mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This is used when materializing an LValue to share state between the read and write phases of the access, replacing the 'temporary' and 'extraInfo' parameters that were previously being passed around. It adds two new fields, origSelfType and genericSig, which will be used in an upcoming patch to actually apply the callback with the current generic signature. This will finally allow us to make use of materializeForSet implementations in protocol extensions, which is a prerequisite for enabling resilient default implementations of property and subscript requirements.
521 lines
19 KiB
C++
521 lines
19 KiB
C++
//===--- LValue.h - Logical LValue Representation ---------------*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A storage structure for keeping track of logical lvalues during SILGen.
|
|
//
|
|
// In general, only the routines in SILGenLValue.cpp should actually be
|
|
// accessing LValues and their components. Everything else should just
|
|
// pass them around opaquely.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SWIFT_LOWERING_LVALUE_H
|
|
#define SWIFT_LOWERING_LVALUE_H
|
|
|
|
#include "SILGenFunction.h"
|
|
|
|
namespace swift {
|
|
namespace Lowering {
|
|
class SILGenFunction;
|
|
class ManagedValue;
|
|
|
|
class PhysicalPathComponent;
|
|
class LogicalPathComponent;
|
|
class TranslationPathComponent;
|
|
|
|
/// Information about the type of an l-value.
|
|
struct LValueTypeData {
|
|
/// The abstraction pattern of the l-value.
|
|
///
|
|
/// The type-of-rvalue should always be the substituted formal type
|
|
/// lowered under this abstraction pattern.
|
|
AbstractionPattern OrigFormalType = AbstractionPattern::getInvalid();
|
|
|
|
/// The substituted formal object type of the l-value.
|
|
///
|
|
/// Tn the most common case, this is the type of an l-value
|
|
/// expression as recorded in the AST, only with the
|
|
/// LValueType/InOutType stripped off.
|
|
CanType SubstFormalType;
|
|
|
|
/// The lowered type of value that should be stored in the l-value.
|
|
/// Always an object type.
|
|
///
|
|
/// On physical path components, projection yields an address of
|
|
/// this type. On logical path components, materialize yields an
|
|
/// address of this type, set expects a value of this type, and
|
|
/// get yields a value of this type.
|
|
SILType TypeOfRValue;
|
|
|
|
LValueTypeData() = default;
|
|
LValueTypeData(AbstractionPattern origFormalType, CanType substFormalType,
|
|
SILType typeOfRValue)
|
|
: OrigFormalType(origFormalType), SubstFormalType(substFormalType),
|
|
TypeOfRValue(typeOfRValue) {
|
|
assert(typeOfRValue.isObject());
|
|
assert(substFormalType->isMaterializable());
|
|
}
|
|
};
|
|
|
|
/// An l-value path component represents a chunk of the access path to
|
|
/// an object. Path components may be either "physical" or "logical".
|
|
/// A physical path involves elementary address manipulations; these
|
|
/// address manipulations may be in some way dynamic, but they are
|
|
/// ultimately just pointer arithmetic. A logical path requires
|
|
/// getter/setter logic.
|
|
///
|
|
/// This divide between physical/logical is closely related to the
|
|
/// fragile/resilient split, with two primary differences:
|
|
/// - Any sort of implementation can be fragile. For example, a
|
|
/// computed variable can still be fragile, meaning that it is known
|
|
/// to be implemented with a getter/setter. The known
|
|
/// implementation must be a direct offset in order to qualify as
|
|
/// physical.
|
|
/// - A path component's implementation can be resilient and yet
|
|
/// still qualify for physical access if we are in a privileged
|
|
/// component.
