mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
Previously we would emit two types of MaterializeForSet implementations in SILGen: - materializeForSet for a concrete storage declaration - materializeForSet witness thunk in a conformance This refactoring decouples the code from taking a conformance, which is needed for two new types of materializeForSet that we need: - materializeForSet witness thunk in a default witness table -- this is necessary in order to be able to resiliently add storage requirements with default implementations to protocols - materializeForSet vtable thunk -- this is necessary to fix a missing re-abstraction case with overriding storage in a subclass This patch brings us closer to implementing these two. For default implementations, we still have an issue in that the materializeForSet has a different "generic signature abstraction pattern" in concrete and default witnesses, so default and concrete witnesses for materializeForSet are currently ABI-incompatible because the type metadata for the storage is passed differently to the callback.
3026 lines
125 KiB
C++
3026 lines
125 KiB
C++
//===--- SILGenPoly.cpp - Function Type Thunks ----------------------------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// In Swift's AST-level type system, function types are allowed to be equivalent
|
|
// or have a subtyping relationship even if the SIL-level lowering of the
|
|
// calling convention is different. The routines in this file implement thunking
|
|
// between lowered function types.
|
|
//
|
|
//
|
|
// Re-abstraction thunks
|
|
// =====================
|
|
// After SIL type lowering, generic substitutions become explicit, for example
|
|
// the AST type Int -> Int passes the Ints directly, whereas T -> T with Int
|
|
// substituted for T will pass the Ints like a T, as an address-only value with
|
|
// opaque type metadata. Such a thunk is called a "re-abstraction thunk" -- the
|
|
// AST-level type of the function value does not change, only the manner in
|
|
// which parameters and results are passed.
|
|
//
|
|
// Function conversion thunks
|
|
// ==========================
|
|
// In Swift's AST-level type system, certain types have a subtype relation
|
|
// involving a representation change. For example, a concrete type is always
|
|
// a subtype of any protocol it conforms to. The upcast from the concrete
|
|
// type to an existential type for the protocol requires packaging the
|
|
// payload together with type metadata and witness tables.
|
|
//
|
|
// Between function types, the type A -> B is defined to be a subtype of
|
|
// A' -> B' iff A' is a subtype of A, and B is a subtype of B' -- parameters
|
|
// are contravariant, and results are covariant.
|
|
//
|
|
// A subtype conversion of a function value A -> B is performed by wrapping
|
|
// the function value in a thunk of type A' -> B'. The thunk takes an A' and
|
|
// converts it into an A, calls the inner function value, and converts the
|
|
// result from B to B'.
|
|
//
|
|
// VTable thunks
|
|
// =============
|
|
//
|
|
// If a base class is generic and a derived class substitutes some generic
|
|
// parameter of the base with a concrete type, the derived class can override
|
|
// methods in the base that involved generic types. In the derived class, a
|
|
// method override that involves substituted types will have a different
|
|
// SIL lowering than the base method. In this case, the overridden vtable entry
|
|
// will point to a thunk which transforms parameters and results and invokes
|
|
// the derived method.
|
|
//
|
|
// Some limited forms of subtyping are also supported for method overrides;
|
|
// namely, a derived method's parameter can be a superclass of, or more
|
|
// optional than, a parameter of the base, and result can be a subclass of,
|
|
// or less optional than, the result of the base.
|
|
//
|
|
// Witness thunks
|
|
// ==============
|
|
//
|
|
// Currently protocol witness methods are called with an additional generic
|
|
// parameter bound to the Self type, and thus always require a thunk.
|
|
//
|
|
// Thunks for class method witnesses dispatch through the vtable allowing
|
|
// inherited witnesses to be overridden in subclasses. Hence a witness thunk
|
|
// might require two levels of abstraction difference -- the method might
|
|
// override a base class method with more generic types, and the protocol
|
|
// requirement may involve associated types which are always concrete in the
|
|
// conforming class.
|
|
//
|
|
// Other thunks
|
|
// ============
|
|
//
|
|
// Foreign-to-native, native-to-foreign thunks for declarations and function
|
|
// values are implemented in SILGenBridging.cpp.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SILGen.h"
|
|
#include "Scope.h"
|
|
#include "swift/Basic/Fallthrough.h"
|
|
#include "swift/AST/AST.h"
|
|
#include "swift/AST/Decl.h"
|
|
#include "swift/AST/DiagnosticsCommon.h"
|
|
#include "swift/AST/ProtocolConformance.h"
|
|
#include "swift/AST/Types.h"
|
|
#include "swift/SIL/PrettyStackTrace.h"
|
|
#include "swift/SIL/SILArgument.h"
|
|
#include "swift/SIL/TypeLowering.h"
|
|
#include "Initialization.h"
|
|
#include "LValue.h"
|
|
#include "RValue.h"
|
|
|
|
using namespace swift;
|
|
using namespace Lowering;
|
|
|
|
/// A helper function that pulls an element off the front of an array.
|
|
template <class T>
|
|
static const T &claimNext(ArrayRef<T> &array) {
|
|
assert(!array.empty() && "claiming next from empty array!");
|
|
const T &result = array.front();
|
|
array = array.slice(1);
|
|
return result;
|
|
}
|
|
|
|
namespace {
|
|
/// An abstract class for transforming first-class SIL values.
|
|
class Transform {
|
|
private:
|
|
SILGenFunction &SGF;
|
|
SILLocation Loc;
|
|
|
|
public:
|
|
Transform(SILGenFunction &SGF, SILLocation loc) : SGF(SGF), Loc(loc) {}
|
|
virtual ~Transform() = default;
|
|
|
|
/// Transform an arbitrary value.
|
|
RValue transform(RValue &&input,
|
|
AbstractionPattern inputOrigType,
|
|
CanType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanType outputSubstType,
|
|
SGFContext ctxt);
|
|
|
|
/// Transform an arbitrary value.
|
|
ManagedValue transform(ManagedValue input,
|
|
AbstractionPattern inputOrigType,
|
|
CanType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanType outputSubstType,
|
|
SGFContext ctxt);
|
|
|
|
/// Transform a metatype value.
|
|
ManagedValue transformMetatype(ManagedValue fn,
|
|
AbstractionPattern inputOrigType,
|
|
CanMetatypeType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanMetatypeType outputSubstType);
|
|
|
|
/// Transform a tuple value.
|
|
ManagedValue transformTuple(ManagedValue input,
|
|
AbstractionPattern inputOrigType,
|
|
CanTupleType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanTupleType outputSubstType,
|
|
SGFContext ctxt);
|
|
|
|
/// Transform a function value.
|
|
ManagedValue transformFunction(ManagedValue fn,
|
|
AbstractionPattern inputOrigType,
|
|
CanAnyFunctionType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanAnyFunctionType outputSubstType,
|
|
const TypeLowering &expectedTL);
|
|
};
|
|
};
|
|
|
|
static ArrayRef<ProtocolConformanceRef>
|
|
collectExistentialConformances(Module *M, Type fromType, Type toType) {
|
|
assert(!fromType->isAnyExistentialType());
|
|
|
|
SmallVector<ProtocolDecl *, 4> protocols;
|
|
toType->getAnyExistentialTypeProtocols(protocols);
|
|
|
|
SmallVector<ProtocolConformanceRef, 4> conformances;
|
|
for (auto proto : protocols) {
|
|
ProtocolConformance *conformance =
|
|
M->lookupConformance(fromType, proto, nullptr).getPointer();
|
|
conformances.push_back(ProtocolConformanceRef(proto, conformance));
|
|
}
|
|
|
|
return M->getASTContext().AllocateCopy(conformances);
|
|
}
|
|
|
|
static CanArchetypeType getOpenedArchetype(Type openedType) {
|
|
while (auto metatypeTy = openedType->getAs<MetatypeType>())
|
|
openedType = metatypeTy->getInstanceType();
|
|
return cast<ArchetypeType>(openedType->getCanonicalType());
|
|
}
|
|
|
|
static ManagedValue emitTransformExistential(SILGenFunction &SGF,
|
|
SILLocation loc,
|
|
ManagedValue input,
|
|
CanType inputType,
|
|
CanType outputType,
|
|
SGFContext ctxt) {
|
|
assert(inputType != outputType);
|
|
|
|
SILGenFunction::OpaqueValueState state;
|
|
CanArchetypeType openedArchetype;
|
|
|
|
if (inputType->isAnyExistentialType()) {
|
|
CanType openedType = ArchetypeType::getAnyOpened(inputType);
|
|
SILType loweredOpenedType = SGF.getLoweredType(openedType);
|
|
|
|
// Unwrap zero or more metatype levels
|
|
openedArchetype = getOpenedArchetype(openedType);
|
|
|
|
state = SGF.emitOpenExistential(loc, input,
|
|
openedArchetype, loweredOpenedType);
|
|
inputType = openedType;
|
|
}
|
|
|
|
// Build conformance table
|
|
Type fromInstanceType = inputType;
|
|
Type toInstanceType = outputType;
|
|
|
|
// Look through metatypes
|
|
while (fromInstanceType->is<AnyMetatypeType>() &&
|
|
toInstanceType->is<ExistentialMetatypeType>()) {
|
|
fromInstanceType = fromInstanceType->castTo<AnyMetatypeType>()
|
|
->getInstanceType();
|
|
toInstanceType = toInstanceType->castTo<ExistentialMetatypeType>()
|
|
->getInstanceType();
|
|
}
|
|
|
|
ArrayRef<ProtocolConformanceRef> conformances =
|
|
collectExistentialConformances(SGF.SGM.M.getSwiftModule(),
|
|
fromInstanceType,
|
|
toInstanceType);
|
|
|
|
// Build result existential
|
|
AbstractionPattern opaque = AbstractionPattern::getOpaque();
|
|
const TypeLowering &concreteTL = SGF.getTypeLowering(opaque, inputType);
|
|
const TypeLowering &expectedTL = SGF.getTypeLowering(outputType);
|
|
input = SGF.emitExistentialErasure(
|
|
loc, inputType, concreteTL, expectedTL,
|
|
conformances, ctxt,
|
|
[&](SGFContext C) -> ManagedValue {
|
|
if (openedArchetype)
|
|
return SGF.manageOpaqueValue(state, loc, C);
|
|
return input;
|
|
});
|
|
|
|
return input;
|
|
}
|
|
|
|
/// Apply this transformation to an arbitrary value.
