mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Similarly to how we've always handled parameter types, we now recursively expand tuples in result types and separately determine a result convention for each result. The most important code-generation change here is that indirect results are now returned separately from each other and from any direct results. It is generally far better, when receiving an indirect result, to receive it as an independent result; the caller is much more likely to be able to directly receive the result in the address they want to initialize, rather than having to receive it in temporary memory and then copy parts of it into the target. The most important conceptual change here that clients and producers of SIL must be aware of is the new distinction between a SILFunctionType's *parameters* and its *argument list*. The former is just the formal parameters, derived purely from the parameter types of the original function; indirect results are no longer in this list. The latter includes the indirect result arguments; as always, all the indirect results strictly precede the parameters. Apply instructions and entry block arguments follow the argument list, not the parameter list. A relatively minor change is that there can now be multiple direct results, each with its own result convention. This is a minor change because I've chosen to leave return instructions as taking a single operand and apply instructions as producing a single result; when the type describes multiple results, they are implicitly bound up in a tuple. It might make sense to split these up and allow e.g. return instructions to take a list of operands; however, it's not clear what to do on the caller side, and this would be a major change that can be separated out from this already over-large patch. Unsurprisingly, the most invasive changes here are in SILGen; this requires substantial reworking of both call emission and reabstraction. It also proved important to switch several SILGen operations over to work with RValue instead of ManagedValue, since otherwise they would be forced to spuriously "implode" buffers.
384 lines
12 KiB
C++
384 lines
12 KiB
C++
//===--- DiverseStack.h - Stack of variably-sized objects -------*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a data structure for representing a stack of
|
|
// variably-sized objects. It is a requirement that the object type
|
|
// be trivially movable, meaning that it has a trivial move
|
|
// constructor and a trivial destructor.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SWIFT_IRGEN_DIVERSESTACK_H
|
|
#define SWIFT_IRGEN_DIVERSESTACK_H
|
|
|
|
#include "swift/Basic/Malloc.h"
|
|
#include "llvm/Support/PointerLikeTypeTraits.h"
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <utility>
|
|
|
|
namespace swift {
|
|
|
|
template <class T> class DiverseStackImpl;
|
|
|
|
/// DiverseStack - A stack of heterogeneously-typed objects.
|
|
///
|
|
/// \tparam T - A common base class of the objects on the stack; must
|
|
/// provide an allocated_size() const method.
|
|
/// \tparam InlineCapacity - the amount of inline storage to provide, in bytes
|
|
template <class T, unsigned InlineCapacity>
|
|
class DiverseStack : public DiverseStackImpl<T> {
|
|
char InlineStorage[InlineCapacity];
|
|
|
|
public:
|
|
DiverseStack() : DiverseStackImpl<T>(InlineStorage + InlineCapacity) {}
|
|
DiverseStack(const DiverseStack &other)
|
|
: DiverseStackImpl<T>(other, InlineStorage + InlineCapacity) {}
|
|
DiverseStack(const DiverseStackImpl<T> &other)
|
|
: DiverseStackImpl<T>(other, InlineStorage + InlineCapacity) {}
|
|
DiverseStack(DiverseStack<T, InlineCapacity> &&other)
|
|
: DiverseStackImpl<T>(std::move(other), InlineStorage + InlineCapacity) {}
|
|
DiverseStack(DiverseStackImpl<T> &&other)
|
|
: DiverseStackImpl<T>(std::move(other), InlineStorage + InlineCapacity) {}
|
|
};
|
|
|
|
/// A base class for DiverseStackImpl.
|
|
class DiverseStackBase {
|
|
public:
|
|
/// The top of the stack.
|
|
char *Begin;
|
|
|
|
/// The bottom of the stack, i.e. the end of the allocation.
|
|
char *End;
|
|
|
|
/// The beginning of the allocation.
|
|
char *Allocated;
|
|
|
|
bool isAllocatedInline() const {
|
|
return (Allocated == reinterpret_cast<const char *>(this + 1));
|
|
}
|
|
|
|
void checkValid() const {
|
|
assert(Allocated <= Begin);
|
|
assert(Begin <= End);
|
|
}
|
|
|
|
void initialize(char *end) {
|
|
Begin = End = end;
|
|
Allocated = reinterpret_cast<char*>(this + 1);
|
|
}
|
|
void copyFrom(const DiverseStackBase &other) {
|
|
// Ensure that we're large enough to store all the data.