|
|
class PathComponent {
|
|
LValueTypeData TypeData;
|
|
|
|
friend class LValue;
|
|
unsigned AllocatedSize;
|
|
public:
|
|
enum KindTy {
|
|
// Physical lvalue kinds
|
|
RefElementKind, // ref_element_addr
|
|
TupleElementKind, // tuple_element_addr
|
|
StructElementKind, // struct_element_addr
|
|
OptionalObjectKind, // optional projection
|
|
OpenedExistentialKind, // opened opaque existential
|
|
AddressorKind, // var/subscript addressor
|
|
ValueKind, // random base pointer as an lvalue
|
|
|
|
// Logical LValue kinds
|
|
GetterSetterKind, // property or subscript getter/setter
|
|
OwnershipKind, // weak pointer remapping
|
|
AutoreleasingWritebackKind, // autorelease pointer on set
|
|
WritebackPseudoKind, // a fake component to customize writeback
|
|
// Translation LValue kinds (a subtype of logical)
|
|
OrigToSubstKind, // generic type substitution
|
|
SubstToOrigKind, // generic type substitution
|
|
|
|
FirstLogicalKind = GetterSetterKind,
|
|
FirstTranslationKind = OrigToSubstKind,
|
|
};
|
|
private:
|
|
const KindTy Kind : 8;
|
|
|
|
// This anchor method serves three purposes: it aligns the class to
|
|
// a pointer boundary, it makes the class a primary base so that
|
|
// subclasses will be at offset zero, and it anchors the v-table
|
|
// to a specific file.
|
|
virtual void _anchor();
|
|
|
|
PathComponent(const PathComponent &) = delete;
|
|
PathComponent &operator=(const PathComponent &) = delete;
|
|
|
|
protected:
|
|
PathComponent(LValueTypeData typeData, KindTy Kind)
|
|
: TypeData(typeData), Kind(Kind) {}
|
|
public:
|
|
virtual ~PathComponent() {}
|
|
|
|
/// Returns sizeof(the final type), plus any extra storage required.
|
|
size_t allocated_size() const { return AllocatedSize; }
|
|
|
|
/// Is this component physical or logical? If physical, this will
|
|
/// be a subclass of PhysicalPathComponent. If logical, this will
|
|
/// be a subclass of LogicalPathComponent.
|
|
bool isPhysical() const { return Kind < FirstLogicalKind; }
|
|
bool isLogical() const { return Kind >= FirstLogicalKind; }
|
|
bool isTranslation() const { return Kind >= FirstTranslationKind; }
|
|
|
|
// These are implemented inline after the respective class declarations.
|
|
|
|
PhysicalPathComponent &asPhysical();
|
|
const PhysicalPathComponent &asPhysical() const;
|
|
|
|
LogicalPathComponent &asLogical();
|
|
const LogicalPathComponent &asLogical() const;
|
|
|
|
TranslationPathComponent &asTranslation();
|
|
const TranslationPathComponent &asTranslation() const;
|
|
|
|
/// Return the appropriate access kind to use when producing the
|
|
/// base value.
|
|
virtual AccessKind getBaseAccessKind(SILGenFunction &SGF,
|
|
AccessKind accessKind) const = 0;
|
|
|
|
/// Returns the logical type-as-rvalue of the value addressed by the
|
|
/// component. This is always an object type, never an address.
|
|
SILType getTypeOfRValue() const { return TypeData.TypeOfRValue; }
|
|
AbstractionPattern getOrigFormalType() const {
|
|
return TypeData.OrigFormalType;
|
|
}
|
|
CanType getSubstFormalType() const { return TypeData.SubstFormalType; }
|
|
|
|
const LValueTypeData &getTypeData() const { return TypeData; }
|
|
|
|
KindTy getKind() const { return Kind; }
|
|
|
|
void dump() const;
|
|
virtual void print(raw_ostream &OS) const = 0;
|
|
};
|
|
|
|
/// An abstract class for "physical" path components, i.e. path
|
|
/// components that can be accessed as address manipulations. See the
|
|
/// comment for PathComponent for more information.
|
|
class PhysicalPathComponent : public PathComponent {
|
|
virtual void _anchor() override;
|
|
|
|
protected:
|
|
PhysicalPathComponent(LValueTypeData typeData, KindTy Kind)
|
|
: PathComponent(typeData, Kind) {
|
|
assert(isPhysical() && "PhysicalPathComponent Kind isn't physical");
|
|
}
|
|
|
|
public:
|
|
/// Derive the address of this component given the address of the base.
