Files
swift-mirror/include/swift/Subsystems.h
Slava Pestov 0b320a6d5b Sema: Implement DefaultWitnessChecker
Now that WitnessChecker is separate from ConformanceChecker, implement
a DefaultWitnessChecker subclass which performs default witness
resolution.

This populates the recently-added ProtocolDecl::DefaultWitnesses map.

Unlike ConformanceChecker, the DefaultWitnessChecker looks up the witness
in any protocol extensions of the protocol, matching the context archetypes
of the requirement against the witness.

For now, we infer default witnesses for all protocols, but don't do
anything with that information. An upcoming SILGen patch will start to
emit thunks and add tests.
2016-03-03 06:59:55 -08:00

288 lines
11 KiB
C++

//===--- Subsystems.h - Swift Compiler Subsystem Entrypoints ----*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file declares the main entrypoints to the various subsystems.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_SUBSYSTEMS_H
#define SWIFT_SUBSYSTEMS_H
#include "swift/Basic/LLVM.h"
#include "swift/Basic/OptionSet.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringRef.h"
#include <memory>
namespace llvm {
class MemoryBuffer;
class Module;
class TargetOptions;
class TargetMachine;
}
namespace swift {
class ArchetypeBuilder;
class ASTContext;
class CodeCompletionCallbacksFactory;
class Decl;
class DeclContext;
class DelayedParsingCallbacks;
class DiagnosticConsumer;
class DiagnosticEngine;
class FileUnit;
class GenericParamList;
class GenericSignature;
class IRGenOptions;
class LangOptions;
class ModuleDecl;
class Parser;
class PersistentParserState;
class SerializationOptions;
class SILOptions;
class SILModule;
class SILParserTUState;
class SourceFile;
class SourceManager;
class Token;
class TopLevelContext;
struct TypeLoc;
/// SILParserState - This is a context object used to optionally maintain SIL
/// parsing context for the parser.
class SILParserState {
public:
SILModule *M;
SILParserTUState *S;
explicit SILParserState(SILModule *M);
~SILParserState();
};
/// @{
/// \returns true if the declaration should be verified. This can return
/// false to decrease the number of declarations we verify in a single
/// compilation.
bool shouldVerify(const Decl *D, const ASTContext &Context);
/// \brief Check that the source file is well formed, aborting and spewing
/// errors if not.
///
/// "Well-formed" here means following the invariants of the AST, not that the
/// code written by the user makes sense.
void verify(SourceFile &SF);
void verify(Decl *D);
/// @}
/// \brief Parse a single buffer into the given source file.
///
/// If the source file is the main file, stop parsing after the next
/// stmt-brace-item with side-effects.
///
/// \param SF the file within the module being parsed.
///
/// \param BufferID the buffer to parse from.
///
/// \param[out] Done set to \c true if end of the buffer was reached.
///
/// \param SIL if non-null, we're parsing a SIL file.
///
/// \param PersistentState if non-null the same PersistentState object can
/// be used to resume parsing or parse delayed function bodies.
///
/// \param DelayedParseCB if non-null enables delayed parsing for function
/// bodies.
///
/// \return true if the parser found code with side effects.
bool parseIntoSourceFile(SourceFile &SF, unsigned BufferID, bool *Done,
SILParserState *SIL = nullptr,
PersistentParserState *PersistentState = nullptr,
DelayedParsingCallbacks *DelayedParseCB = nullptr);
/// \brief Finish the parsing by going over the nodes that were delayed
/// during the first parsing pass.
void performDelayedParsing(DeclContext *DC,
PersistentParserState &PersistentState,
CodeCompletionCallbacksFactory *Factory);
/// \brief Lex and return a vector of tokens for the given buffer.
std::vector<Token> tokenize(const LangOptions &LangOpts,
const SourceManager &SM, unsigned BufferID,
unsigned Offset = 0, unsigned EndOffset = 0,
bool KeepComments = true,
bool TokenizeInterpolatedString = true,
ArrayRef<Token> SplitTokens = ArrayRef<Token>());
/// Once parsing is complete, this walks the AST to resolve imports, record
/// operators, and do other top-level validation.
///
/// \param StartElem Where to start for incremental name binding in the main
/// source file.
void performNameBinding(SourceFile &SF, unsigned StartElem = 0);
/// Once parsing and name-binding are complete, this optionally transforms the
/// ASTs to add calls to external logging functions.
///
/// \param HighPerformance True if the playground transform should omit
/// instrumentation that has a high runtime performance impact.
void performPlaygroundTransform(SourceFile &SF, bool HighPerformance);
/// Flags used to control type checking.
enum class TypeCheckingFlags : unsigned {
/// Whether to delay checking that benefits from having the entire
/// module parsed, e.g., Objective-C method override checking.
DelayWholeModuleChecking = 1 << 0,