|
|
std::size_t size = static_cast<std::size_t>(other.End - other.Begin);
|
|
pushNewStorage(size);
|
|
std::memcpy(Begin, other.Begin, size);
|
|
}
|
|
void pushNewStorage(std::size_t needed) {
|
|
checkValid();
|
|
if (std::size_t(Begin - Allocated) >= needed) {
|
|
Begin -= needed;
|
|
} else {
|
|
pushNewStorageSlow(needed);
|
|
}
|
|
}
|
|
void pushNewStorageSlow(std::size_t needed);
|
|
|
|
/// A stable iterator is the equivalent of an index into the stack.
|
|
/// It's an iterator that stays stable across modification of the
|
|
/// stack.
|
|
class stable_iterator {
|
|
std::size_t Depth;
|
|
friend class DiverseStackBase;
|
|
template <class T> friend class DiverseStackImpl;
|
|
stable_iterator(std::size_t depth) : Depth(depth) {}
|
|
public:
|
|
stable_iterator() = default;
|
|
friend bool operator==(stable_iterator a, stable_iterator b) {
|
|
return a.Depth == b.Depth;
|
|
}
|
|
friend bool operator!=(stable_iterator a, stable_iterator b) {
|
|
return a.Depth != b.Depth;
|
|
}
|
|
|
|
static stable_iterator invalid() {
|
|
return stable_iterator((std::size_t) -1);
|
|
}
|
|
bool isValid() const {
|
|
return Depth != (std::size_t) -1;
|
|
}
|
|
|
|
/// A helper class that wraps a stable_iterator as something that
|
|
/// pretends to be a non-null pointer.
|
|
///
|
|
/// This allows stable_iterators to be placed in TinyPtrVector.
|
|
///
|
|
/// A wrapper is needed because we don't want to give stable_iterator
|
|
/// a null inhabitant, an operator bool, conversions from nullptr_t, or
|
|
/// any similar features that TinyPtrVector reasonably requires of its
|
|
/// element types.
|
|
class AsPointer {
|
|
void *EncodedValue;
|
|
explicit AsPointer(void *encodedValue) : EncodedValue(encodedValue) {}
|
|
public:
|
|
enum { NumLowBitsAvailable = 3 };
|
|
|
|
/// Allow a null AsPointer to be created with either 'nullptr' or
|
|
/// 'AsPointer()'.
|
|
/*implicit*/ AsPointer(std::nullptr_t _ = nullptr)
|
|
: EncodedValue(nullptr) {}
|
|
|
|
/// Allow an AsPointer to be tested as a boolean value.
|
|
explicit operator bool() const { return EncodedValue != nullptr; }
|
|
|
|
/// Allow an AsPointer to be compared for equality with a void*.
|
|
friend bool operator==(AsPointer lhs, void *rhs) {
|
|
return lhs.EncodedValue == rhs;
|
|
}
|
|
|
|
/// Allow an implicit conversion from stable_iterator.
|
|
/*implicit*/ AsPointer(stable_iterator it) {
|
|
assert(it.isValid() && "can't encode invalid stable_iterator");
|
|
auto encodedDepth = (it.Depth + 1) << NumLowBitsAvailable;
|
|
EncodedValue = reinterpret_cast<void*>(encodedDepth);
|
|
assert(EncodedValue && "encoded pointer was null");
|
|
}
|
|
|
|
/// Allow an implicit conversion to stable_iterator.