|
|
RValue Transform::transform(RValue &&input,
|
|
AbstractionPattern inputOrigType,
|
|
CanType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanType outputSubstType,
|
|
SGFContext ctxt) {
|
|
// Fast path: we don't have a tuple.
|
|
auto inputTupleType = dyn_cast<TupleType>(inputSubstType);
|
|
if (!inputTupleType) {
|
|
assert(!isa<TupleType>(outputSubstType) &&
|
|
"transformation introduced a tuple?");
|
|
auto result = transform(std::move(input).getScalarValue(),
|
|
inputOrigType, inputSubstType,
|
|
outputOrigType, outputSubstType, ctxt);
|
|
return RValue(result, outputSubstType);
|
|
}
|
|
|
|
// Okay, we have a tuple. The output type will also be a tuple unless
|
|
// there's a subtyping conversion that erases tuples, but that's currently
|
|
// not allowed by the typechecker, which considers existential erasure to
|
|
// be a conversion relation, not a subtyping one. Anyway, it would be
|
|
// possible to support that here, but since it's not currently required...
|
|
assert(isa<TupleType>(outputSubstType) &&
|
|
"subtype constraint erasing tuple is not currently implemented");
|
|
auto outputTupleType = cast<TupleType>(outputSubstType);
|
|
assert(inputTupleType->getNumElements() == outputTupleType->getNumElements());
|
|
|
|
// Pull the r-value apart.
|
|
SmallVector<RValue, 8> inputElts;
|
|
std::move(input).extractElements(inputElts);
|
|
|
|
// Emit into the context initialization if it's present and possible
|
|
// to split.
|
|
SmallVector<InitializationPtr, 4> eltInitsBuffer;
|
|
MutableArrayRef<InitializationPtr> eltInits;
|
|
auto tupleInit = ctxt.getEmitInto();
|
|
if (!ctxt.getEmitInto()->canSplitIntoTupleElements()) {
|
|
tupleInit = nullptr;
|
|
} else {
|
|
eltInits = tupleInit->splitIntoTupleElements(SGF, Loc, outputTupleType,
|
|
eltInitsBuffer);
|
|
}
|
|
|
|
// At this point, if tupleInit is non-null, we must emit all of the
|
|
// elements into their corresponding contexts.
|
|
assert(tupleInit == nullptr ||
|
|
eltInits.size() == inputTupleType->getNumElements());
|
|
|
|
SmallVector<ManagedValue, 8> outputExpansion;
|
|
for (auto eltIndex : indices(inputTupleType->getElementTypes())) {
|
|
// Determine the appropriate context for the element.
|
|
SGFContext eltCtxt;
|
|
if (tupleInit) eltCtxt = SGFContext(eltInits[eltIndex].get());
|
|
|
|
// Recurse.
|
|
RValue outputElt = transform(std::move(inputElts[eltIndex]),
|
|
inputOrigType.getTupleElementType(eltIndex),
|
|
inputTupleType.getElementType(eltIndex),
|
|
outputOrigType.getTupleElementType(eltIndex),
|
|
outputTupleType.getElementType(eltIndex),
|
|
eltCtxt);
|
|
|
|
// Force the r-value into its context if necessary.
|
|
assert(!outputElt.isInContext() || tupleInit != nullptr);
|
|
if (tupleInit && !outputElt.isInContext()) {
|
|
std::move(outputElt).forwardInto(SGF, Loc, eltInits[eltIndex].get());
|
|
} else {
|
|
std::move(outputElt).getAll(outputExpansion);
|
|
}
|
|
}
|
|
|
|
// If we emitted into context, be sure to finish the overall initialization.
|
|
if (tupleInit) {
|
|
tupleInit->finishInitialization(SGF);
|
|
return RValue();
|
|
}
|
|
|
|
return RValue(outputExpansion, outputTupleType);
|
|
}
|
|
|
|
// Single @objc protocol value metatypes can be converted to the ObjC
|
|
// Protocol class type.
|
|
static bool isProtocolClass(Type t) {
|
|
auto classDecl = t->getClassOrBoundGenericClass();
|
|
if (!classDecl)
|
|
return false;
|
|
|
|
ASTContext &ctx = classDecl->getASTContext();
|
|
return (classDecl->getName() == ctx.Id_Protocol &&
|
|
classDecl->getModuleContext()->getName() == ctx.Id_ObjectiveC);
|
|
};
|
|
|
|
static ManagedValue emitManagedLoad(SILGenFunction &gen, SILLocation loc,
|
|
ManagedValue addr,
|
|
const TypeLowering &addrTL) {
|
|
auto loadedValue = gen.B.createLoad(loc, addr.forward(gen));
|
|
return gen.emitManagedRValueWithCleanup(loadedValue, addrTL);
|
|
}
|
|
|
|
/// Apply this transformation to an arbitrary value.
|
|
ManagedValue Transform::transform(ManagedValue v,
|
|
AbstractionPattern inputOrigType,
|
|
CanType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanType outputSubstType,
|
|
SGFContext ctxt) {
|
|
// Look through inout types.
|
|
if (isa<InOutType>(inputSubstType))
|
|
inputSubstType = CanType(inputSubstType->getInOutObjectType());
|
|
|
|
// Load if the result isn't address-only. All the translation routines
|
|
// expect this.
|
|
if (v.getType().isAddress()) {
|
|
auto &inputTL = SGF.getTypeLowering(v.getType());
|
|
if (!inputTL.isAddressOnly()) {
|
|
v = emitManagedLoad(SGF, Loc, v, inputTL);
|
|
}
|
|
}
|
|
|
|
const TypeLowering &expectedTL = SGF.getTypeLowering(outputOrigType,
|
|
outputSubstType);
|
|
auto loweredResultTy = expectedTL.getLoweredType();
|
|
|
|
// Nothing to convert
|
|
if (v.getType() == loweredResultTy)
|
|
return v;
|
|
|
|
OptionalTypeKind outputOTK, inputOTK;
|
|
CanType inputObjectType = inputSubstType.getAnyOptionalObjectType(inputOTK);
|
|
CanType outputObjectType = outputSubstType.getAnyOptionalObjectType(outputOTK);
|
|
|
|
// If the value is less optional than the desired formal type, wrap in
|
|
// an optional.
|
|
if (outputOTK != OTK_None && inputOTK == OTK_None) {
|
|
return SGF.emitInjectOptional(Loc, v,
|
|
inputSubstType, outputSubstType,
|
|
expectedTL, ctxt);
|
|
}
|
|
|
|
// If the value is IUO, but the desired formal type isn't optional, force it.
|
|
if (inputOTK == OTK_ImplicitlyUnwrappedOptional
|
|
&& outputOTK == OTK_None) {
|
|
v = SGF.emitCheckedGetOptionalValueFrom(Loc, v,
|
|
SGF.getTypeLowering(v.getType()),
|
|
SGFContext());
|
|
|
|
// Check if we have any more conversions remaining.
|
|
if (v.getType() == loweredResultTy)
|
|
return v;
|
|
|
|
inputOTK = OTK_None;
|
|
}
|
|
|
|
// Optional-to-optional conversion.
|
|
if (inputOTK != OTK_None && outputOTK != OTK_None &&
|
|
(inputOTK != outputOTK ||
|
|
inputObjectType != outputObjectType)) {
|
|
// If the conversion is trivial, just cast.
|
|
if (SGF.SGM.Types.checkForABIDifferences(v.getType().getSwiftRValueType(),
|
|
loweredResultTy.getSwiftRValueType())
|
|
== TypeConverter::ABIDifference::Trivial) {
|
|
SILValue result = v.getValue();
|
|
if (v.getType().isAddress())
|
|
result = SGF.B.createUncheckedAddrCast(Loc, result, loweredResultTy);
|
|
else
|
|
result = SGF.B.createUncheckedBitCast(Loc, result, loweredResultTy);
|
|
return ManagedValue(result, v.getCleanup());
|
|
}
|
|
|
|
auto transformOptionalPayload = [&](SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue input,
|
|
SILType loweredResultTy) -> ManagedValue {
|
|
return transform(input,
|
|
AbstractionPattern::getOpaque(), inputObjectType,
|
|
AbstractionPattern::getOpaque(), outputObjectType,
|
|
SGFContext());
|
|
};
|
|
|
|
return SGF.emitOptionalToOptional(Loc, v, loweredResultTy,
|
|
transformOptionalPayload);
|
|
}
|
|
|
|
// Abstraction changes:
|
|
|
|
// - functions
|
|
if (auto outputFnType = dyn_cast<AnyFunctionType>(outputSubstType)) {
|
|
auto inputFnType = cast<AnyFunctionType>(inputSubstType);
|
|
return transformFunction(v,
|
|
inputOrigType, inputFnType,
|
|
outputOrigType, outputFnType,
|
|
expectedTL);
|
|
}
|
|
|
|
// - tuples of transformable values
|
|
if (auto outputTupleType = dyn_cast<TupleType>(outputSubstType)) {
|
|
auto inputTupleType = cast<TupleType>(inputSubstType);
|
|
return transformTuple(v,
|
|
inputOrigType, inputTupleType,
|
|
outputOrigType, outputTupleType,
|
|
ctxt);
|
|
}
|
|
|
|
// - metatypes
|
|
if (auto outputMetaType = dyn_cast<MetatypeType>(outputSubstType)) {
|
|
auto inputMetaType = cast<MetatypeType>(inputSubstType);
|
|
return transformMetatype(v,
|
|
inputOrigType, inputMetaType,
|
|
outputOrigType, outputMetaType);
|
|
}
|
|
|
|
// Subtype conversions:
|
|
|
|
// - upcasts
|
|
if (outputSubstType->getClassOrBoundGenericClass() &&
|
|
inputSubstType->getClassOrBoundGenericClass()) {
|
|
auto class1 = inputSubstType->getClassOrBoundGenericClass();
|
|
auto class2 = outputSubstType->getClassOrBoundGenericClass();
|
|
|
|
// CF <-> Objective-C via toll-free bridging.
