mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
680 lines
25 KiB
C++
680 lines
25 KiB
C++
//===--- Local.h - Local SIL transformations. -------------------*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SWIFT_SILOPTIMIZER_UTILS_LOCAL_H
|
|
#define SWIFT_SILOPTIMIZER_UTILS_LOCAL_H
|
|
|
|
#include "swift/Basic/ArrayRefView.h"
|
|
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
|
|
#include "swift/SIL/SILInstruction.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SIL/SILCloner.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include <functional>
|
|
#include <utility>
|
|
|
|
namespace swift {
|
|
|
|
class DominanceInfo;
|
|
|
|
/// Transform a Use Range (Operand*) into a User Range (SILInstruction*)
|
|
using UserTransform = std::function<SILInstruction *(Operand *)>;
|
|
using ValueBaseUserRange =
|
|
TransformRange<IteratorRange<ValueBase::use_iterator>, UserTransform>;
|
|
|
|
inline ValueBaseUserRange makeUserRange(
|
|
iterator_range<ValueBase::use_iterator> R) {
|
|
auto toUser = [](Operand *O) { return O->getUser(); };
|
|
return makeTransformRange(makeIteratorRange(R.begin(), R.end()),
|
|
UserTransform(toUser));
|
|
}
|
|
|
|
/// \brief For each of the given instructions, if they are dead delete them
|
|
/// along with their dead operands.
|
|
///
|
|
/// \param I The instruction to be deleted.
|
|
/// \param Force If Force is set, don't check if the top level instructions
|
|
/// are considered dead - delete them regardless.
|
|
/// \param C a callback called whenever an instruction is deleted.
|
|
void
|
|
recursivelyDeleteTriviallyDeadInstructions(
|
|
ArrayRef<SILInstruction*> I, bool Force = false,
|
|
std::function<void(SILInstruction *)> C = [](SILInstruction *){});
|
|
|
|
/// \brief If the given instruction is dead, delete it along with its dead
|
|
/// operands.
|
|
///
|
|
/// \param I The instruction to be deleted.
|
|
/// \param Force If Force is set, don't check if the top level instruction is
|
|
/// considered dead - delete it regardless.
|
|
/// \param C a callback called whenever an instruction is deleted.
|
|
void
|
|
recursivelyDeleteTriviallyDeadInstructions(
|
|
SILInstruction *I,
|
|
bool Force = false,
|
|
std::function<void(SILInstruction *)> C = [](SILInstruction *){});
|
|
|
|
/// \brief Perform a fast local check to see if the instruction is dead.
|
|
///
|
|
/// This routine only examines the state of the instruction at hand.
|
|
bool isInstructionTriviallyDead(SILInstruction *I);
|
|
|
|
/// \brief Return true if this is a release instruction and the released value
|
|
/// is a part of a guaranteed parameter, false otherwise.
|
|
bool isGuaranteedParamRelease(SILInstruction *I);
|
|
|
|
/// \brief Recursively erase all of the uses of the instruction (but not the
|
|
/// instruction itself) and delete instructions that will become trivially
|
|
/// dead when this instruction is removed.
|
|
void eraseUsesOfInstruction(
|
|
SILInstruction *Inst,
|
|
std::function<void(SILInstruction *)> C = [](SILInstruction *){});
|
|
|
|
/// \brief Recursively erase all of the uses of the value (but not the
|
|
/// value itself)
|
|
void eraseUsesOfValue(SILValue V);
|
|
|
|
FullApplySite findApplyFromDevirtualizedResult(SILInstruction *I);
|
|
|
|
/// Check that this is a partial apply of a reabstraction thunk and return the
|
|
/// argument of the partial apply if it is.
|
|
SILValue isPartialApplyOfReabstractionThunk(PartialApplyInst *PAI);
|
|
|
|
/// Cast a value into the expected, ABI compatible type if necessary.
|
|
/// This may happen e.g. when:
|
|
/// - a type of the return value is a subclass of the expected return type.