|
|
operator stable_iterator() const {
|
|
assert(EncodedValue && "can't decode null pointer");
|
|
auto encodedDepth = reinterpret_cast<std::size_t>(EncodedValue);
|
|
auto depth = (encodedDepth >> NumLowBitsAvailable) - 1;
|
|
auto it = stable_iterator(depth);
|
|
assert(it.isValid() && "decoded stable_iterator was invalid");
|
|
return it;
|
|
}
|
|
|
|
void *getAsVoidPointer() const { return EncodedValue; }
|
|
static AsPointer getFromVoidPointer(void *ptr) { return AsPointer(ptr); }
|
|
};
|
|
AsPointer asPointer() const { return *this; }
|
|
};
|
|
stable_iterator stable_begin() const {
|
|
return stable_iterator(End - Begin);
|
|
}
|
|
static stable_iterator stable_end() {
|
|
return stable_iterator(0);
|
|
}
|
|
|
|
void checkIterator(stable_iterator it) const {
|
|
assert(it.isValid() && "checking an invalid iterator");
|
|
checkValid();
|
|
assert(it.Depth <= size_t(End - Begin));
|
|
}
|
|
};
|
|
|
|
template <class T> class DiverseStackImpl : private DiverseStackBase {
|
|
DiverseStackImpl(const DiverseStackImpl<T> &other) = delete;
|
|
DiverseStackImpl(DiverseStackImpl<T> &&other) = delete;
|
|
|
|
protected:
|
|
DiverseStackImpl(char *end) {
|
|
initialize(end);
|
|
}
|
|
|
|
DiverseStackImpl(const DiverseStackImpl<T> &other, char *end) {
|
|
initialize(end);
|
|
copyFrom(other);
|
|
}
|
|
DiverseStackImpl(DiverseStackImpl<T> &&other, char *end) {
|
|
// If the other is allocated inline, just initialize and copy.
|
|
if (other.isAllocatedInline()) {
|
|
initialize(end);
|
|
copyFrom(other);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, steal its allocations.
|
|
Begin = other.Begin;
|
|
End = other.End;
|
|
Allocated = other.Allocated;
|
|
other.Begin = other.End = other.Allocated = (char*) (&other + 1);
|
|
assert(other.isAllocatedInline());
|
|
}
|
|
|
|
public:
|
|
~DiverseStackImpl() {
|
|
checkValid();
|
|
if (!isAllocatedInline())
|
|
delete[] Allocated;
|
|
}
|
|
|
|
/// Query whether the stack is empty.
|
|
bool empty() const {
|
|
checkValid();
|
|
return Begin == End;
|
|
}
|
|
|
|
/// Return a reference to the top element on the stack.
|
|
T &top() {
|
|
assert(!empty());
|
|
return *reinterpret_cast<T*>(Begin);
|
|
}
|
|
|
|
/// Return a reference to the top element on the stack.
|
|
const T &top() const {
|
|
assert(!empty());
|
|
return *reinterpret_cast<const T*>(Begin);
|
|
}
|
|
|
|
using DiverseStackBase::stable_iterator;
|
|
using DiverseStackBase::stable_begin;
|
|
using DiverseStackBase::stable_end;
|
|
|
|
class const_iterator;
|
|
class iterator {
|
|
char *Ptr;
|
|
friend class DiverseStackImpl;
|
|
friend class const_iterator;
|
|
iterator(char *ptr) : Ptr(ptr) {}
|
|
|
|
public:
|
|
iterator() = default;
|
|
|
|
T &operator*() const { return *reinterpret_cast<T*>(Ptr); }
|
|
T *operator->() const { return reinterpret_cast<T*>(Ptr); }
|
|
iterator &operator++() {
|
|
Ptr += (*this)->allocated_size();
|
|
return *this;
|
|
}
|
|
iterator operator++(int _) {
|
|
iterator copy = *this;
|
|
operator++();
|
|
return copy;
|
|
}
|
|
|
|
/// advancePast - Like operator++, but asserting that the current
|
|
/// object has a known type.