|
|
if (class1->isForeign() != class2->isForeign()) {
|
|
return ManagedValue(SGF.B.createUncheckedRefCast(Loc,
|
|
v.getValue(),
|
|
loweredResultTy),
|
|
v.getCleanup());
|
|
}
|
|
|
|
// Upcast to a superclass.
|
|
return ManagedValue(SGF.B.createUpcast(Loc,
|
|
v.getValue(),
|
|
loweredResultTy),
|
|
v.getCleanup());
|
|
}
|
|
|
|
// - upcasts from an archetype
|
|
if (outputSubstType->getClassOrBoundGenericClass()) {
|
|
if (auto archetypeType = dyn_cast<ArchetypeType>(inputSubstType)) {
|
|
if (archetypeType->getSuperclass()) {
|
|
// Replace the cleanup with a new one on the superclass value so we
|
|
// always use concrete retain/release operations.
|
|
return ManagedValue(SGF.B.createUpcast(Loc,
|
|
v.getValue(),
|
|
loweredResultTy),
|
|
v.getCleanup());
|
|
}
|
|
}
|
|
}
|
|
|
|
// - metatype to Protocol conversion
|
|
if (isProtocolClass(outputSubstType)) {
|
|
if (auto metatypeTy = dyn_cast<MetatypeType>(inputSubstType)) {
|
|
return SGF.emitProtocolMetatypeToObject(Loc, metatypeTy,
|
|
SGF.getLoweredLoadableType(outputSubstType));
|
|
}
|
|
}
|
|
|
|
// - metatype to AnyObject conversion
|
|
if (outputSubstType->isAnyObject() &&
|
|
isa<MetatypeType>(inputSubstType)) {
|
|
return SGF.emitClassMetatypeToObject(Loc, v,
|
|
SGF.getLoweredLoadableType(outputSubstType));
|
|
}
|
|
|
|
// - existential metatype to AnyObject conversion
|
|
if (outputSubstType->isAnyObject() &&
|
|
isa<ExistentialMetatypeType>(inputSubstType)) {
|
|
return SGF.emitExistentialMetatypeToObject(Loc, v,
|
|
SGF.getLoweredLoadableType(outputSubstType));
|
|
}
|
|
|
|
// - existentials
|
|
if (outputSubstType->isAnyExistentialType()) {
|
|
// We have to re-abstract payload if its a metatype or a function
|
|
v = SGF.emitSubstToOrigValue(Loc, v, AbstractionPattern::getOpaque(),
|
|
inputSubstType);
|
|
return emitTransformExistential(SGF, Loc, v,
|
|
inputSubstType, outputSubstType,
|
|
ctxt);
|
|
}
|
|
|
|
// Should have handled the conversion in one of the cases above.
|
|
llvm_unreachable("Unhandled transform?");
|
|
}
|
|
|
|
ManagedValue Transform::transformMetatype(ManagedValue meta,
|
|
AbstractionPattern inputOrigType,
|
|
CanMetatypeType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanMetatypeType outputSubstType) {
|
|
assert(!meta.hasCleanup() && "metatype with cleanup?!");
|
|
|
|
auto expectedType = SGF.getTypeLowering(outputOrigType,
|
|
outputSubstType).getLoweredType();
|
|
auto wasRepr = meta.getType().castTo<MetatypeType>()->getRepresentation();
|
|
auto willBeRepr = expectedType.castTo<MetatypeType>()->getRepresentation();
|
|
|
|
SILValue result;
|
|
|
|
if ((wasRepr == MetatypeRepresentation::Thick &&
|
|
willBeRepr == MetatypeRepresentation::Thin) ||
|
|
(wasRepr == MetatypeRepresentation::Thin &&
|
|
willBeRepr == MetatypeRepresentation::Thick)) {
|
|
// If we have a thin-to-thick abstraction change, cook up new a metatype
|
|
// value out of nothing -- thin metatypes carry no runtime state.
|
|
result = SGF.B.createMetatype(Loc, expectedType);
|
|
} else {
|
|
// Otherwise, we have a metatype subtype conversion of thick metatypes.
|
|
assert(wasRepr == willBeRepr && "Unhandled metatype conversion");
|
|
result = SGF.B.createUpcast(Loc, meta.getUnmanagedValue(), expectedType);
|
|
}
|
|
|
|
return ManagedValue::forUnmanaged(result);
|
|
}
|
|
|
|
/// Explode a managed tuple into a bunch of managed elements.
|
|
///
|
|
/// If the tuple is in memory, the result elements will also be in
|
|
/// memory.
|
|
typedef std::pair<ManagedValue, const TypeLowering *> ManagedValueAndType;
|
|
static void explodeTuple(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue managedTuple,
|
|
SmallVectorImpl<ManagedValueAndType> &out) {
|
|
// None of the operations we do here can fail, so we can atomically
|
|
// disable the tuple's cleanup and then create cleanups for all the
|
|
// elements.
|
|
SILValue tuple = managedTuple.forward(gen);
|
|
|
|
auto tupleSILType = tuple->getType();
|
|
auto tupleType = tupleSILType.castTo<TupleType>();
|
|
|
|
out.reserve(tupleType->getNumElements());
|
|
|
|
for (auto index : indices(tupleType.getElementTypes())) {
|
|
// We're starting with a SIL-lowered tuple type, so the elements
|
|
// must also all be SIL-lowered.
|
|
SILType eltType = tupleSILType.getTupleElementType(index);
|
|
|
|
auto &eltTL = gen.getTypeLowering(eltType);
|
|
|
|
ManagedValue elt;
|
|
if (tupleSILType.isAddress()) {
|
|
auto addr = gen.B.createTupleElementAddr(loc, tuple, index, eltType);
|
|
elt = gen.emitManagedBufferWithCleanup(addr, eltTL);
|
|
} else {
|
|
auto value = gen.B.createTupleExtract(loc, tuple, index, eltType);
|
|
elt = gen.emitManagedRValueWithCleanup(value, eltTL);
|
|
}
|
|
|
|
out.push_back(ManagedValueAndType(elt, &eltTL));
|
|
}
|
|
}
|
|
|
|
/// Apply this transformation to all the elements of a tuple value,
|
|
/// which just entails mapping over each of its component elements.
|
|
ManagedValue Transform::transformTuple(ManagedValue inputTuple,
|
|
AbstractionPattern inputOrigType,
|
|
CanTupleType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanTupleType outputSubstType,
|
|
SGFContext ctxt) {
|
|
const TypeLowering &outputTL =
|
|
SGF.getTypeLowering(outputOrigType, outputSubstType);
|
|
assert(outputTL.isAddressOnly() == inputTuple.getType().isAddress() &&
|
|
"expected loadable inputs to have been loaded");
|
|
|
|
// If there's no representation difference, we're done.
|
|
if (outputTL.getLoweredType() == inputTuple.getType())
|
|
return inputTuple;
|
|
|
|
assert(inputOrigType.matchesTuple(outputSubstType));
|
|
assert(outputOrigType.matchesTuple(outputSubstType));
|
|
|
|
auto inputType = inputTuple.getType().castTo<TupleType>();
|
|
assert(outputSubstType->getNumElements() == inputType->getNumElements());
|
|
|
|
// If the tuple is address only, we need to do the operation in memory.
|
|
SILValue outputAddr;
|
|
if (outputTL.isAddressOnly())
|
|
outputAddr = SGF.getBufferForExprResult(Loc, outputTL.getLoweredType(),
|
|
ctxt);
|
|
|
|
// Explode the tuple into individual managed values.
|
|
SmallVector<ManagedValueAndType, 4> inputElts;
|
|
explodeTuple(SGF, Loc, inputTuple, inputElts);
|
|
|
|
// Track all the managed elements whether or not we're actually
|
|
// emitting to an address, just so that we can disable them after.