|
|
/// - actual return type and expected return type differ in optionality.
|
|
/// - both types are tuple-types and some of the elements need to be casted.
|
|
///
|
|
/// If CheckOnly flag is set, then this function only checks if the
|
|
/// required casting is possible. If it is not possible, then None
|
|
/// is returned.
|
|
/// If CheckOnly is not set, then a casting code is generated and the final
|
|
/// casted value is returned.
|
|
Optional<SILValue> castValueToABICompatibleType(SILBuilder *B, SILLocation Loc,
|
|
SILValue Value,
|
|
SILType SrcTy,
|
|
SILType DestTy,
|
|
bool CheckOnly = false);
|
|
|
|
/// Check if the optimizer can cast a value into the expected,
|
|
/// ABI compatible type if necessary.
|
|
bool canCastValueToABICompatibleType(SILModule &M,
|
|
SILType SrcTy, SILType DestTy);
|
|
|
|
/// Returns a project_box if it is the next instruction after \p ABI and
|
|
/// and has \p ABI as operand. Otherwise it creates a new project_box right
|
|
/// after \p ABI and returns it.
|
|
ProjectBoxInst *getOrCreateProjectBox(AllocBoxInst *ABI);
|
|
|
|
/// Replace an apply with an instruction that produces the same value,
|
|
/// then delete the apply and the instructions that produce its callee
|
|
/// if possible.
|
|
void replaceDeadApply(ApplySite Old, ValueBase *New);
|
|
|
|
/// \brief Return true if the substitution map contains a
|
|
/// substitution that is an unbound generic type.
|
|
bool hasUnboundGenericTypes(TypeSubstitutionMap &SubsMap);
|
|
|
|
/// Return true if the substitution list contains a substitution
|
|
/// that is an unbound generic.
|
|
bool hasUnboundGenericTypes(ArrayRef<Substitution> Subs);
|
|
|
|
/// \brief Return true if the substitution map contains a
|
|
/// substitution that refers to the dynamic Self type.
|
|
bool hasDynamicSelfTypes(TypeSubstitutionMap &SubsMap);
|
|
|
|
/// \brief Return true if the substitution list contains a
|
|
/// substitution that refers to the dynamic Self type.
|
|
bool hasDynamicSelfTypes(ArrayRef<Substitution> Subs);
|
|
|
|
/// \brief Return true if any call inside the given function may bind dynamic
|
|
/// 'Self' to a generic argument of the callee.
|
|
bool computeMayBindDynamicSelf(SILFunction *F);
|
|
|
|
/// \brief Move an ApplyInst's FuncRef so that it dominates the call site.
|
|
void placeFuncRef(ApplyInst *AI, DominanceInfo *DT);
|
|
|
|
/// \brief Add an argument, \p val, to the branch-edge that is pointing into
|
|
/// block \p Dest. Return a new instruction and do not erase the old
|
|
/// instruction.
|
|
TermInst *addArgumentToBranch(SILValue Val, SILBasicBlock *Dest,
|
|
TermInst *Branch);
|
|
|
|
/// Handle the mechanical aspects of removing an unreachable block.
|
|
void removeDeadBlock(SILBasicBlock *BB);
|
|
|
|
/// Remove all instructions in the body of \p BB in safe manner by using
|
|
/// undef.
|
|
void clearBlockBody(SILBasicBlock *BB);
|
|
|
|
/// \brief Get the linkage to be used for specializations of a function with
|
|
/// the given linkage.
|
|
SILLinkage getSpecializedLinkage(SILFunction *F, SILLinkage L);
|
|
|
|
/// Tries to optimize a given apply instruction if it is a concatenation of
|
|
/// string literals. Returns a new instruction if optimization was possible.
|
|
SILInstruction *tryToConcatenateStrings(ApplyInst *AI, SILBuilder &B);
|
|
|
|
|
|
/// Tries to perform jump-threading on all checked_cast_br instruction in
|
|
/// function \p Fn.