|
|
template <class U> void advancePast() {
|
|
assert((*this)->allocated_size() == sizeof(U));
|
|
Ptr += sizeof(U);
|
|
}
|
|
|
|
friend bool operator==(iterator a, iterator b) { return a.Ptr == b.Ptr; }
|
|
friend bool operator!=(iterator a, iterator b) { return a.Ptr != b.Ptr; }
|
|
};
|
|
|
|
using DiverseStackBase::checkIterator;
|
|
void checkIterator(iterator it) const {
|
|
checkValid();
|
|
assert(Begin <= it.Ptr && it.Ptr <= End);
|
|
}
|
|
|
|
iterator begin() { checkValid(); return iterator(Begin); }
|
|
iterator end() { checkValid(); return iterator(End); }
|
|
iterator find(stable_iterator it) {
|
|
checkIterator(it);
|
|
return iterator(End - it.Depth);
|
|
}
|
|
stable_iterator stabilize(iterator it) const {
|
|
checkIterator(it);
|
|
return stable_iterator(End - it.Ptr);
|
|
}
|
|
|
|
class const_iterator {
|
|
const char *Ptr;
|
|
friend class DiverseStackImpl;
|
|
const_iterator(const char *ptr) : Ptr(ptr) {}
|
|
public:
|
|
const_iterator() = default;
|
|
const_iterator(iterator it) : Ptr(it.Ptr) {}
|
|
|
|
const T &operator*() const { return *reinterpret_cast<const T*>(Ptr); }
|
|
const T *operator->() const { return reinterpret_cast<const T*>(Ptr); }
|
|
const_iterator &operator++() {
|
|
Ptr += (*this)->allocated_size();
|
|
return *this;
|
|
}
|
|
const_iterator operator++(int _) {
|
|
const_iterator copy = *this;
|
|
operator++();
|
|
return copy;
|
|
}
|
|
|
|
/// advancePast - Like operator++, but asserting that the current
|
|
/// object has a known type.
|
|
template <class U> void advancePast() {
|
|
assert((*this)->allocated_size() == sizeof(U));
|
|
Ptr += sizeof(U);
|
|
}
|
|
|
|
friend bool operator==(const_iterator a, const_iterator b) {
|
|
return a.Ptr == b.Ptr;
|
|
}
|
|
friend bool operator!=(const_iterator a, const_iterator b) {
|
|
return a.Ptr != b.Ptr;
|
|
}
|
|
};
|
|
const_iterator begin() const { checkValid(); return const_iterator(Begin); }
|
|
const_iterator end() const { checkValid(); return const_iterator(End); }
|
|
void checkIterator(const_iterator it) const {
|
|
checkValid();
|
|
assert(Begin <= it.Ptr && it.Ptr <= End);
|
|
}
|
|
const_iterator find(stable_iterator it) const {
|
|
checkIterator(it);
|
|
return const_iterator(End - it.Depth);
|
|
}
|
|
stable_iterator stabilize(const_iterator it) const {
|
|
checkIterator(it);
|
|
return stable_iterator(End - it.Ptr);
|
|
}
|
|
|
|
/// Push a new object onto the stack.
|
|
template <class U, class... A> U &push(A && ...args) {
|
|
pushNewStorage(sizeof(U));
|
|
return *::new (Begin) U(::std::forward<A>(args)...);
|
|
}
|
|
|
|
/// Pop an object off the stack.
|
|
void pop() {
|
|
assert(!empty());
|
|
Begin += top().allocated_size();
|
|
}
|
|
|
|
/// Pop an object of known type off the stack.
|
|
template <class U> void pop() {
|
|
assert(!empty());
|
|
assert(sizeof(U) == top().allocated_size());
|
|
Begin += sizeof(U);
|
|
}
|
|
};
|
|
|
|
} // end namespace swift
|
|
|
|
/// Allow stable_iterators to be put in things like TinyPtrVectors.
|
|
namespace llvm {
|
|
template <>
|
|
class PointerLikeTypeTraits<
|
|
swift::DiverseStackBase::stable_iterator::AsPointer> {
|
|
using AsPointer = swift::DiverseStackBase::stable_iterator::AsPointer;
|
|
public:
|
|
static inline void *getAsVoidPointer(AsPointer ptr) {
|
|
return ptr.getAsVoidPointer();
|
|
}
|
|
static inline AsPointer getFromVoidPointer(void *ptr) {
|
|
return AsPointer::getFromVoidPointer(ptr);
|
|
}
|
|
|
|
enum {
|
|
NumLowBitsAvailable = AsPointer::NumLowBitsAvailable
|
|
};
|
|
};
|
|
}
|
|
|
|
#endif
|