|
|
SmallVector<ManagedValue, 4> outputElts;
|
|
|
|
for (auto index : indices(inputType->getElementTypes())) {
|
|
auto &inputEltTL = *inputElts[index].second;
|
|
ManagedValue inputElt = inputElts[index].first;
|
|
if (inputElt.getType().isAddress() && !inputEltTL.isAddressOnly()) {
|
|
inputElt = emitManagedLoad(SGF, Loc, inputElt, inputEltTL);
|
|
}
|
|
|
|
auto inputEltOrigType = inputOrigType.getTupleElementType(index);
|
|
auto inputEltSubstType = inputSubstType.getElementType(index);
|
|
auto outputEltOrigType = outputOrigType.getTupleElementType(index);
|
|
auto outputEltSubstType = outputSubstType.getElementType(index);
|
|
|
|
// If we're emitting to memory, project out this element in the
|
|
// destination buffer, then wrap that in an Initialization to
|
|
// track the cleanup.
|
|
Optional<TemporaryInitialization> outputEltTemp;
|
|
if (outputAddr) {
|
|
SILValue outputEltAddr =
|
|
SGF.B.createTupleElementAddr(Loc, outputAddr, index);
|
|
auto &outputEltTL = SGF.getTypeLowering(outputEltAddr->getType());
|
|
assert(outputEltTL.isAddressOnly() == inputEltTL.isAddressOnly());
|
|
auto cleanup =
|
|
SGF.enterDormantTemporaryCleanup(outputEltAddr, outputEltTL);
|
|
outputEltTemp.emplace(outputEltAddr, cleanup);
|
|
}
|
|
|
|
SGFContext eltCtxt =
|
|
(outputEltTemp ? SGFContext(&outputEltTemp.getValue()) : SGFContext());
|
|
auto outputElt = transform(inputElt,
|
|
inputEltOrigType, inputEltSubstType,
|
|
outputEltOrigType, outputEltSubstType,
|
|
eltCtxt);
|
|
|
|
// If we're not emitting to memory, remember this element for
|
|
// later assembly into a tuple.
|
|
if (!outputEltTemp) {
|
|
assert(outputElt);
|
|
assert(!inputEltTL.isAddressOnly());
|
|
outputElts.push_back(outputElt);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, make sure we emit into the slot.
|
|
auto &temp = outputEltTemp.getValue();
|
|
auto outputEltAddr = temp.getManagedAddress();
|
|
|
|
// That might involve storing directly.
|
|
if (outputElt) {
|
|
outputElt.forwardInto(SGF, Loc, outputEltAddr.getValue());
|
|
temp.finishInitialization(SGF);
|
|
}
|
|
|
|
outputElts.push_back(outputEltAddr);
|
|
}
|
|
|
|
// Okay, disable all the individual element cleanups and collect
|
|
// the values for a potential tuple aggregate.
|
|
SmallVector<SILValue, 4> outputEltValues;
|
|
for (auto outputElt : outputElts) {
|
|
SILValue value = outputElt.forward(SGF);
|
|
if (!outputAddr) outputEltValues.push_back(value);
|
|
}
|
|
|
|
// If we're emitting to an address, just manage that.
|
|
if (outputAddr)
|
|
return SGF.manageBufferForExprResult(outputAddr, outputTL, ctxt);
|
|
|
|
// Otherwise, assemble the tuple value and manage that.
|
|
auto outputTuple =
|
|
SGF.B.createTuple(Loc, outputTL.getLoweredType(), outputEltValues);
|
|
return SGF.emitManagedRValueWithCleanup(outputTuple, outputTL);
|
|
}
|
|
|
|
static ManagedValue manageParam(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
SILValue paramValue,
|
|
SILParameterInfo info,
|
|
bool allowPlusZero) {
|
|
switch (info.getConvention()) {
|
|
// A deallocating parameter can always be accessed directly.
|
|
case ParameterConvention::Direct_Deallocating:
|
|
return ManagedValue::forUnmanaged(paramValue);
|
|
case ParameterConvention::Direct_Guaranteed:
|
|
if (allowPlusZero)
|
|
return ManagedValue::forUnmanaged(paramValue);
|
|
SWIFT_FALLTHROUGH;
|
|
// Unowned parameters are only guaranteed at the instant of the call, so we
|
|
// must retain them even if we're in a context that can accept a +0 value.
|
|
case ParameterConvention::Direct_Unowned:
|
|
gen.getTypeLowering(paramValue->getType())
|
|
.emitRetainValue(gen.B, loc, paramValue);
|
|
SWIFT_FALLTHROUGH;
|
|
case ParameterConvention::Direct_Owned:
|
|
return gen.emitManagedRValueWithCleanup(paramValue);
|
|
|
|
case ParameterConvention::Indirect_In_Guaranteed:
|
|
// FIXME: Avoid a behavior change while guaranteed self is disabled by
|
|
// default.
|
|
if (allowPlusZero) {
|
|
return ManagedValue::forUnmanaged(paramValue);
|
|
} else {
|
|
auto copy = gen.emitTemporaryAllocation(loc, paramValue->getType());
|
|
gen.B.createCopyAddr(loc, paramValue, copy, IsNotTake, IsInitialization);
|
|
return gen.emitManagedBufferWithCleanup(copy);
|
|
}
|
|
case ParameterConvention::Indirect_Inout:
|
|
case ParameterConvention::Indirect_InoutAliasable:
|
|
return ManagedValue::forLValue(paramValue);
|
|
case ParameterConvention::Indirect_In:
|
|
return gen.emitManagedBufferWithCleanup(paramValue);
|
|
}
|
|
llvm_unreachable("bad parameter convention");
|
|
}
|
|
|
|
void SILGenFunction::collectThunkParams(SILLocation loc,
|
|
SmallVectorImpl<ManagedValue> ¶ms,
|
|
bool allowPlusZero) {
|
|
// Add the indirect results.
|
|
for (auto result : F.getLoweredFunctionType()->getIndirectResults()) {
|
|
auto paramTy = F.mapTypeIntoContext(result.getSILType());
|
|
(void) new (SGM.M) SILArgument(F.begin(), paramTy);
|
|
}
|
|
|
|
// Add the parameters.
|
|
auto paramTypes = F.getLoweredFunctionType()->getParameters();
|
|
for (auto param : paramTypes) {
|
|
auto paramTy = F.mapTypeIntoContext(param.getSILType());
|
|
auto paramValue = new (SGM.M) SILArgument(F.begin(), paramTy);
|
|
auto paramMV = manageParam(*this, loc, paramValue, param, allowPlusZero);
|
|
params.push_back(paramMV);
|
|
}
|
|
}
|
|
|
|
/// Force a ManagedValue to be stored into a temporary initialization
|
|
/// if it wasn't emitted that way directly.
|
|
static void emitForceInto(SILGenFunction &SGF, SILLocation loc,
|
|
ManagedValue result, TemporaryInitialization &temp) {
|
|
if (result.isInContext()) return;
|
|
result.forwardInto(SGF, loc, temp.getAddress());
|
|
temp.finishInitialization(SGF);
|
|
}
|
|
|
|
namespace {
|
|
class TranslateArguments {
|
|
SILGenFunction &SGF;
|
|
SILLocation Loc;
|
|
ArrayRef<ManagedValue> Inputs;
|
|
SmallVectorImpl<ManagedValue> &Outputs;
|
|
ArrayRef<SILParameterInfo> OutputTypes;
|
|
public:
|
|
TranslateArguments(SILGenFunction &SGF, SILLocation loc,
|
|
ArrayRef<ManagedValue> inputs,
|
|
SmallVectorImpl<ManagedValue> &outputs,
|
|
ArrayRef<SILParameterInfo> outputTypes)
|
|
: SGF(SGF), Loc(loc), Inputs(inputs), Outputs(outputs),
|
|
OutputTypes(outputTypes) {}
|
|
|
|
void translate(AbstractionPattern inputOrigType,
|
|
CanType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanType outputSubstType) {
|
|
// Most of this function is about tuples: tuples can be represented
|
|
// as one or many values, with varying levels of indirection.
|
|
auto inputTupleType = dyn_cast<TupleType>(inputSubstType);
|
|
auto outputTupleType = dyn_cast<TupleType>(outputSubstType);
|
|
|
|
// Look inside one-element exploded tuples, but not if both input
|
|
// and output types are *both* one-element tuples.
|
|
if (!(inputTupleType && outputTupleType &&
|
|
inputTupleType.getElementTypes().size() == 1 &&
|
|
outputTupleType.getElementTypes().size() == 1)) {
|
|
if (inputOrigType.isTuple() &&
|
|
inputOrigType.getNumTupleElements() == 1) {
|
|
inputOrigType = inputOrigType.getTupleElementType(0);
|
|
inputSubstType = cast<TupleType>(inputSubstType).getElementType(0);
|
|
return translate(inputOrigType, inputSubstType,
|
|
outputOrigType, outputSubstType);
|
|
}
|
|
|
|
if (outputOrigType.isTuple() &&
|
|
outputOrigType.getNumTupleElements() == 1) {
|
|
outputOrigType = outputOrigType.getTupleElementType(0);
|
|
outputSubstType = cast<TupleType>(outputSubstType).getElementType(0);
|
|
return translate(inputOrigType, inputSubstType,
|
|
outputOrigType, outputSubstType);
|
|
}
|
|
}
|
|
|
|
// Special-case: tuples containing inouts.
|
|
if (inputTupleType && inputTupleType->hasInOut()) {
|
|
// Non-materializable tuple types cannot be bound as generic
|
|
// arguments, so none of the remaining transformations apply.
|
|
// Instead, the outermost tuple layer is exploded, even when
|
|
// they are being passed opaquely. See the comment in
|
|
// AbstractionPattern.h for a discussion.
|
|
return translateParallelExploded(inputOrigType,
|
|
inputTupleType,
|
|
outputOrigType,
|
|
outputTupleType);
|
|
}
|
|
|
|
// Case where the input type is an exploded tuple.
