mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Similarly to how we've always handled parameter types, we now recursively expand tuples in result types and separately determine a result convention for each result. The most important code-generation change here is that indirect results are now returned separately from each other and from any direct results. It is generally far better, when receiving an indirect result, to receive it as an independent result; the caller is much more likely to be able to directly receive the result in the address they want to initialize, rather than having to receive it in temporary memory and then copy parts of it into the target. The most important conceptual change here that clients and producers of SIL must be aware of is the new distinction between a SILFunctionType's *parameters* and its *argument list*. The former is just the formal parameters, derived purely from the parameter types of the original function; indirect results are no longer in this list. The latter includes the indirect result arguments; as always, all the indirect results strictly precede the parameters. Apply instructions and entry block arguments follow the argument list, not the parameter list. A relatively minor change is that there can now be multiple direct results, each with its own result convention. This is a minor change because I've chosen to leave return instructions as taking a single operand and apply instructions as producing a single result; when the type describes multiple results, they are implicitly bound up in a tuple. It might make sense to split these up and allow e.g. return instructions to take a list of operands; however, it's not clear what to do on the caller side, and this would be a major change that can be separated out from this already over-large patch. Unsurprisingly, the most invasive changes here are in SILGen; this requires substantial reworking of both call emission and reabstraction. It also proved important to switch several SILGen operations over to work with RValue instead of ManagedValue, since otherwise they would be forced to spuriously "implode" buffers.
235 lines
8.5 KiB
C++
235 lines
8.5 KiB
C++
//===--- RValue.h - Exploded RValue Representation --------------*- C++ -*-===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// A storage structure for holding a destructured rvalue with an optional
|
|
// cleanup(s).
|
|
// Ownership of the rvalue can be "forwarded" to disable the associated
|
|
// cleanup(s).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SWIFT_LOWERING_RVALUE_H
|
|
#define SWIFT_LOWERING_RVALUE_H
|
|
|
|
#include "ManagedValue.h"
|
|
#include "SILGenFunction.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
|
|
namespace swift {
|
|
namespace Lowering {
|
|
class Initialization;
|
|
|
|
/// An "exploded" SIL rvalue, in which tuple values are recursively
|
|
/// destructured. (In SILGen we don't try to explode structs, because doing so
|
|
/// would require considering resilience, a job we want to delegate to IRGen).
|
|
class RValue {
|
|
std::vector<ManagedValue> values;
|
|
CanType type;
|
|
unsigned elementsToBeAdded;
|
|
|
|
/// Flag value used to mark an rvalue as invalid, because it was
|
|
/// consumed or it was default-initialized.
|
|
enum : unsigned { Used = ~0U };
|
|
|
|
// Don't copy.
|
|
RValue(const RValue &) = delete;
|
|
RValue &operator=(const RValue &) = delete;
|
|
|
|
void makeUsed() {
|
|
elementsToBeAdded = Used;
|
|
values = {};
|
|
}
|
|
|
|
/// Private constructor used by copy().
|
|
RValue(const RValue &copied, SILGenFunction &gen, SILLocation l);
|
|
|
|
public:
|
|
/// Creates an invalid RValue object, in a "used" state.
|
|
RValue() : elementsToBeAdded(Used) {}
|
|
|
|
RValue(RValue &&rv)
|
|
: values(std::move(rv.values)),
|
|
type(rv.type),
|
|
elementsToBeAdded(rv.elementsToBeAdded)
|
|
{
|
|
assert((rv.isComplete() || rv.isUsed())
|
|
&& "moving rvalue that wasn't complete?!");
|
|
rv.elementsToBeAdded = Used;
|
|
}
|
|
RValue &operator=(RValue &&rv) {
|
|
assert(isUsed() && "reassigning an unused rvalue?!");
|
|
|
|
assert((rv.isComplete() || rv.isUsed())
|
|
&& "moving rvalue that wasn't complete?!");
|
|
values = std::move(rv.values);
|
|
type = rv.type;
|
|
elementsToBeAdded = rv.elementsToBeAdded;
|
|
rv.elementsToBeAdded = Used;
|
|
return *this;
|
|
}
|
|
|
|
/// Create an RValue from a single value. If the value is of tuple type, it
|
|
/// will be exploded.
|
|
///
|
|
/// \param expr - the expression which yielded this r-value; its type
|
|
/// will become the substituted formal type of this r-value
|
|
RValue(SILGenFunction &gen, Expr *expr, ManagedValue v);
|
|
|
|
/// Create an RValue from a single value. If the value is of tuple type, it
|
|
/// will be exploded.
|
|
RValue(SILGenFunction &gen, SILLocation l, CanType type, ManagedValue v);
|
|
|
|
/// Construct an RValue from a pre-exploded set of
|
|
/// ManagedValues. Used to implement the extractElement* methods.
|
|
RValue(ArrayRef<ManagedValue> values, CanType type);
|
|
|
|
/// Create an RValue to which values will be subsequently added using
|
|
/// addElement(), with the level of tuple expansion in the input specified
|
|
/// by the abstraction pattern. The RValue will not be complete until all
|
|
/// the elements have been added.
|
|
explicit RValue(AbstractionPattern pattern, CanType type);
|
|
|
|
/// Create an RValue to which values will be subsequently added using
|
|
/// addElement(). The RValue will not be complete until all the elements have
|
|
/// been added.
|
|
explicit RValue(CanType type);
|
|
|
|
/// True if the rvalue has been completely initialized by adding all its
|
|
/// elements.
|
|
bool isComplete() const & { return elementsToBeAdded == 0; }
|
|
|
|
/// True if this rvalue has been used.
|
|
bool isUsed() const & { return elementsToBeAdded == Used; }
|
|
explicit operator bool() const & { return !isUsed(); }
|
|
|
|
/// True if this rvalue was emitted into context.