|
|
bool tryCheckedCastBrJumpThreading(SILFunction *Fn, DominanceInfo *DT,
|
|
SmallVectorImpl<SILBasicBlock *> &BlocksForWorklist);
|
|
|
|
void recalcDomTreeForCCBOpt(DominanceInfo *DT, SILFunction &F);
|
|
|
|
/// Checks if a symbol with a given linkage can be referenced from fragile
|
|
/// functions.
|
|
bool isValidLinkageForFragileRef(SILLinkage linkage);
|
|
|
|
/// A structure containing callbacks that are called when an instruction is
|
|
/// removed or added.
|
|
struct InstModCallbacks {
|
|
using CallbackTy = std::function<void (SILInstruction *)>;
|
|
CallbackTy DeleteInst = [](SILInstruction *I) {
|
|
I->eraseFromParent();
|
|
};
|
|
CallbackTy CreatedNewInst = [](SILInstruction *){};
|
|
|
|
InstModCallbacks(CallbackTy DeleteInst, CallbackTy CreatedNewInst)
|
|
: DeleteInst(DeleteInst), CreatedNewInst(CreatedNewInst) {}
|
|
InstModCallbacks() = default;
|
|
~InstModCallbacks() = default;
|
|
InstModCallbacks(const InstModCallbacks &) = default;
|
|
InstModCallbacks(InstModCallbacks &&) = default;
|
|
};
|
|
|
|
/// If Closure is a partial_apply or thin_to_thick_function with only local
|
|
/// ref count users and a set of post-dominating releases:
|
|
///
|
|
/// 1. Remove all ref count operations and the closure.
|
|
/// 2. Add each one of the last release locations insert releases for the
|
|
/// captured args if we have a partial_apply.
|
|
///
|
|
/// In the future this should be extended to be less conservative with users.
|
|
bool
|
|
tryDeleteDeadClosure(SILInstruction *Closure,
|
|
InstModCallbacks Callbacks = InstModCallbacks());
|
|
|
|
/// Given a SILValue argument to a partial apply \p Arg and the associated
|
|
/// parameter info for that argument, perform the necessary cleanups to Arg when
|
|
/// one is attempting to delete the partial apply.
|
|
void releasePartialApplyCapturedArg(
|
|
SILBuilder &Builder, SILLocation Loc, SILValue Arg, SILParameterInfo PInfo,
|
|
InstModCallbacks Callbacks = InstModCallbacks());
|
|
|
|
/// This computes the lifetime of a single SILValue.
|
|
///
|
|
/// This does not compute a set of jointly postdominating use points. Instead it
|
|
/// assumes that the value's existing uses already jointly postdominate the
|
|
/// definition. This makes sense for values that are returned +1 from an
|
|
/// instruction, like partial_apply, and therefore must be released on all paths
|
|
/// via strong_release or apply.
|
|
class ValueLifetimeAnalysis {
|
|
public:
|
|
|
|
/// The lifetime frontier for the value. It is the list of instructions
|
|
/// following the last uses of the value. All the frontier instructions
|
|
/// end the value's lifetime.
|
|
typedef llvm::SmallVector<SILInstruction *, 4> Frontier;
|
|
|
|
/// Constructor for the value \p Def with a specific set of users of Def's
|
|
/// users.
|
|
ValueLifetimeAnalysis(SILValue Def, ArrayRef<SILInstruction*> UserList) :
|
|
DefValue(Def), UserSet(UserList.begin(), UserList.end()) {
|
|
propagateLiveness();
|
|
}
|
|
|
|
/// Constructor for the value \p Def considering all the value's uses.
|
|
ValueLifetimeAnalysis(SILValue Def) : DefValue(Def) {
|
|
for (Operand *Op : Def->getUses()) {
|
|
UserSet.insert(Op->getUser());
|
|
}
|
|
propagateLiveness();
|
|
}
|
|
|
|
enum Mode {
|
|
/// Don't split critical edges if the frontier instructions are located on
|
|
/// a critical edges. Instead fail.