|
|
if (inputOrigType.isTuple()) {
|
|
if (outputOrigType.isTuple()) {
|
|
// Both input and output are exploded tuples, easy case.
|
|
return translateParallelExploded(inputOrigType,
|
|
inputTupleType,
|
|
outputOrigType,
|
|
outputTupleType);
|
|
}
|
|
|
|
// Tuple types are subtypes of their optionals
|
|
OptionalTypeKind outputOTK;
|
|
if (auto outputObjectType = outputSubstType.getAnyOptionalObjectType(outputOTK)) {
|
|
// The input is exploded and the output is an optional tuple.
|
|
// Translate values and collect them into a single optional
|
|
// payload.
|
|
auto outputTupleType = cast<TupleType>(outputObjectType);
|
|
|
|
return translateAndImplodeIntoOptional(inputOrigType,
|
|
inputTupleType,
|
|
outputTupleType,
|
|
outputOTK);
|
|
|
|
// FIXME: optional of Any (ugh...)
|
|
}
|
|
|
|
if (outputTupleType) {
|
|
// The input is exploded and the output is not. Translate values
|
|
// and store them to a result tuple in memory.
|
|
assert(outputOrigType.isTypeParameter() &&
|
|
"Output is not a tuple and is not opaque?");
|
|
|
|
auto output = claimNextOutputType();
|
|
auto &outputTL = SGF.getTypeLowering(output.getSILType());
|
|
auto temp = SGF.emitTemporary(Loc, outputTL);
|
|
translateAndImplodeInto(inputOrigType,
|
|
inputTupleType,
|
|
outputOrigType,
|
|
outputTupleType,
|
|
*temp.get());
|
|
|
|
Outputs.push_back(temp->getManagedAddress());
|
|
return;
|
|
}
|
|
|
|
// FIXME: Tuple-to-Any conversions
|
|
llvm_unreachable("Unhandled conversion from exploded tuple");
|
|
}
|
|
|
|
// Handle output being an exploded tuple when the input is opaque.
|
|
if (outputOrigType.isTuple()) {
|
|
if (inputTupleType) {
|
|
// The input is exploded and the output is not. Translate values
|
|
// and store them to a result tuple in memory.
|
|
assert(inputOrigType.isTypeParameter() &&
|
|
"Input is not a tuple and is not opaque?");
|
|
|
|
return translateAndExplodeOutOf(inputOrigType,
|
|
inputTupleType,
|
|
outputOrigType,
|
|
outputTupleType,
|
|
claimNextInput());
|
|
}
|
|
|
|
// FIXME: IUO<Tuple> to Tuple
|
|
llvm_unreachable("Unhandled conversion to exploded tuple");
|
|
}
|
|
|
|
// Okay, we are now working with a single value turning into a
|
|
// single value.
|
|
auto inputElt = claimNextInput();
|
|
auto outputEltType = claimNextOutputType();
|
|
translateSingle(inputOrigType, inputSubstType,
|
|
outputOrigType, outputSubstType,
|
|
inputElt, outputEltType);
|
|
}
|
|
|
|
private:
|
|
/// Handle a tuple that has been exploded in the input but wrapped in
|
|
/// an optional in the output.
|
|
void translateAndImplodeIntoOptional(AbstractionPattern inputOrigType,
|
|
CanTupleType inputTupleType,
|
|
CanTupleType outputTupleType,
|
|
OptionalTypeKind OTK) {
|
|
assert(!inputTupleType->hasInOut() &&
|
|
!outputTupleType->hasInOut());
|
|
assert(inputTupleType->getNumElements() ==
|
|
outputTupleType->getNumElements());
|
|
|
|
// Collect the tuple elements, which should all be maximally abstracted
|
|
// to go in the optional payload.
|
|
auto opaque = AbstractionPattern::getOpaque();
|
|
auto &loweredTL = SGF.getTypeLowering(opaque, outputTupleType);
|
|
auto loweredTy = loweredTL.getLoweredType();
|
|
auto optionalTy = claimNextOutputType().getSILType();
|
|
auto someDecl = SGF.getASTContext().getOptionalSomeDecl(OTK);
|
|
if (loweredTL.isLoadable()) {
|
|
// Implode into a maximally-abstracted value.
|
|
std::function<ManagedValue (CanTupleType, CanTupleType, CanTupleType)>
|
|
translateAndImplodeIntoValue
|
|
= [&](CanTupleType lowered, CanTupleType input, CanTupleType output) -> ManagedValue {
|
|
SmallVector<ManagedValue, 4> elements;
|
|
assert(output->getNumElements() == input->getNumElements());
|
|
for (unsigned i = 0, e = output->getNumElements(); i < e; ++i) {
|
|
auto inputTy = input.getElementType(i);
|
|
auto outputTy = output.getElementType(i);
|
|
ManagedValue arg;
|
|
if (auto outputTuple = dyn_cast<TupleType>(outputTy)) {
|
|
auto inputTuple = cast<TupleType>(inputTy);
|
|
arg = translateAndImplodeIntoValue(
|
|
cast<TupleType>(lowered.getElementType(i)),
|
|
inputTuple, outputTuple);
|
|
} else {
|
|
arg = claimNextInput();
|
|
|
|
}
|
|
|
|
if (arg.getType().isAddress())
|
|
arg = SGF.emitLoad(Loc, arg.forward(SGF),
|
|
SGF.getTypeLowering(arg.getType()),
|
|
SGFContext(), IsTake);
|
|
|
|
if (arg.getType().getSwiftRValueType() != lowered.getElementType(i))
|
|
arg = translatePrimitive(AbstractionPattern(inputTy), inputTy,
|
|
opaque, outputTy,
|
|
arg);
|
|
|
|
elements.push_back(arg);
|
|
}
|
|
SmallVector<SILValue, 4> forwarded;
|
|
for (auto element : elements)
|
|
forwarded.push_back(element.forward(SGF));
|
|
|
|
auto tuple = SGF.B.createTuple(Loc,
|
|
SILType::getPrimitiveObjectType(lowered),
|
|
forwarded);
|
|
return SGF.emitManagedRValueWithCleanup(tuple);
|
|
};
|
|
|
|
auto payload = translateAndImplodeIntoValue(
|
|
cast<TupleType>(loweredTy.getSwiftRValueType()),
|
|
inputTupleType,
|
|
outputTupleType);
|
|
optionalTy = SGF.F.mapTypeIntoContext(optionalTy);
|
|
auto optional = SGF.B.createEnum(Loc, payload.getValue(),
|
|
someDecl, optionalTy);
|
|
Outputs.push_back(ManagedValue(optional, payload.getCleanup()));
|
|
return;
|
|
} else {
|
|
// Implode into a maximally-abstracted indirect buffer.
|
|
auto optionalBuf = SGF.emitTemporaryAllocation(Loc, optionalTy);
|
|
auto tupleBuf = SGF.B.createInitEnumDataAddr(Loc, optionalBuf, someDecl,
|
|
loweredTy);
|
|
|
|
auto tupleTemp = SGF.useBufferAsTemporary(tupleBuf, loweredTL);
|
|
|
|
std::function<void (CanTupleType,
|
|
CanTupleType,
|
|
CanTupleType,
|
|
TemporaryInitialization&)>
|
|
translateAndImplodeIntoBuffer
|
|
= [&](CanTupleType lowered,
|
|
CanTupleType input,
|
|
CanTupleType output,
|
|
TemporaryInitialization &buf) {
|
|
auto tupleAddr = buf.getAddress();
|
|
SmallVector<CleanupHandle, 4> cleanups;
|
|
|
|
for (unsigned i = 0, e = output->getNumElements(); i < e; ++i) {
|
|
auto inputTy = input.getElementType(i);
|
|
auto outputTy = output.getElementType(i);
|
|
auto loweredOutputTy
|
|
= SILType::getPrimitiveAddressType(lowered.getElementType(i));
|
|
auto &loweredOutputTL = SGF.getTypeLowering(loweredOutputTy);
|
|
auto eltAddr = SGF.B.createTupleElementAddr(Loc, tupleAddr, i,
|
|
loweredOutputTy);
|
|
CleanupHandle eltCleanup
|
|
= SGF.enterDormantTemporaryCleanup(eltAddr, loweredOutputTL);
|
|
|
|
if (eltCleanup.isValid()) cleanups.push_back(eltCleanup);
|
|
TemporaryInitialization eltInit(eltAddr, eltCleanup);
|
|
|
|
if (auto outputTuple = dyn_cast<TupleType>(outputTy)) {
|
|
auto inputTuple = cast<TupleType>(inputTy);
|
|
translateAndImplodeIntoBuffer(
|
|
cast<TupleType>(loweredOutputTy.getSwiftRValueType()),
|
|
inputTuple, outputTuple, eltInit);
|
|
} else {
|
|
auto arg = claimNextInput();
|
|
auto &argTL = SGF.getTypeLowering(arg.getType());
|
|
if (arg.getType().isAddress() && argTL.isLoadable())
|
|
arg = SGF.emitLoad(Loc, arg.forward(SGF),
|
|
argTL, SGFContext(), IsTake);
|
|
|
|
if (arg.getType().getSwiftRValueType()
|
|
!= loweredOutputTy.getSwiftRValueType()) {
|
|
arg = translatePrimitive(AbstractionPattern(inputTy), inputTy,
|
|
opaque, outputTy,
|
|
arg);
|
|
}
|
|
|
|
emitForceInto(SGF, Loc, arg, eltInit);
|
|
}
|
|
}
|
|
|
|
// Deactivate the element cleanups and activate the tuple cleanup.