|
|
///
|
|
/// \param base - always an address, but possibly an r-value
|
|
virtual ManagedValue offset(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue base,
|
|
AccessKind accessKind) && = 0;
|
|
|
|
AccessKind getBaseAccessKind(SILGenFunction &gen,
|
|
AccessKind accessKind) const override {
|
|
return accessKind;
|
|
}
|
|
};
|
|
|
|
inline PhysicalPathComponent &PathComponent::asPhysical() {
|
|
assert(isPhysical());
|
|
return static_cast<PhysicalPathComponent&>(*this);
|
|
}
|
|
inline const PhysicalPathComponent &PathComponent::asPhysical() const {
|
|
assert(isPhysical());
|
|
return static_cast<const PhysicalPathComponent&>(*this);
|
|
}
|
|
|
|
/// An abstract class for "logical" path components, i.e. path
|
|
/// components that require getter/setter methods to access. See the
|
|
/// comment for PathComponent for more information.
|
|
class LogicalPathComponent : public PathComponent {
|
|
virtual void _anchor();
|
|
|
|
protected:
|
|
LogicalPathComponent(LValueTypeData typeData, KindTy Kind)
|
|
: PathComponent(typeData, Kind) {
|
|
assert(isLogical() && "LogicalPathComponent Kind isn't logical");
|
|
}
|
|
|
|
public:
|
|
/// Clone the path component onto the heap.
|
|
virtual std::unique_ptr<LogicalPathComponent>
|
|
clone(SILGenFunction &gen, SILLocation l) const = 0;
|
|
|
|
/// Set the property.
|
|
///
|
|
/// \param base - always an address, but possibly an r-value
|
|
virtual void set(SILGenFunction &gen, SILLocation loc,
|
|
RValue &&value, ManagedValue base) && = 0;
|
|
|
|
/// Get the property.
|
|
///
|
|
/// \param base - always an address, but possibly an r-value
|
|
virtual RValue get(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue base, SGFContext c) && = 0;
|
|
|
|
/// Compare 'this' lvalue and the 'rhs' lvalue (which is guaranteed to have
|
|
/// the same dynamic PathComponent type as the receiver) to see if they are
|
|
/// identical. If so, there is a conflicting writeback happening, so emit a
|
|
/// diagnostic.
|
|
virtual void diagnoseWritebackConflict(LogicalPathComponent *rhs,
|
|
SILLocation loc1, SILLocation loc2,
|
|
SILGenFunction &gen) = 0;
|
|
|
|
|
|
/// Materialize the storage into memory. If the access is for
|
|
/// mutation, ensure that modifications to the memory will
|
|
/// eventually be reflected in the original storage.
|
|
///
|
|
/// \param base - always an address, but possibly an r-value
|
|
virtual ManagedValue getMaterialized(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue base,
|
|
AccessKind accessKind) &&;
|
|
|
|
/// Perform a writeback on the property.
|
|
///
|
|
/// \param base - always an address, but possibly an r-value
|
|
virtual void writeback(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue base,
|
|
MaterializedLValue materialized,
|
|
bool isFinal);
|
|
};
|
|
|
|
inline LogicalPathComponent &PathComponent::asLogical() {
|
|
assert(isLogical());
|
|
return static_cast<LogicalPathComponent&>(*this);
|
|
}
|
|
inline const LogicalPathComponent &PathComponent::asLogical() const {
|
|
assert(isLogical());
|
|
return static_cast<const LogicalPathComponent&>(*this);
|
|
}
|
|
|
|
/// An abstract class for components which translate values in some way.
|
|
class TranslationPathComponent : public LogicalPathComponent {
|
|
protected:
|
|
TranslationPathComponent(LValueTypeData typeData, KindTy kind)
|
|
: LogicalPathComponent(typeData, kind) {
|
|
assert(isTranslation() &&
|
|
"TranslationPathComponent kind isn't value translation");
|
|
}
|
|
|
|
public:
|
|
AccessKind getBaseAccessKind(SILGenFunction &gen,
|
|
AccessKind kind) const override {
|
|
// Always use the same access kind for the base.
|
|
return kind;
|
|
}
|
|
|
|
void diagnoseWritebackConflict(LogicalPathComponent *RHS,
|
|
SILLocation loc1, SILLocation loc2,
|
|
SILGenFunction &gen) override {
|
|
// no useful writeback diagnostics at this point
|
|
}
|
|
|
|
RValue get(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue base, SGFContext c) && override;
|
|
|
|
void set(SILGenFunction &gen, SILLocation loc,
|
|
RValue &&value, ManagedValue base) && override;
|
|
|
|
/// Transform from the original pattern.
|
|
virtual RValue translate(SILGenFunction &gen, SILLocation loc,
|
|
RValue &&value,
|
|
SGFContext ctx = SGFContext()) && = 0;
|
|
|
|
/// Transform into the original pattern.