|
|
DontModifyCFG,
|
|
|
|
/// Split critical edges if the frontier instructions are located on
|
|
/// a critical edges.
|
|
AllowToModifyCFG,
|
|
|
|
/// Ignore exit edges from the lifetime region at all.
|
|
IgnoreExitEdges
|
|
};
|
|
|
|
/// Computes and returns the lifetime frontier for the value in \p Fr.
|
|
/// Returns true if all instructions in the frontier could be found in
|
|
/// non-critical edges.
|
|
/// Returns false if some frontier instructions are located on critical edges.
|
|
/// In this case, if \p mode is AllowToModifyCFG, those critical edges are
|
|
/// split, otherwise nothing is done and the returned \p Fr is not valid.
|
|
bool computeFrontier(Frontier &Fr, Mode mode);
|
|
|
|
/// Returns true if the instruction \p Inst is located within the value's
|
|
/// lifetime.
|
|
/// It is assumed that \p Inst is located after the value's definition.
|
|
bool isWithinLifetime(SILInstruction *Inst);
|
|
|
|
private:
|
|
|
|
/// The value.
|
|
SILValue DefValue;
|
|
|
|
/// The set of blocks where the value is live.
|
|
llvm::SmallSetVector<SILBasicBlock *, 16> LiveBlocks;
|
|
|
|
/// The set of instructions where the value is used, or the users-list
|
|
/// provided with the constructor.
|
|
llvm::SmallPtrSet<SILInstruction*, 16> UserSet;
|
|
|
|
/// Propagates the liveness information up the control flow graph.
|
|
void propagateLiveness();
|
|
|
|
/// Returns the last use of the value in the live block \p BB.
|
|
SILInstruction *findLastUserInBlock(SILBasicBlock *BB);
|
|
};
|
|
|
|
/// Base class for BB cloners.
|
|
class BaseThreadingCloner : public SILClonerWithScopes<BaseThreadingCloner> {
|
|
friend class SILVisitor<BaseThreadingCloner>;
|
|
friend class SILCloner<BaseThreadingCloner>;
|
|
|
|
protected:
|
|
SILBasicBlock *FromBB, *DestBB;
|
|
|
|
public:
|
|
// A map of old to new available values.
|
|
SmallVector<std::pair<ValueBase *, SILValue>, 16> AvailVals;
|
|
|
|
/// If WithinFunction is true, the debug scopes of the cloned
|
|
/// instructions will not be updated.
|
|
BaseThreadingCloner(SILFunction &To, bool WithinFunction)
|
|
: SILClonerWithScopes(To, WithinFunction), FromBB(nullptr),
|
|
DestBB(nullptr) {}
|
|
|
|
BaseThreadingCloner(SILFunction &To, SILBasicBlock *From, SILBasicBlock *Dest)
|
|
: SILClonerWithScopes(To, From->getParent() == &To), FromBB(From),
|
|
DestBB(Dest) {}
|
|
|
|
void process(SILInstruction *I) { visit(I); }
|
|
|
|
SILBasicBlock *remapBasicBlock(SILBasicBlock *BB) { return BB; }
|
|
|
|
SILValue remapValue(SILValue Value) {
|
|
// If this is a use of an instruction in another block, then just use it.
|
|
if (auto SI = dyn_cast<SILInstruction>(Value)) {
|
|
if (SI->getParent() != FromBB)
|
|
return Value;
|
|
} else if (auto BBArg = dyn_cast<SILArgument>(Value)) {
|
|
if (BBArg->getParent() != FromBB)
|
|
return Value;
|
|
} else {
|
|
assert(isa<SILUndef>(Value) && "Unexpected Value kind");
|
|
return Value;
|
|
}
|
|
|
|
return SILCloner<BaseThreadingCloner>::remapValue(Value);
|
|
}
|
|
|
|
void postProcess(SILInstruction *Orig, SILInstruction *Cloned) {
|
|
DestBB->push_back(Cloned);
|
|
SILCloner<BaseThreadingCloner>::postProcess(Orig, Cloned);
|
|
// A terminator defines no values. Keeping terminators in the AvailVals list
|
|
// is problematic because terminators get replaced during SSA update.