|
|
for (auto cleanup : cleanups)
|
|
SGF.Cleanups.forwardCleanup(cleanup);
|
|
buf.finishInitialization(SGF);
|
|
};
|
|
translateAndImplodeIntoBuffer(
|
|
cast<TupleType>(loweredTy.getSwiftRValueType()),
|
|
inputTupleType,
|
|
outputTupleType,
|
|
*tupleTemp.get());
|
|
SGF.B.createInjectEnumAddr(Loc, optionalBuf, someDecl);
|
|
auto payload = tupleTemp->getManagedAddress();
|
|
Outputs.push_back(ManagedValue(optionalBuf, payload.getCleanup()));
|
|
}
|
|
}
|
|
|
|
/// Handle a tuple that has been exploded in both the input and
|
|
/// the output.
|
|
void translateParallelExploded(AbstractionPattern inputOrigType,
|
|
CanTupleType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanTupleType outputSubstType) {
|
|
assert(inputOrigType.matchesTuple(inputSubstType));
|
|
assert(outputOrigType.matchesTuple(outputSubstType));
|
|
// Non-materializable input and materializable output occurs
|
|
// when witness method thunks re-abstract a non-mutating
|
|
// witness for a mutating requirement. The inout self is just
|
|
// loaded to produce a value in this case.
|
|
assert(inputSubstType->hasInOut() ||
|
|
!outputSubstType->hasInOut());
|
|
assert(inputSubstType->getNumElements() ==
|
|
outputSubstType->getNumElements());
|
|
|
|
for (auto index : indices(outputSubstType.getElementTypes())) {
|
|
translate(inputOrigType.getTupleElementType(index),
|
|
inputSubstType.getElementType(index),
|
|
outputOrigType.getTupleElementType(index),
|
|
outputSubstType.getElementType(index));
|
|
}
|
|
}
|
|
|
|
/// Given that a tuple value is being passed indirectly in the
|
|
/// input, explode it and translate the elements.
|
|
void translateAndExplodeOutOf(AbstractionPattern inputOrigType,
|
|
CanTupleType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanTupleType outputSubstType,
|
|
ManagedValue inputTupleAddr) {
|
|
assert(inputOrigType.isTypeParameter());
|
|
assert(outputOrigType.matchesTuple(outputSubstType));
|
|
assert(!inputSubstType->hasInOut() &&
|
|
!outputSubstType->hasInOut());
|
|
assert(inputSubstType->getNumElements() ==
|
|
outputSubstType->getNumElements());
|
|
|
|
SmallVector<ManagedValueAndType, 4> inputEltAddrs;
|
|
explodeTuple(SGF, Loc, inputTupleAddr, inputEltAddrs);
|
|
assert(inputEltAddrs.size() == outputSubstType->getNumElements());
|
|
|
|
for (auto index : indices(outputSubstType.getElementTypes())) {
|
|
auto inputEltOrigType = inputOrigType.getTupleElementType(index);
|
|
auto inputEltSubstType = inputSubstType.getElementType(index);
|
|
auto outputEltOrigType = outputOrigType.getTupleElementType(index);
|
|
auto outputEltSubstType = outputSubstType.getElementType(index);
|
|
auto inputEltAddr = inputEltAddrs[index].first;
|
|
assert(inputEltAddr.getType().isAddress());
|
|
|
|
if (auto outputEltTupleType = dyn_cast<TupleType>(outputEltSubstType)) {
|
|
assert(outputEltOrigType.isTuple());
|
|
auto inputEltTupleType = cast<TupleType>(inputEltSubstType);
|
|
translateAndExplodeOutOf(inputEltOrigType,
|
|
inputEltTupleType,
|
|
outputEltOrigType,
|
|
outputEltTupleType,
|
|
inputEltAddr);
|
|
} else {
|
|
auto outputType = claimNextOutputType();
|
|
translateSingle(inputEltOrigType,
|
|
inputEltSubstType,
|
|
outputEltOrigType,
|
|
outputEltSubstType,
|
|
inputEltAddr,
|
|
outputType);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Given that a tuple value is being passed indirectly in the
|
|
/// output, translate the elements and implode it.
|
|
void translateAndImplodeInto(AbstractionPattern inputOrigType,
|
|
CanTupleType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanTupleType outputSubstType,
|
|
TemporaryInitialization &tupleInit) {
|
|
assert(inputOrigType.matchesTuple(inputSubstType));
|
|
assert(outputOrigType.isTypeParameter());
|
|
assert(!inputSubstType->hasInOut() &&
|
|
!outputSubstType->hasInOut());
|
|
assert(inputSubstType->getNumElements() ==
|
|
outputSubstType->getNumElements());
|
|
|
|
SmallVector<CleanupHandle, 4> cleanups;
|
|
|
|
for (auto index : indices(outputSubstType.getElementTypes())) {
|
|
auto inputEltOrigType = inputOrigType.getTupleElementType(index);
|
|
auto inputEltSubstType = inputSubstType.getElementType(index);
|
|
auto outputEltOrigType = outputOrigType.getTupleElementType(index);
|
|
auto outputEltSubstType = outputSubstType.getElementType(index);
|
|
auto eltAddr =
|
|
SGF.B.createTupleElementAddr(Loc, tupleInit.getAddress(), index);
|
|
|
|
auto &outputEltTL = SGF.getTypeLowering(eltAddr->getType());
|
|
CleanupHandle eltCleanup =
|
|
SGF.enterDormantTemporaryCleanup(eltAddr, outputEltTL);
|
|
if (eltCleanup.isValid()) cleanups.push_back(eltCleanup);
|
|
|
|
TemporaryInitialization eltInit(eltAddr, eltCleanup);
|
|
if (auto outputEltTupleType = dyn_cast<TupleType>(outputEltSubstType)) {
|
|
auto inputEltTupleType = cast<TupleType>(inputEltSubstType);
|
|
translateAndImplodeInto(inputEltOrigType, inputEltTupleType,
|
|
outputEltOrigType, outputEltTupleType,
|
|
eltInit);
|
|
} else {
|
|
// Otherwise, we come from a single value.
|
|
auto input = claimNextInput();
|
|
translateSingleInto(inputEltOrigType, inputEltSubstType,
|
|
outputEltOrigType, outputEltSubstType,
|
|
input, eltInit);
|
|
}
|
|
}
|
|
|
|
// Deactivate all the element cleanups and activate the tuple cleanup.
|
|
for (auto cleanup : cleanups)
|
|
SGF.Cleanups.forwardCleanup(cleanup);
|
|
tupleInit.finishInitialization(SGF);
|
|
}
|
|
|
|
/// Translate a single value and add it as an output.
|
|
void translateSingle(AbstractionPattern inputOrigType,
|
|
CanType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanType outputSubstType,
|
|
ManagedValue input,
|
|
SILParameterInfo result) {
|
|
// Easy case: we want to pass exactly this value.
|
|
if (input.getType() == result.getSILType()) {
|
|
Outputs.push_back(input);
|
|
return;
|
|
}
|
|
|
|
switch (result.getConvention()) {
|
|
// Direct translation is relatively easy.
|
|
case ParameterConvention::Direct_Owned:
|
|
case ParameterConvention::Direct_Unowned:
|
|
case ParameterConvention::Direct_Deallocating:
|
|
case ParameterConvention::Direct_Guaranteed: {
|
|
auto output = translatePrimitive(inputOrigType, inputSubstType,
|
|
outputOrigType, outputSubstType,
|
|
input);
|
|
assert(output.getType() == result.getSILType());
|
|
Outputs.push_back(output);
|
|
return;
|
|
}
|
|
|
|
case ParameterConvention::Indirect_Inout: {
|
|
// If it's inout, we need writeback.
|
|
llvm::errs() << "inout writeback in abstraction difference thunk "
|
|
"not yet implemented\n";
|
|
llvm::errs() << "input value ";
|
|
input.getValue()->dump();
|
|
llvm::errs() << "output type " << result.getSILType() << "\n";
|
|
abort();
|
|
}
|
|
case ParameterConvention::Indirect_In:
|
|
case ParameterConvention::Indirect_In_Guaranteed: {
|
|
// We need to translate into a temporary.
|
|
auto &outputTL = SGF.getTypeLowering(result.getSILType());
|
|
auto temp = SGF.emitTemporary(Loc, outputTL);
|
|
translateSingleInto(inputOrigType, inputSubstType,
|
|
outputOrigType, outputSubstType,
|
|
input, *temp.get());
|
|
Outputs.push_back(temp->getManagedAddress());
|
|
return;
|
|
}
|
|
case ParameterConvention::Indirect_InoutAliasable: {
|
|
llvm_unreachable("abstraction difference in aliasable argument not "
|
|
"allowed");
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("Covered switch isn't covered?!");
|
|
}
|
|
|
|
/// Translate a single value and initialize the given temporary with it.
|
|
void translateSingleInto(AbstractionPattern inputOrigType,
|
|
CanType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanType outputSubstType,
|
|
ManagedValue input,
|
|
TemporaryInitialization &temp) {
|
|
auto output = translatePrimitive(inputOrigType, inputSubstType,
|
|
outputOrigType, outputSubstType,
|
|
input, SGFContext(&temp));
|
|
forceInto(output, temp);
|
|
}
|
|
|
|
/// Apply primitive translation to the given value.
