mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
The overhead of uniquing the locations in a Densemap isn't worth any of the potential memory savings: While this adds an extra pointer and unsigned to each SILInstruction, any extra memory is completely lost in the noise (measured on a release -emit-ir build of the x86_64 stdlib). This is not too surpising as the ratio between SILInstructions and unique SILLocations is not very high and the DenseMap also needs space. <rdar://problem/22706994>
298 lines
12 KiB
C++
298 lines
12 KiB
C++
//===--- SILBuilder.cpp - Class for creating SIL Constructs ---------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "swift/SIL/SILBuilder.h"
|
|
using namespace swift;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SILBuilder Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
TupleInst *SILBuilder::createTuple(SILLocation loc, ArrayRef<SILValue> elts) {
|
|
// Derive the tuple type from the elements.
|
|
SmallVector<TupleTypeElt, 4> eltTypes;
|
|
for (auto elt : elts)
|
|
eltTypes.push_back(elt->getType().getSwiftRValueType());
|
|
auto tupleType = SILType::getPrimitiveObjectType(
|
|
CanType(TupleType::get(eltTypes, F.getASTContext())));
|
|
|
|
return createTuple(loc, tupleType, elts);
|
|
}
|
|
|
|
SILType SILBuilder::getPartialApplyResultType(SILType origTy, unsigned argCount,
|
|
SILModule &M,
|
|
ArrayRef<Substitution> subs) {
|
|
CanSILFunctionType FTI = origTy.castTo<SILFunctionType>();
|
|
if (!subs.empty())
|
|
FTI = FTI->substGenericArgs(M, M.getSwiftModule(), subs);
|
|
|
|
assert(!FTI->isPolymorphic()
|
|
&& "must provide substitutions for generic partial_apply");
|
|
auto params = FTI->getParameters();
|
|
auto newParams = params.slice(0, params.size() - argCount);
|
|
|
|
auto extInfo = SILFunctionType::ExtInfo(
|
|
SILFunctionType::Representation::Thick,
|
|
/*noreturn*/ FTI->isNoReturn());
|
|
|
|
auto appliedFnType = SILFunctionType::get(nullptr, extInfo,
|
|
ParameterConvention::Direct_Owned,
|
|
newParams,
|
|
FTI->getAllResults(),
|
|
FTI->getOptionalErrorResult(),
|
|
M.getASTContext());
|
|
return SILType::getPrimitiveObjectType(appliedFnType);
|
|
}
|
|
|
|
// If legal, create an unchecked_ref_cast from the given operand and result
|
|
// type, otherwise return null.
|
|
SILInstruction *SILBuilder::tryCreateUncheckedRefCast(SILLocation Loc,
|
|
SILValue Op,
|
|
SILType ResultTy) {
|
|
auto &M = F.getModule();
|
|
if (!SILType::canRefCast(Op->getType(), ResultTy, M))
|
|
return nullptr;
|
|
|
|
return insert(
|
|
new (M) UncheckedRefCastInst(getSILDebugLocation(Loc), Op, ResultTy));
|
|
}
|
|
|
|
// Create the appropriate cast instruction based on result type.
|
|
SILInstruction *SILBuilder::createUncheckedBitCast(SILLocation Loc,
|
|
SILValue Op,
|
|
SILType Ty) {
|
|
auto &M = F.getModule();
|
|
if (Ty.isTrivial(M))
|
|
return insert(
|
|
new (M) UncheckedTrivialBitCastInst(getSILDebugLocation(Loc), Op, Ty));
|
|
|
|
if (auto refCast = tryCreateUncheckedRefCast(Loc, Op, Ty))
|
|
return refCast;
|
|
|
|
// The destination type is nontrivial, and may be smaller than the source
|
|
// type, so RC identity cannot be assumed.
|
|
return insert(
|
|
new (M) UncheckedBitwiseCastInst(getSILDebugLocation(Loc), Op, Ty));
|
|
}
|
|
|
|
BranchInst *SILBuilder::createBranch(SILLocation Loc,
|
|
SILBasicBlock *TargetBlock,
|
|
OperandValueArrayRef Args) {
|
|
SmallVector<SILValue, 6> ArgsCopy;
|
|
ArgsCopy.reserve(Args.size());
|
|
for (auto I = Args.begin(), E = Args.end(); I != E; ++I)
|
|
ArgsCopy.push_back(*I);
|
|
return createBranch(Loc, TargetBlock, ArgsCopy);
|
|
}
|
|
|
|
/// \brief Branch to the given block if there's an active insertion point,
|
|
/// then move the insertion point to the end of that block.