|
|
bool isInContext() const & { return isUsed(); }
|
|
|
|
/// True if this represents an lvalue.
|
|
bool isLValue() const & {
|
|
return isa<InOutType>(type);
|
|
}
|
|
|
|
/// Add an element to the rvalue. The rvalue must not yet be complete.
|
|
void addElement(RValue &&element) &;
|
|
|
|
/// Add a ManagedValue element to the rvalue, exploding tuples if necessary.
|
|
/// The rvalue must not yet be complete.
|
|
void addElement(SILGenFunction &gen, ManagedValue element,
|
|
CanType formalType, SILLocation l) &;
|
|
|
|
/// Forward an rvalue into a single value, imploding tuples if necessary.
|
|
SILValue forwardAsSingleValue(SILGenFunction &gen, SILLocation l) &&;
|
|
|
|
/// Forward an rvalue into a single value, imploding tuples if necessary, and
|
|
/// introducing a potential conversion from semantic type to storage type.
|
|
SILValue forwardAsSingleStorageValue(SILGenFunction &gen,
|
|
SILType storageType,
|
|
SILLocation l) &&;
|
|
|
|
/// Get the rvalue as a single value, imploding tuples if necessary.
|
|
ManagedValue getAsSingleValue(SILGenFunction &gen, SILLocation l) &&;
|
|
|
|
/// Get the rvalue as a single unmanaged value, imploding tuples if necessary.
|
|
/// The values must not require any cleanups.
|
|
SILValue getUnmanagedSingleValue(SILGenFunction &gen, SILLocation l) const &;
|
|
|
|
/// Peek at the single scalar value backing this rvalue without consuming it.
|
|
/// The rvalue must not be of a tuple type.
|
|
SILValue peekScalarValue() const & {
|
|
assert(!isa<TupleType>(type) && "peekScalarValue of a tuple rvalue");
|
|
assert(values.size() == 1 && "exploded scalar value?!");
|
|
return values[0].getValue();
|
|
}
|
|
|
|
/// Peek at the single ManagedValue backing this rvalue without consuming it
|
|
/// and return true if the value is not at +1.
|
|
bool peekIsPlusZeroRValueOrTrivial() const & {
|
|
assert(!isa<TupleType>(type) && "peekScalarValue of a tuple rvalue");
|
|
assert(values.size() == 1 && "exploded scalar value?!");
|
|
return values[0].isPlusZeroRValueOrTrivial();
|
|
}
|
|
|
|
ManagedValue getScalarValue() && {
|
|
assert(!isa<TupleType>(type) && "getScalarValue of a tuple rvalue");
|
|
assert(values.size() == 1);
|
|
auto value = values[0];
|
|
makeUsed();
|
|
return value;
|
|
}
|
|
|
|
/// Use this rvalue to initialize an Initialization.
|
|
void forwardInto(SILGenFunction &gen, SILLocation loc, Initialization *I) &&;
|
|
|
|
/// Copy this rvalue to initialize an Initialization without consuming the
|
|
/// rvalue.
|
|
void copyInto(SILGenFunction &gen, SILLocation loc, Initialization *I) const&;
|
|
|
|
/// Assign this r-value into the destination.
|
|
void assignInto(SILGenFunction &gen, SILLocation loc, SILValue destAddr) &&;
|
|
|
|
/// Forward the exploded SILValues into a SmallVector.
|
|
void forwardAll(SILGenFunction &gen,
|
|
SmallVectorImpl<SILValue> &values) &&;
|
|
|
|
ManagedValue materialize(SILGenFunction &gen, SILLocation loc) &&;
|
|
|
|
/// Take the ManagedValues from this RValue into a SmallVector.
|
|
void getAll(SmallVectorImpl<ManagedValue> &values) &&;
|
|
|
|
/// Store the unmanaged SILValues into a SmallVector. The values must not
|
|
/// require any cleanups.
|
|
void getAllUnmanaged(SmallVectorImpl<SILValue> &values) const &;
|
|
|
|
/// Extract a single tuple element from the rvalue.
|
|
RValue extractElement(unsigned element) &&;
|
|
|
|
/// Extract the tuple elements from the rvalue.
|
|
void extractElements(SmallVectorImpl<RValue> &elements) &&;
|
|
|
|
CanType getType() const & { return type; }
|
|
|
|
/// Rewrite the type of this r-value.
|
|
void rewriteType(CanType newType) & {
|
|
// We only allow a very modest set of changes to a type.
|
|
assert(newType == type ||
|
|
(isa<TupleType>(newType) &&
|
|
cast<TupleType>(newType)->getNumElements() == 1 &&
|
|
cast<TupleType>(newType).getElementType(0) == type));
|
|
type = newType;
|
|
}
|
|
|
|
/// Emit an equivalent value with independent ownership.
|
|
RValue copy(SILGenFunction &gen, SILLocation l) const & {
|
|
return RValue(*this, gen, l);
|
|
}
|
|
|
|
bool isObviouslyEqual(const RValue &rhs) const {
|
|
assert(isComplete() && rhs.isComplete() && "Comparing incomplete rvalues");
|
|
|
|
// Compare the count of elements instead of the type.
|
|
if (values.size() != rhs.values.size())
|
|
return false;
|
|
|
|
return std::equal(values.begin(), values.end(), rhs.values.begin(),
|
|
[](const ManagedValue &lhs, const ManagedValue &rhs) -> bool {
|
|
return lhs.getValue() == rhs.getValue() &&
|
|
lhs.getCleanup() == rhs.getCleanup();
|
|
});
|
|
}
|
|
};
|
|
|
|
} // end namespace Lowering
|
|
} // end namespace swift
|
|
|
|
#endif
|