|
|
ManagedValue translatePrimitive(AbstractionPattern inputOrigType,
|
|
CanType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanType outputSubstType,
|
|
ManagedValue input,
|
|
SGFContext context = SGFContext()) {
|
|
return SGF.emitTransformedValue(Loc, input,
|
|
inputOrigType, inputSubstType,
|
|
outputOrigType, outputSubstType,
|
|
context);
|
|
}
|
|
|
|
/// Force the given result into the given initialization.
|
|
void forceInto(ManagedValue result, TemporaryInitialization &temp) {
|
|
emitForceInto(SGF, Loc, result, temp);
|
|
}
|
|
|
|
ManagedValue claimNextInput() {
|
|
return claimNext(Inputs);
|
|
}
|
|
|
|
SILParameterInfo claimNextOutputType() {
|
|
return claimNext(OutputTypes);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// Forward arguments according to a function type's ownership conventions.
|
|
static void forwardFunctionArguments(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
CanSILFunctionType fTy,
|
|
ArrayRef<ManagedValue> managedArgs,
|
|
SmallVectorImpl<SILValue> &forwardedArgs) {
|
|
auto argTypes = fTy->getParameters();
|
|
for (auto index : indices(managedArgs)) {
|
|
auto &arg = managedArgs[index];
|
|
auto argTy = argTypes[index];
|
|
forwardedArgs.push_back(argTy.isConsumed() ? arg.forward(gen)
|
|
: arg.getValue());
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// A helper class to translate the inner results to the outer results.
|
|
///
|
|
/// Creating a result-translation plan involves three basic things:
|
|
/// - building SILArguments for each of the outer indirect results
|
|
/// - building a list of SILValues for each of the inner indirect results
|
|
/// - building a list of Operations to perform which will reabstract
|
|
/// the inner results to match the outer.
|
|
class ResultPlanner {
|
|
SILGenFunction &Gen;
|
|
SILLocation Loc;
|
|
|
|
/// A single result-translation operation.
|
|
struct Operation {
|
|
enum Kind {
|
|
/// Take the last N direct outer results, tuple them, and make that a
|
|
/// new direct outer result.
|
|
///
|
|
/// Valid: NumElements, OuterResult
|
|
TupleDirect,
|
|
|
|
/// Take the last direct outer result, inject it into an optional
|
|
/// type, and make that a new direct outer result.
|
|
///
|
|
/// Valid: SomeDecl, OuterResult
|
|
InjectOptionalDirect,
|
|
|
|
/// Finish building an optional Some in the given address.
|
|
///
|
|
/// Valid: SomeDecl, OuterResultAddr
|
|
InjectOptionalIndirect,
|
|
|
|
/// Take the next direct inner result and just make it a direct
|
|
/// outer result.
|
|
///
|
|
/// Valid: InnerResult, OuterResult.
|
|
DirectToDirect,
|
|
|
|
/// Take the next direct inner result and store it into an
|
|
/// outer result address.
|
|
///
|
|
/// Valid: InnerDirect, OuterResultAddr.
|
|
DirectToIndirect,
|
|
|
|
/// Take from an indirect inner result and make it the next outer
|
|
/// direct result.
|
|
///
|
|
/// Valid: InnerResultAddr, OuterResult.
|
|
IndirectToDirect,
|
|
|
|
/// Take from an indirect inner result into an outer indirect result.
|
|
///
|
|
/// Valid: InnerResultAddr, OuterResultAddr.
|
|
IndirectToIndirect,
|
|
|
|
/// Take a value out of the source inner result address, reabstract
|
|
/// it, and initialize the destination outer result address.
|
|
///
|
|
/// Valid: reabstraction info, InnerAddress, OuterAddress.
|
|
ReabstractIndirectToIndirect,
|
|
|
|
/// Take a value out of the source inner result address, reabstract
|
|
/// it, and add it as the next direct outer result.
|
|
///
|
|
/// Valid: reabstraction info, InnerAddress, OuterResult.
|
|
ReabstractIndirectToDirect,
|
|
|
|
/// Take the next direct inner result, reabstract it, and initialize
|
|
/// the destination outer result address.
|
|
///
|
|
/// Valid: reabstraction info, InnerResult, OuterAddress.
|
|
ReabstractDirectToIndirect,
|
|
|
|
/// Take the next direct inner result, reabstract it, and add it as
|
|
/// the next direct outer result.
|
|
///
|
|
/// Valid: reabstraction info, InnerResult, OuterResult.
|
|
ReabstractDirectToDirect,
|
|
};
|
|
|
|
Operation(Kind kind) : TheKind(kind) {}
|
|
|
|
Kind TheKind;
|
|
|
|
// Reabstraction information. Only valid for reabstraction kinds.
|
|
AbstractionPattern InnerOrigType = AbstractionPattern::getInvalid();
|
|
AbstractionPattern OuterOrigType = AbstractionPattern::getInvalid();
|
|
CanType InnerSubstType, OuterSubstType;
|
|
|
|
union {
|
|
SILValue InnerResultAddr;
|
|
SILResultInfo InnerResult;
|
|
unsigned NumElements;
|
|
EnumElementDecl *SomeDecl;
|
|
};
|
|
|
|
union {
|
|
SILValue OuterResultAddr;
|
|
SILResultInfo OuterResult;
|
|
};
|
|
};
|
|
|
|
struct PlanData {
|
|
ArrayRef<SILResultInfo> OuterResults;
|
|
ArrayRef<SILResultInfo> InnerResults;
|
|
SmallVectorImpl<SILValue> &InnerIndirectResultAddrs;
|
|
size_t NextOuterIndirectResultIndex;
|
|
};
|
|
|
|
SmallVector<Operation, 8> Operations;
|
|
public:
|
|
ResultPlanner(SILGenFunction &gen, SILLocation loc) : Gen(gen), Loc(loc) {}
|
|
|
|
void plan(AbstractionPattern innerOrigType, CanType innerSubstType,
|
|
AbstractionPattern outerOrigType, CanType outerSubstType,
|
|
CanSILFunctionType innerFnType, CanSILFunctionType outerFnType,
|
|
SmallVectorImpl<SILValue> &innerIndirectResultAddrs) {
|
|
// Assert that the indirect results are set up like we expect.
|
|
assert(innerIndirectResultAddrs.empty());
|
|
assert(Gen.F.begin()->bbarg_size() >= outerFnType->getNumIndirectResults());
|
|
|
|
innerIndirectResultAddrs.reserve(innerFnType->getNumIndirectResults());
|
|
|
|
PlanData data = {
|
|
outerFnType->getAllResults(),
|
|
innerFnType->getAllResults(),
|
|
innerIndirectResultAddrs,
|
|
0
|
|
};
|
|
|
|
// Recursively walk the result types.
|
|
plan(innerOrigType, innerSubstType, outerOrigType, outerSubstType, data);
|
|
|
|
// Assert that we consumed and produced all the indirect result
|
|
// information we needed.
|
|
assert(data.OuterResults.empty());
|
|
assert(data.InnerResults.empty());
|
|
assert(data.InnerIndirectResultAddrs.size() ==
|
|
innerFnType->getNumIndirectResults());
|
|
assert(data.NextOuterIndirectResultIndex ==
|
|
outerFnType->getNumIndirectResults());
|
|
}
|
|
|
|
SILValue execute(SILValue innerResult);
|
|
|
|
private:
|
|
void execute(ArrayRef<SILValue> innerDirectResults,
|
|
SmallVectorImpl<SILValue> &outerDirectResults);
|
|
|
|
void plan(AbstractionPattern innerOrigType, CanType innerSubstType,
|
|
AbstractionPattern outerOrigType, CanType outerSubstType,
|
|
PlanData &planData);
|
|
|
|
void planIntoIndirectResult(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
PlanData &planData,
|
|
SILValue outerResultAddr);
|
|
void planTupleIntoIndirectResult(AbstractionPattern innerOrigType,
|
|
CanTupleType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
PlanData &planData,
|
|
SILValue outerResultAddr);
|
|
void planScalarIntoIndirectResult(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
PlanData &planData,
|
|
SILResultInfo innerResult,
|
|
SILValue outerResultAddr);
|
|
|
|
void planIntoDirectResult(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
PlanData &planData,
|
|
SILResultInfo outerResult);
|
|
void planScalarIntoDirectResult(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
PlanData &planData,
|
|
SILResultInfo innerResult,
|
|
SILResultInfo outerResult);
|
|
void planTupleIntoDirectResult(AbstractionPattern innerOrigType,
|
|
CanTupleType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
PlanData &planData,
|
|
SILResultInfo outerResult);
|
|
|
|
void planFromIndirectResult(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
PlanData &planData,
|
|
SILValue innerResultAddr);
|
|
void planTupleFromIndirectResult(AbstractionPattern innerOrigType,
|
|
CanTupleType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanTupleType outerSubstType,
|
|
PlanData &planData,
|
|
SILValue innerResultAddr);
|
|
void planScalarFromIndirectResult(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
SILValue innerResultAddr,
|
|
SILResultInfo outerResult,
|
|
SILValue optOuterResultAddr);
|
|
|
|
/// Claim the next inner result from the plan data.
|
|
SILResultInfo claimNextInnerResult(PlanData &data) {
|
|
return claimNext(data.InnerResults);
|
|
}
|
|
|
|
/// Claim the next outer result from the plan data. If it's indirect,
|
|
/// grab its SILArgument.