|
|
if (!isa<TermInst>(Orig))
|
|
AvailVals.push_back(std::make_pair(Orig, SILValue(Cloned)));
|
|
}
|
|
};
|
|
|
|
/// Clone a basic block to edge \p BI.
|
|
class EdgeThreadingCloner : public BaseThreadingCloner {
|
|
public:
|
|
EdgeThreadingCloner(BranchInst *BI)
|
|
: BaseThreadingCloner(*BI->getFunction(),
|
|
BI->getDestBB(), nullptr) {
|
|
DestBB = createEdgeBlockAndRedirectBranch(BI);
|
|
}
|
|
|
|
SILBasicBlock *createEdgeBlockAndRedirectBranch(BranchInst *BI) {
|
|
auto *Fn = BI->getFunction();
|
|
auto *SrcBB = BI->getParent();
|
|
auto *DestBB = BI->getDestBB();
|
|
auto *EdgeBB = new (Fn->getModule()) SILBasicBlock(Fn, SrcBB);
|
|
|
|
// Create block arguments.
|
|
unsigned ArgIdx = 0;
|
|
for (auto Arg : BI->getArgs()) {
|
|
assert(Arg->getType() == DestBB->getBBArg(ArgIdx)->getType() &&
|
|
"Types must match");
|
|
auto *BlockArg = EdgeBB->createBBArg(Arg->getType());
|
|
ValueMap[DestBB->getBBArg(ArgIdx)] = SILValue(BlockArg);
|
|
AvailVals.push_back(std::make_pair(DestBB->getBBArg(ArgIdx), BlockArg));
|
|
++ArgIdx;
|
|
}
|
|
|
|
// Redirect the branch.
|
|
SILBuilderWithScope(BI).createBranch(BI->getLoc(), EdgeBB, BI->getArgs());
|
|
BI->eraseFromParent();
|
|
return EdgeBB;
|
|
}
|
|
|
|
SILBasicBlock *getEdgeBB() {
|
|
// DestBB really is the edge basic block we created to clone instructions
|
|
// to.
|
|
return DestBB;
|
|
}
|
|
};
|
|
|
|
/// Helper class for cloning of basic blocks.
|
|
class BasicBlockCloner : public BaseThreadingCloner {
|
|
public:
|
|
BasicBlockCloner(SILBasicBlock *From, SILBasicBlock *To = nullptr,
|
|
bool WithinFunction = true)
|
|
: BaseThreadingCloner(To ? *To->getParent() : *From->getParent(),
|
|
WithinFunction) {
|
|
FromBB = From;
|
|
if (To == nullptr) {
|
|
// Create a new BB that is to be used as a target
|
|
// for cloning.
|
|
To = From->getParent()->createBasicBlock();
|
|
for (auto *Arg : FromBB->getBBArgs()) {
|
|
To->createBBArg(Arg->getType(), Arg->getDecl());
|
|
}
|
|
}
|
|
DestBB = To;
|
|
|
|
// Populate the value map so that uses of the BBArgs in the SrcBB are
|
|
// replaced with the BBArgs of the DestBB.
|
|
for (unsigned i = 0, e = FromBB->bbarg_size(); i != e; ++i) {
|
|
ValueMap[FromBB->getBBArg(i)] = DestBB->getBBArg(i);
|
|
AvailVals.push_back(
|
|
std::make_pair(FromBB->getBBArg(i), DestBB->getBBArg(i)));
|
|
}
|
|
}
|
|
|
|
// Clone all instructions of the FromBB into DestBB
|
|
void clone() {
|
|
for (auto &I : *FromBB)
|
|
process(&I);
|
|
}
|
|
|
|
SILBasicBlock *getDestBB() { return DestBB; }
|
|
};
|
|
|
|
/// Helper function to perform SSA updates in case of jump threading. Set
|
|
/// 'NeedToSplitCriticalEdges' to false if all critical edges are split,
|
|
/// otherwise this call will try to split all critical edges.