|
|
virtual RValue untranslate(SILGenFunction &gen, SILLocation loc,
|
|
RValue &&value,
|
|
SGFContext ctx = SGFContext()) && = 0;
|
|
|
|
};
|
|
|
|
inline TranslationPathComponent &PathComponent::asTranslation() {
|
|
assert(isTranslation());
|
|
return static_cast<TranslationPathComponent&>(*this);
|
|
}
|
|
inline const TranslationPathComponent &PathComponent::asTranslation() const {
|
|
assert(isTranslation());
|
|
return static_cast<const TranslationPathComponent&>(*this);
|
|
}
|
|
|
|
/// An lvalue represents a reference to storage holding a value
|
|
/// of a type, as opposed to an rvalue, which is an actual value
|
|
/// of the type.
|
|
class LValue {
|
|
std::vector<std::unique_ptr<PathComponent>> Path;
|
|
|
|
public:
|
|
LValue() = default;
|
|
LValue(const LValue &other) = delete;
|
|
LValue(LValue &&other) = default;
|
|
|
|
LValue &operator=(const LValue &) = delete;
|
|
LValue &operator=(LValue &&) = default;
|
|
|
|
static LValue forValue(ManagedValue value,
|
|
CanType substFormalType);
|
|
|
|
static LValue forAddress(ManagedValue address,
|
|
AbstractionPattern origFormalType,
|
|
CanType substFormalType);
|
|
|
|
/// Form a class-reference l-value. Only suitable as the base of
|
|
/// very specific member components.
|
|
static LValue forClassReference(ManagedValue reference);
|
|
|
|
bool isValid() const { return !Path.empty(); }
|
|
|
|
/// Is this lvalue purely physical?
|
|
bool isPhysical() const {
|
|
assert(isValid());
|
|
for (auto &component : Path)
|
|
if (!component->isPhysical())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Is the lvalue's final component physical?
|
|
bool isLastComponentPhysical() const {
|
|
assert(isValid());
|
|
return Path.back()->isPhysical();
|
|
}
|
|
|
|
/// Is the lvalue's final component a translation component?
|
|
bool isLastComponentTranslation() const {
|
|
assert(isValid());
|
|
return Path.back()->isTranslation();
|
|
}
|
|
|
|
/// Given that the last component is a translation component,
|
|
/// return it.
|
|
TranslationPathComponent &getLastTranslationComponent() & {
|
|
assert(isLastComponentTranslation());
|
|
return Path.back()->asTranslation();
|
|
}
|
|
|
|
/// Given that the last component is a translation component,
|
|
/// peel it off.
|
|
void dropLastTranslationComponent() & {
|
|
assert(isLastComponentTranslation());
|
|
Path.pop_back();
|
|
}
|
|
|
|
/// Add a new component at the end of the access path of this lvalue.
|
|
template <class T, class... As>
|
|
void add(As &&... args) {
|
|
Path.emplace_back(new T(std::forward<As>(args)...));
|
|
}
|
|
|
|
/// Add a member component to the access path of this lvalue.
|
|
void addMemberComponent(SILGenFunction &gen, SILLocation loc,
|
|
AbstractStorageDecl *storage,
|
|
ArrayRef<Substitution> subs,
|
|
bool isSuper,
|
|
AccessKind accessKind,
|
|
AccessSemantics accessSemantics,
|
|
AccessStrategy accessStrategy,
|
|
CanType formalRValueType,
|
|
RValue &&indices);
|
|
|
|
void addMemberVarComponent(SILGenFunction &gen, SILLocation loc,
|
|
VarDecl *var,
|
|
ArrayRef<Substitution> subs,
|
|
bool isSuper,
|
|
AccessKind accessKind,
|
|
AccessSemantics accessSemantics,
|
|
AccessStrategy accessStrategy,
|
|
CanType formalRValueType);
|
|
|
|
void addMemberSubscriptComponent(SILGenFunction &gen, SILLocation loc,
|
|
SubscriptDecl *subscript,
|
|
ArrayRef<Substitution> subs,
|
|
bool isSuper,
|
|
AccessKind accessKind,
|
|
AccessSemantics accessSemantics,
|
|
AccessStrategy accessStrategy,
|
|
CanType formalRValueType,
|
|
RValue &&indices,
|
|
Expr *indexExprForDiagnostics = nullptr);
|
|
|
|
/// Add a subst-to-orig reabstraction component. That is, given
|
|
/// that this l-value trafficks in values following the substituted
|
|
/// abstraction pattern, make an l-value trafficking in values
|
|
/// following the original abstraction pattern.
