
return false;
}