|
|
void updateSSAAfterCloning(BaseThreadingCloner &Cloner, SILBasicBlock *SrcBB,
|
|
SILBasicBlock *DestBB,
|
|
bool NeedToSplitCriticalEdges = true);
|
|
|
|
/// \brief This is a helper class used to optimize casts.
|
|
class CastOptimizer {
|
|
// Callback to be called when uses of an instruction should be replaced.
|
|
std::function<void (SILInstruction *I, ValueBase *V)> ReplaceInstUsesAction;
|
|
|
|
// Callback to call when an instruction needs to be erased.
|
|
std::function<void (SILInstruction *)> EraseInstAction;
|
|
|
|
// Callback to call after an optimization was performed based on the fact
|
|
// that a cast will succeed.
|
|
std::function<void ()> WillSucceedAction;
|
|
|
|
// Callback to call after an optimization was performed based on the fact
|
|
// that a cast will fail.
|
|
std::function<void ()> WillFailAction;
|
|
|
|
/// Optimize a cast from a bridged ObjC type into
|
|
/// a corresponding Swift type implementing _ObjectiveCBridgeable.
|
|
SILInstruction *
|
|
optimizeBridgedObjCToSwiftCast(SILInstruction *Inst,
|
|
bool isConditional,
|
|
SILValue Src,
|
|
SILValue Dest,
|
|
CanType Source,
|
|
CanType Target,
|
|
Type BridgedSourceTy,
|
|
Type BridgedTargetTy,
|
|
SILBasicBlock *SuccessBB,
|
|
SILBasicBlock *FailureBB);
|
|
|
|
/// Optimize a cast from a Swift type implementing _ObjectiveCBridgeable
|
|
/// into a bridged ObjC type.
|
|
SILInstruction *
|
|
optimizeBridgedSwiftToObjCCast(SILInstruction *Inst,
|
|
bool isConditional,
|
|
SILValue Src,
|
|
SILValue Dest,
|
|
CanType Source,
|
|
CanType Target,
|
|
Type BridgedSourceTy,
|
|
Type BridgedTargetTy,
|
|
SILBasicBlock *SuccessBB,
|
|
SILBasicBlock *FailureBB);
|
|
|
|
public:
|
|
CastOptimizer(std::function<void (SILInstruction *I, ValueBase *V)> ReplaceInstUsesAction,
|
|
std::function<void (SILInstruction *)> EraseAction = [](SILInstruction*){},
|
|
std::function<void ()> WillSucceedAction = [](){},
|
|
std::function<void ()> WillFailAction = [](){})
|
|
: ReplaceInstUsesAction(ReplaceInstUsesAction),
|
|
EraseInstAction(EraseAction),
|
|
WillSucceedAction(WillSucceedAction),
|
|
WillFailAction(WillFailAction) {}
|
|
|
|
/// Simplify checked_cast_br. It may change the control flow.
|
|
SILInstruction *
|
|
simplifyCheckedCastBranchInst(CheckedCastBranchInst *Inst);
|
|
|
|
/// Simplify checked_cast_addr_br. It may change the control flow.
|
|
SILInstruction *
|
|
simplifyCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *Inst);
|
|
|
|
/// Optimize checked_cast_br. This cannot change the control flow.
|
|
SILInstruction *
|
|
optimizeCheckedCastBranchInst(CheckedCastBranchInst *Inst);
|
|
|
|
/// Optimize checked_cast_addr_br. This cannot change the control flow.
|
|
SILInstruction *
|
|
optimizeCheckedCastAddrBranchInst(CheckedCastAddrBranchInst *Inst);
|
|
|
|
/// Optimize unconditional_checked_cast. This cannot change the control flow.