|
|
void SILBuilder::emitBlock(SILBasicBlock *BB, SILLocation BranchLoc) {
|
|
if (!hasValidInsertionPoint()) {
|
|
return emitBlock(BB);
|
|
}
|
|
|
|
// Fall though from the currently active block into the given block.
|
|
assert(BB->bbarg_empty() && "cannot fall through to bb with args");
|
|
|
|
// This is a fall through into BB, emit the fall through branch.
|
|
createBranch(BranchLoc, BB);
|
|
|
|
// Start inserting into that block.
|
|
setInsertionPoint(BB);
|
|
}
|
|
|
|
/// splitBlockForFallthrough - Prepare for the insertion of a terminator. If
|
|
/// the builder's insertion point is at the end of the current block (as when
|
|
/// SILGen is creating the initial code for a function), just create and
|
|
/// return a new basic block that will be later used for the continue point.
|
|
///
|
|
/// If the insertion point is valid (i.e., pointing to an existing
|
|
/// instruction) then split the block at that instruction and return the
|
|
/// continuation block.
|
|
SILBasicBlock *SILBuilder::splitBlockForFallthrough() {
|
|
// If we are concatenating, just create and return a new block.
|
|
if (insertingAtEndOfBlock()) {
|
|
return new (F.getModule()) SILBasicBlock(&F, BB);
|
|
}
|
|
|
|
// Otherwise we need to split the current block at the insertion point.
|
|
auto *NewBB = BB->splitBasicBlock(InsertPt);
|
|
InsertPt = BB->end();
|
|
return NewBB;
|
|
}
|
|
|
|
PointerUnion<CopyAddrInst *, DestroyAddrInst *>
|
|
SILBuilder::emitDestroyAddr(SILLocation Loc, SILValue Operand) {
|
|
// Check to see if the instruction immediately before the insertion point is a
|
|
// copy_addr from the specified operand. If so, we can fold this into the
|
|
// copy_addr as a take.
|
|
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
|
|
while (I != BBStart) {
|
|
auto *Inst = &*--I;
|
|
|
|
if (auto CA = dyn_cast<CopyAddrInst>(Inst)) {
|
|
if (CA->getSrc() == Operand && !CA->isTakeOfSrc()) {
|
|
CA->setIsTakeOfSrc(IsTake);
|
|
return CA;
|
|
}
|
|
}
|
|
|
|
// destroy_addrs commonly exist in a block of dealloc_stack's, which don't
|
|
// affect take-ability.
|
|
if (isa<DeallocStackInst>(Inst))
|
|
continue;
|
|
|
|
// This code doesn't try to prove tricky validity constraints about whether
|
|
// it is safe to push the destroy_addr past interesting instructions.
|
|
if (Inst->mayHaveSideEffects())
|
|
break;
|
|
}
|
|
|
|
// If we didn't find a copy_addr to fold this into, emit the destroy_addr.
|
|
return createDestroyAddr(Loc, Operand);
|
|
}
|
|
|
|
static bool couldReduceStrongRefcount(SILInstruction *Inst) {
|
|
// Simple memory accesses cannot reduce refcounts.
|
|
if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst) ||
|
|
isa<RetainValueInst>(Inst) || isa<UnownedRetainInst>(Inst) ||
|
|
isa<UnownedReleaseInst>(Inst) || isa<StrongRetainUnownedInst>(Inst) ||
|
|
isa<StoreWeakInst>(Inst) || isa<StrongRetainInst>(Inst) ||
|
|
isa<AllocStackInst>(Inst) || isa<DeallocStackInst>(Inst))
|
|
return false;
|
|
|
|
// Assign and copyaddr of trivial types cannot drop refcounts, and 'inits'
|
|
// never can either. Nontrivial ones can though, because the overwritten
|
|
// value drops a retain. We would have to do more alias analysis to be able
|
|
// to safely ignore one of those.
|
|
if (auto AI = dyn_cast<AssignInst>(Inst)) {
|
|
auto StoredType = AI->getOperand(0)->getType();
|
|
if (StoredType.isTrivial(Inst->getModule()) ||
|
|
StoredType.is<ReferenceStorageType>())
|
|
return false;
|
|
}
|
|
|
|
if (auto *CAI = dyn_cast<CopyAddrInst>(Inst)) {
|
|
// Initializations can only increase refcounts.
|
|
if (CAI->isInitializationOfDest())
|
|
return false;
|
|
|
|
SILType StoredType = CAI->getOperand(0)->getType().getObjectType();
|
|
if (StoredType.isTrivial(Inst->getModule()) ||
|
|
StoredType.is<ReferenceStorageType>())
|
|
return false;
|
|
}
|
|
|
|
// This code doesn't try to prove tricky validity constraints about whether
|
|
// it is safe to push the release past interesting instructions.