/// If set, dumps wall time taken to check each function body to
/// llvm::errs().
DebugTimeFunctionBodies = 1 << 1,
/// Indicates that the type checker is checking code that will be
/// immediately executed.
ForImmediateMode = 1 << 2
};
/// Once parsing and name-binding are complete, this walks the AST to resolve
/// types and diagnose problems therein.
///
/// \param StartElem Where to start for incremental type-checking in the main
/// source file.
void performTypeChecking(SourceFile &SF, TopLevelContext &TLC,
OptionSet<TypeCheckingFlags> Options,
unsigned StartElem = 0);
/// Once type checking is complete, this walks protocol requirements
/// to resolve default witnesses.
void finishTypeChecking(SourceFile &SF);
/// Now that we have type-checked an entire module, perform any type
/// checking that requires the full module, e.g., Objective-C method
/// override checking.
///
/// Note that clients still perform this checking file-by-file to
/// provide a somewhat defined order in which diagnostics should be
/// emitted.
void performWholeModuleTypeChecking(SourceFile &SF);
/// Incrementally type-check only added external definitions.
void typeCheckExternalDefinitions(SourceFile &SF);
/// \brief Recursively validate the specified type.
///
/// This is used when dealing with partial source files (e.g. SIL parsing,
/// code completion).
///
/// \returns false on success, true on error.
bool performTypeLocChecking(ASTContext &Ctx, TypeLoc &T,
bool isSILType, DeclContext *DC,
bool ProduceDiagnostics = true);
/// Expose TypeChecker's handling of GenericParamList to SIL parsing.
GenericSignature *handleSILGenericParams(ASTContext &Ctx,
GenericParamList *genericParams,
DeclContext *DC);
/// Turn the given module into SIL IR.
///
/// The module must contain source files.
///
/// If \p makeModuleFragile is true, all functions and global variables of
/// the module are marked as fragile. This is used for compiling the stdlib.
/// if \p wholeModuleCompilation is true, the optimizer assumes that the SIL
/// of all files in the module is present in the SILModule.
std::unique_ptr<SILModule>
performSILGeneration(ModuleDecl *M, SILOptions &options,
bool makeModuleFragile = false,
bool wholeModuleCompilation = false);
/// Turn a source file into SIL IR.
///
/// If \p StartElem is provided, the module is assumed to be only part of the
/// SourceFile, and any optimizations should take that into account.
/// If \p makeModuleFragile is true, all functions and global variables of
/// the module are marked as fragile. This is used for compiling the stdlib.
std::unique_ptr<SILModule>
performSILGeneration(FileUnit &SF, SILOptions &options,
Optional<unsigned> StartElem = None,
bool makeModuleFragile = false);
using ModuleOrSourceFile = PointerUnion<ModuleDecl *, SourceFile *>;
/// Serializes a module or single source file to the given output file.
void serialize(ModuleOrSourceFile DC, const SerializationOptions &options,
const SILModule *M = nullptr);
/// Get the CPU and subtarget feature options to use when emitting code.
std::tuple<llvm::TargetOptions, std::string, std::vector<std::string>>
getIRTargetOptions(IRGenOptions &Opts, ASTContext &Ctx);
/// Turn the given Swift module into either LLVM IR or native code
/// and return the generated LLVM IR module.
std::unique_ptr<llvm::Module> performIRGeneration(IRGenOptions &Opts,
ModuleDecl *M,
SILModule *SILMod,
StringRef ModuleName,
llvm::LLVMContext &LLVMContext);
/// Turn the given Swift module into either LLVM IR or native code
/// and return the generated LLVM IR module.
std::unique_ptr<llvm::Module> performIRGeneration(IRGenOptions &Opts,
SourceFile &SF,
SILModule *SILMod,
StringRef ModuleName,
llvm::LLVMContext &LLVMContext,
unsigned StartElem = 0);
/// Given an already created LLVM module, construct a pass pipeline and run
/// the Swift LLVM Pipeline upon it. This does not cause the module to be
/// printed. Only optimized.
void performLLVMOptimizations(IRGenOptions &Opts, llvm::Module *Module,
llvm::TargetMachine *TargetMachine);
/// Wrap a serialized module inside a swift ast section in an object file.
void createSwiftModuleObjectFile(SILModule &SILMod, StringRef Buffer,
StringRef OutputPath);
/// Turn the given LLVM module into native code and return true on error.
bool performLLVM(IRGenOptions &Opts, ASTContext &Ctx,
llvm::Module *Module);
/// A convenience wrapper for Parser functionality.
class ParserUnit {
public:
ParserUnit(SourceManager &SM, unsigned BufferID,
const LangOptions &LangOpts, StringRef ModuleName);
ParserUnit(SourceManager &SM, unsigned BufferID);
ParserUnit(SourceManager &SM, unsigned BufferID,
unsigned Offset, unsigned EndOffset);
~ParserUnit();
Parser &getParser();
SourceFile &getSourceFile();
DiagnosticEngine &getDiagnosticEngine();
const LangOptions &getLangOptions() const;
private:
struct Implementation;
Implementation &Impl;
};
} // end namespace swift
#endif