|
|
ValueBase *
|
|
optimizeUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *Inst);
|
|
|
|
/// Optimize unconditional_checked_cast_addr. This cannot change the control
|
|
/// flow.
|
|
SILInstruction *
|
|
optimizeUnconditionalCheckedCastAddrInst(UnconditionalCheckedCastAddrInst *Inst);
|
|
|
|
/// Check if it is a bridged cast and optimize it.
|
|
/// May change the control flow.
|
|
SILInstruction *
|
|
optimizeBridgedCasts(SILInstruction *Inst,
|
|
bool isConditional,
|
|
SILValue Src,
|
|
SILValue Dest,
|
|
CanType Source,
|
|
CanType Target,
|
|
SILBasicBlock *SuccessBB,
|
|
SILBasicBlock *FailureBB);
|
|
|
|
};
|
|
|
|
// Helper class that provides a callback that can be used in
|
|
// inliners/cloners for collecting new call sites.
|
|
class CloneCollector {
|
|
public:
|
|
typedef std::pair<SILInstruction *, SILInstruction *> value_type;
|
|
typedef std::function<void(SILInstruction *, SILInstruction *)> CallbackType;
|
|
typedef std::function<bool (SILInstruction *)> FilterType;
|
|
|
|
private:
|
|
FilterType Filter;
|
|
|
|
// Pairs of collected instructions; (new, old)
|
|
llvm::SmallVector<value_type, 4> InstructionPairs;
|
|
|
|
void collect(SILInstruction *Old, SILInstruction *New) {
|
|
if (Filter(New))
|
|
InstructionPairs.push_back(std::make_pair(New, Old));
|
|
}
|
|
|
|
public:
|
|
CloneCollector(FilterType Filter) : Filter(Filter) {}
|
|
|
|
CallbackType getCallback() {
|
|
return std::bind(&CloneCollector::collect, this, std::placeholders::_1,
|
|
std::placeholders::_2);
|
|
}
|
|
|
|
llvm::SmallVectorImpl<value_type> &getInstructionPairs() {
|
|
return InstructionPairs;
|
|
}
|
|
};
|
|
|
|
/// This iterator 'looks through' one level of builtin expect users exposing all
|
|
/// users of the looked through builtin expect instruction i.e it presents a
|
|
/// view that shows all users as if there were no builtin expect instructions
|
|
/// interposed.
|
|
class IgnoreExpectUseIterator
|
|
: public std::iterator<std::forward_iterator_tag, Operand *, ptrdiff_t> {
|
|
ValueBaseUseIterator OrigUseChain;
|
|
ValueBaseUseIterator CurrentIter;
|
|
|
|
static bool isExpect(Operand *Use) {
|
|
if (auto *BI = dyn_cast<BuiltinInst>(Use->getUser()))
|
|
if (BI->getIntrinsicInfo().ID == llvm::Intrinsic::expect)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Advance through expect users to their users until we encounter a user that
|
|
// is not an expect.
|
|
void advanceThroughExpects() {
|
|
while (CurrentIter == OrigUseChain &&
|
|
CurrentIter != ValueBaseUseIterator(nullptr) &&
|
|
isExpect(*CurrentIter)) {
|
|
auto *Expect = CurrentIter->getUser();
|
|
CurrentIter = Expect->use_begin();
|
|
// Expect with no users advance to next item in original use chain.
|
|
if (CurrentIter == Expect->use_end())
|
|
CurrentIter = ++OrigUseChain;
|
|
}
|
|
}
|
|
|
|
public:
|
|
IgnoreExpectUseIterator(ValueBase *V)
|
|
: OrigUseChain(V->use_begin()), CurrentIter(V->use_begin()) {
|
|
advanceThroughExpects();
|
|
}
|
|
|
|
IgnoreExpectUseIterator() = default;
|
|
|
|
Operand *operator*() const { return *CurrentIter; }
|
|
Operand *operator->() const { return *CurrentIter; }
|
|
SILInstruction *getUser() const { return CurrentIter->getUser(); }
|
|
|
|
IgnoreExpectUseIterator &operator++() {
|
|
assert(**this && "increment past end()!");
|
|
if (OrigUseChain == CurrentIter) {
|
|
// Use chain of the original value.