|
|
void addSubstToOrigComponent(AbstractionPattern origType,
|
|
SILType loweredResultType);
|
|
|
|
/// Add an orig-to-subst reabstraction component. That is, given
|
|
/// that this l-value trafficks in values following the original
|
|
/// abstraction pattern, make an l-value trafficking in values
|
|
/// following the substituted abstraction pattern.
|
|
void addOrigToSubstComponent(SILType loweredResultType);
|
|
|
|
typedef std::vector<std::unique_ptr<PathComponent>>::iterator iterator;
|
|
typedef std::vector<std::unique_ptr<PathComponent>>::const_iterator
|
|
const_iterator;
|
|
|
|
iterator begin() { return Path.begin(); }
|
|
iterator end() { return Path.end(); }
|
|
const_iterator begin() const { return Path.begin(); }
|
|
const_iterator end() const { return Path.end(); }
|
|
|
|
const LValueTypeData &getTypeData() const {
|
|
return Path.back()->getTypeData();
|
|
}
|
|
|
|
/// Returns the type-of-rvalue of the logical object referenced by
|
|
/// this l-value. Note that this may differ significantly from the
|
|
/// type of l-value.
|
|
SILType getTypeOfRValue() const { return getTypeData().TypeOfRValue; }
|
|
CanType getSubstFormalType() const { return getTypeData().SubstFormalType; }
|
|
AbstractionPattern getOrigFormalType() const {
|
|
return getTypeData().OrigFormalType;
|
|
}
|
|
|
|
void dump() const;
|
|
void print(raw_ostream &OS) const;
|
|
};
|
|
|
|
/// RAII object to enable writebacks for logical lvalues evaluated within the
|
|
/// scope, which will be applied when the object goes out of scope.
|
|
///
|
|
/// A writeback scope is used to limit the extent of a formal access
|
|
/// to an l-value, under the rules specified in the accessors
|
|
/// proposal. It should be entered at a point where it will conclude
|
|
/// at the appropriate instant.
|
|
///
|
|
/// For example, the rules specify that a formal access for an inout
|
|
/// argument begins immediately before the call and ends immediately
|
|
/// after it. This can be implemented by pushing a WritebackScope
|
|
/// before the formal evaluation of the arguments and popping it
|
|
/// immediately after the call. (It must be pushed before the formal
|
|
/// evaluation because, in some cases, the formal evaluation of a base
|
|
/// l-value will immediately begin a formal access that must end at
|
|
/// the same time as that of its projected subobject l-value.)
|
|
class WritebackScope {
|
|
SILGenFunction *gen;
|
|
bool wasInWritebackScope;
|
|
size_t savedDepth;
|
|
void popImpl();
|
|
public:
|
|
WritebackScope(SILGenFunction &gen);
|
|
~WritebackScope() {
|
|
if (gen) {
|
|
popImpl();
|
|
}
|
|
}
|
|
|
|
bool isPopped() const {
|
|
return (gen == nullptr);
|
|
}
|
|
|
|
void pop() {
|
|
assert(!isPopped() && "popping an already-popped writeback scope!");
|
|
popImpl();
|
|
gen = nullptr;
|
|
}
|
|
|
|
WritebackScope(const WritebackScope &) = delete;
|
|
WritebackScope &operator=(const WritebackScope &) = delete;
|
|
|
|
WritebackScope(WritebackScope &&o);
|
|
WritebackScope &operator=(WritebackScope &&o);
|
|
};
|
|
|
|
/// RAII object used to enter an inout conversion scope. Writeback scopes formed
|
|
/// during the inout conversion scope will be no-ops.
|
|
class InOutConversionScope {
|
|
SILGenFunction &gen;
|
|
public:
|
|
InOutConversionScope(SILGenFunction &gen);
|
|
~InOutConversionScope();
|
|
};
|
|
|
|
} // end namespace Lowering
|
|
} // end namespace swift
|
|
|
|
#endif
|