|
|
return Inst->mayHaveSideEffects();
|
|
}
|
|
|
|
|
|
/// Perform a strong_release instruction at the current location, attempting
|
|
/// to fold it locally into nearby retain instructions or emitting an explicit
|
|
/// strong release if necessary. If this inserts a new instruction, it
|
|
/// returns it, otherwise it returns null.
|
|
PointerUnion<StrongRetainInst *, StrongReleaseInst *>
|
|
SILBuilder::emitStrongRelease(SILLocation Loc, SILValue Operand) {
|
|
// Release on a functionref is a noop.
|
|
if (isa<FunctionRefInst>(Operand)) {
|
|
return static_cast<StrongReleaseInst *>(nullptr);
|
|
}
|
|
|
|
// Check to see if the instruction immediately before the insertion point is a
|
|
// strong_retain of the specified operand. If so, we can zap the pair.
|
|
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
|
|
while (I != BBStart) {
|
|
auto *Inst = &*--I;
|
|
|
|
if (auto *SRA = dyn_cast<StrongRetainInst>(Inst)) {
|
|
if (SRA->getOperand() == Operand)
|
|
return SRA;
|
|
// Skip past unrelated retains.
|
|
continue;
|
|
}
|
|
|
|
// Scan past simple instructions that cannot reduce strong refcounts.
|
|
if (couldReduceStrongRefcount(Inst))
|
|
break;
|
|
}
|
|
|
|
// If we didn't find a retain to fold this into, emit the release.
|
|
return createStrongRelease(Loc, Operand);
|
|
}
|
|
|
|
/// Emit a release_value instruction at the current location, attempting to
|
|
/// fold it locally into another nearby retain_value instruction. This
|
|
/// returns the new instruction if it inserts one, otherwise it returns null.
|
|
PointerUnion<RetainValueInst *, ReleaseValueInst *>
|
|
SILBuilder::emitReleaseValue(SILLocation Loc, SILValue Operand) {
|
|
// Check to see if the instruction immediately before the insertion point is a
|
|
// retain_value of the specified operand. If so, we can zap the pair.
|
|
auto I = getInsertionPoint(), BBStart = getInsertionBB()->begin();
|
|
while (I != BBStart) {
|
|
auto *Inst = &*--I;
|
|
|
|
if (auto *SRA = dyn_cast<RetainValueInst>(Inst)) {
|
|
if (SRA->getOperand() == Operand)
|
|
return SRA;
|
|
// Skip past unrelated retains.
|
|
continue;
|
|
}
|
|
|
|
// Scan past simple instructions that cannot reduce refcounts.
|
|
if (couldReduceStrongRefcount(Inst))
|
|
break;
|
|
}
|
|
|
|
// If we didn't find a retain to fold this into, emit the release.
|
|
return createReleaseValue(Loc, Operand);
|
|
}
|
|
|
|
|
|
SILValue SILBuilder::emitThickToObjCMetatype(SILLocation Loc, SILValue Op,
|
|
SILType Ty) {
|
|
// If the operand is an otherwise-unused 'metatype' instruction in the
|
|
// same basic block, zap it and create a 'metatype' instruction that
|
|
// directly produces an Objective-C metatype.
|
|
if (auto metatypeInst = dyn_cast<MetatypeInst>(Op)) {
|
|
if (metatypeInst->use_empty() &&
|
|
metatypeInst->getParent() == getInsertionBB()) {
|
|
auto origLoc = metatypeInst->getLoc();
|
|
metatypeInst->removeFromParent();
|
|
return createMetatype(origLoc, Ty);
|
|
}
|
|
}
|
|
|
|
// Just create the thick_to_objc_metatype instruction.
|
|
return createThickToObjCMetatype(Loc, Op, Ty);
|
|
}
|
|
|
|
SILValue SILBuilder::emitObjCToThickMetatype(SILLocation Loc, SILValue Op,
|
|
SILType Ty) {
|
|
// If the operand is an otherwise-unused 'metatype' instruction in the
|
|
// same basic block, zap it and create a 'metatype' instruction that
|
|
// directly produces a thick metatype.
|
|
if (auto metatypeInst = dyn_cast<MetatypeInst>(Op)) {
|
|
if (metatypeInst->use_empty() &&
|
|
metatypeInst->getParent() == getInsertionBB()) {
|
|
auto origLoc = metatypeInst->getLoc();
|
|
metatypeInst->removeFromParent();
|
|
return createMetatype(origLoc, Ty);
|
|
}
|
|
}
|
|
|
|
// Just create the objc_to_thick_metatype instruction.
|
|
return createObjCToThickMetatype(Loc, Op, Ty);
|
|
}
|