|
|
++OrigUseChain;
|
|
++CurrentIter;
|
|
// Ignore expects.
|
|
advanceThroughExpects();
|
|
} else {
|
|
// Use chain of an expect.
|
|
++CurrentIter;
|
|
if (CurrentIter == ValueBaseUseIterator(nullptr)) {
|
|
// At the end of the use chain of an expect.
|
|
CurrentIter = ++OrigUseChain;
|
|
advanceThroughExpects();
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
IgnoreExpectUseIterator operator++(int unused) {
|
|
IgnoreExpectUseIterator Copy = *this;
|
|
++*this;
|
|
return Copy;
|
|
}
|
|
friend bool operator==(IgnoreExpectUseIterator lhs,
|
|
IgnoreExpectUseIterator rhs) {
|
|
return lhs.CurrentIter == rhs.CurrentIter;
|
|
}
|
|
friend bool operator!=(IgnoreExpectUseIterator lhs,
|
|
IgnoreExpectUseIterator rhs) {
|
|
return !(lhs == rhs);
|
|
}
|
|
};
|
|
|
|
inline iterator_range<IgnoreExpectUseIterator>
|
|
ignore_expect_uses(ValueBase *V) {
|
|
return make_range(IgnoreExpectUseIterator(V),
|
|
IgnoreExpectUseIterator());
|
|
}
|
|
|
|
/// Run simplifyInstruction() on all of the instruction I's users if they only
|
|
/// have one result (since simplifyInstruction assumes that). Replace all uses
|
|
/// of the user with its simplification of we succeed. Returns true if we
|
|
/// succeed and false otherwise.
|
|
///
|
|
/// An example of how this is useful is in cases where one is splitting up an
|
|
/// aggregate and reforming it, the reformed aggregate may have extract
|
|
/// operations from it. These can be simplified and removed.
|
|
bool simplifyUsers(SILInstruction *I);
|
|
|
|
/// Check if a given type is a simple type, i.e. a builtin
|
|
/// integer or floating point type or a struct/tuple whose members
|
|
/// are of simple types.
|
|
bool isSimpleType(SILType SILTy, SILModule& Module);
|
|
|
|
/// Check if the value of V is computed by means of a simple initialization.
|
|
/// Store the actual SILValue into \p Val and the reversed list of instructions
|
|
/// initializing it in \p Insns.
|
|
/// The check is performed by recursively walking the computation of the
|
|
/// SIL value being analyzed.
|
|
bool analyzeStaticInitializer(SILValue V,
|
|
SmallVectorImpl<SILInstruction *> &Insns);
|
|
|
|
/// Replace load sequence which may contain
|
|
/// a chain of struct_element_addr followed by a load.
|
|
/// The sequence is traversed inside out, i.e.
|
|
/// starting with the innermost struct_element_addr
|
|
void replaceLoadSequence(SILInstruction *I,
|
|
SILInstruction *Value,
|
|
SILBuilder &B);
|
|
|
|
|
|
/// Do we have enough information to determine all callees that could
|
|
/// be reached by calling the function represented by Decl?
|
|
bool calleesAreStaticallyKnowable(SILModule &M, SILDeclRef Decl);
|
|
|
|
/// Hoist the address projection rooted in \p Op to \p InsertBefore.
|
|
/// Requires the projected value to dominate the insertion point.
|
|
///
|
|
/// Will look through single basic block predecessor arguments.
|
|
void hoistAddressProjections(Operand &Op, SILInstruction *InsertBefore,
|
|
DominanceInfo *DomTree);
|
|
|
|
} // end namespace swift
|
|
|
|
#endif
|