|
|
std::pair<SILResultInfo, SILValue> claimNextOuterResult(PlanData &data) {
|
|
SILResultInfo result = claimNext(data.OuterResults);
|
|
|
|
SILValue resultAddr;
|
|
if (result.isIndirect()) {
|
|
resultAddr = Gen.F.begin()->getBBArg(data.NextOuterIndirectResultIndex++);
|
|
}
|
|
|
|
return { result, resultAddr };
|
|
}
|
|
|
|
/// Create a temporary address suitable for passing to the given inner
|
|
/// indirect result and add it as an inner indirect result.
|
|
SILValue addInnerIndirectResultTemporary(PlanData &data,
|
|
SILResultInfo innerResult) {
|
|
assert(innerResult.isIndirect());
|
|
auto temporary =
|
|
Gen.emitTemporaryAllocation(Loc, innerResult.getSILType());
|
|
data.InnerIndirectResultAddrs.push_back(temporary);
|
|
return temporary;
|
|
}
|
|
|
|
/// Cause the next inner indirect result to be emitted directly into
|
|
/// the given outer result address.
|
|
void addInPlace(PlanData &data, SILValue outerResultAddr) {
|
|
data.InnerIndirectResultAddrs.push_back(outerResultAddr);
|
|
// Does not require an Operation.
|
|
}
|
|
|
|
Operation &addOperation(Operation::Kind kind) {
|
|
Operations.emplace_back(kind);
|
|
return Operations.back();
|
|
}
|
|
|
|
void addDirectToDirect(SILResultInfo innerResult, SILResultInfo outerResult) {
|
|
auto &op = addOperation(Operation::DirectToDirect);
|
|
op.InnerResult = innerResult;
|
|
op.OuterResult = outerResult;
|
|
}
|
|
|
|
void addDirectToIndirect(SILResultInfo innerResult,
|
|
SILValue outerResultAddr) {
|
|
auto &op = addOperation(Operation::DirectToIndirect);
|
|
op.InnerResult = innerResult;
|
|
op.OuterResultAddr = outerResultAddr;
|
|
}
|
|
|
|
void addIndirectToDirect(SILValue innerResultAddr,
|
|
SILResultInfo outerResult) {
|
|
auto &op = addOperation(Operation::IndirectToDirect);
|
|
op.InnerResultAddr = innerResultAddr;
|
|
op.OuterResult = outerResult;
|
|
}
|
|
|
|
void addIndirectToIndirect(SILValue innerResultAddr,
|
|
SILValue outerResultAddr) {
|
|
auto &op = addOperation(Operation::IndirectToIndirect);
|
|
op.InnerResultAddr = innerResultAddr;
|
|
op.OuterResultAddr = outerResultAddr;
|
|
}
|
|
|
|
void addTupleDirect(unsigned numElements, SILResultInfo outerResult) {
|
|
auto &op = addOperation(Operation::TupleDirect);
|
|
op.NumElements = numElements;
|
|
op.OuterResult = outerResult;
|
|
}
|
|
|
|
void addInjectOptionalDirect(EnumElementDecl *someDecl,
|
|
SILResultInfo outerResult) {
|
|
auto &op = addOperation(Operation::InjectOptionalDirect);
|
|
op.SomeDecl = someDecl;
|
|
op.OuterResult = outerResult;
|
|
}
|
|
|
|
void addInjectOptionalIndirect(EnumElementDecl *someDecl,
|
|
SILValue outerResultAddr) {
|
|
auto &op = addOperation(Operation::InjectOptionalIndirect);
|
|
op.SomeDecl = someDecl;
|
|
op.OuterResultAddr = outerResultAddr;
|
|
}
|
|
|
|
void addReabstractDirectToDirect(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
SILResultInfo innerResult,
|
|
SILResultInfo outerResult) {
|
|
auto &op = addOperation(Operation::ReabstractDirectToDirect);
|
|
op.InnerResult = innerResult;
|
|
op.OuterResult = outerResult;
|
|
op.InnerOrigType = innerOrigType;
|
|
op.InnerSubstType = innerSubstType;
|
|
op.OuterOrigType = outerOrigType;
|
|
op.OuterSubstType = outerSubstType;
|
|
}
|
|
|
|
void addReabstractDirectToIndirect(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
SILResultInfo innerResult,
|
|
SILValue outerResultAddr) {
|
|
auto &op = addOperation(Operation::ReabstractDirectToIndirect);
|
|
op.InnerResult = innerResult;
|
|
op.OuterResultAddr = outerResultAddr;
|
|
op.InnerOrigType = innerOrigType;
|
|
op.InnerSubstType = innerSubstType;
|
|
op.OuterOrigType = outerOrigType;
|
|
op.OuterSubstType = outerSubstType;
|
|
}
|
|
|
|
void addReabstractIndirectToDirect(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
SILValue innerResultAddr,
|
|
SILResultInfo outerResult) {
|
|
auto &op = addOperation(Operation::ReabstractIndirectToDirect);
|
|
op.InnerResultAddr = innerResultAddr;
|
|
op.OuterResult = outerResult;
|
|
op.InnerOrigType = innerOrigType;
|
|
op.InnerSubstType = innerSubstType;
|
|
op.OuterOrigType = outerOrigType;
|
|
op.OuterSubstType = outerSubstType;
|
|
}
|
|
|
|
void addReabstractIndirectToIndirect(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
SILValue innerResultAddr,
|
|
SILValue outerResultAddr) {
|
|
auto &op = addOperation(Operation::ReabstractIndirectToIndirect);
|
|
op.InnerResultAddr = innerResultAddr;
|
|
op.OuterResultAddr = outerResultAddr;
|
|
op.InnerOrigType = innerOrigType;
|
|
op.InnerSubstType = innerSubstType;
|
|
op.OuterOrigType = outerOrigType;
|
|
op.OuterSubstType = outerSubstType;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Plan the reabstraction of a call result.
|
|
void ResultPlanner::plan(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
PlanData &planData) {
|
|
// The substituted types must match up in tuple-ness and arity.
|
|
// (Existential erasure could complicate this if we add that as a subtyping
|
|
// relationship.)
|
|
assert(isa<TupleType>(innerSubstType) == isa<TupleType>(outerSubstType) ||
|
|
(isa<TupleType>(innerSubstType) &&
|
|
outerSubstType->getAnyOptionalObjectType()));
|
|
assert(!isa<TupleType>(outerSubstType) ||
|
|
cast<TupleType>(innerSubstType)->getNumElements() ==
|
|
cast<TupleType>(outerSubstType)->getNumElements());
|
|
|
|
// If the inner abstraction pattern is a tuple, that result will be expanded.
|
|
if (innerOrigType.isTuple()) {
|
|
auto innerSubstTupleType = cast<TupleType>(innerSubstType);
|
|
|
|
// If the outer abstraction pattern is also a tuple, that result will also
|
|
// be expanded, in parallel with the inner pattern.
|
|
if (outerOrigType.isTuple()) {
|
|
auto outerSubstTupleType = cast<TupleType>(outerSubstType);
|
|
assert(innerSubstTupleType->getNumElements()
|
|
== outerSubstTupleType->getNumElements());
|
|
|
|
// Otherwise, recursively descend into the tuples.
|
|
for (auto eltIndex : indices(innerSubstTupleType.getElementTypes())) {
|
|
plan(innerOrigType.getTupleElementType(eltIndex),
|
|
innerSubstTupleType.getElementType(eltIndex),
|
|
outerOrigType.getTupleElementType(eltIndex),
|
|
outerSubstTupleType.getElementType(eltIndex),
|
|
planData);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Otherwise, the next outer result must be either opaque or optional.
|
|
// In either case, it corresponds to a single result.
|
|
auto outerResult = claimNextOuterResult(planData);
|
|
|
|
// Base the plan on whether the single result is direct or indirect.
|
|
if (outerResult.first.isIndirect()) {
|
|
assert(outerResult.second);
|
|
planTupleIntoIndirectResult(innerOrigType, innerSubstTupleType,
|
|
outerOrigType, outerSubstType,
|
|
planData, outerResult.second);
|
|
} else {
|
|
planTupleIntoDirectResult(innerOrigType, innerSubstTupleType,
|
|
outerOrigType, outerSubstType,
|
|
planData, outerResult.first);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Otherwise, the inner pattern is a scalar; claim the next inner result.
|
|
SILResultInfo innerResult = claimNextInnerResult(planData);
|
|
|
|
assert((!outerOrigType.isTuple() || innerResult.isIndirect()) &&
|
|
"outer pattern is a tuple, inner pattern is not, but inner "
|
|
"result is not indirect?");
|
|
|
|
// If the inner result is a tuple, we need to expand from a temporary.
|
|
if (innerResult.isIndirect() && outerOrigType.isTuple()) {
|
|
SILValue innerResultAddr =
|
|
addInnerIndirectResultTemporary(planData, innerResult);
|
|
planTupleFromIndirectResult(innerOrigType, cast<TupleType>(innerSubstType),
|
|
outerOrigType, cast<TupleType>(outerSubstType),
|
|
planData, innerResultAddr);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, the outer pattern is a scalar; claim the next outer result.
|
|
auto outerResult = claimNextOuterResult(planData);
|
|
|
|
// If the outer result is indirect, plan to emit into that.
|
|
if (outerResult.first.isIndirect()) {
|
|
assert(outerResult.second);
|
|
planScalarIntoIndirectResult(innerOrigType, innerSubstType,
|
|
outerOrigType, outerSubstType,
|
|
planData, innerResult, outerResult.second);
|
|
|
|
} else {
|
|
planScalarIntoDirectResult(innerOrigType, innerSubstType,
|
|
outerOrigType, outerSubstType,
|
|
planData, innerResult, outerResult.first);
|
|
}
|
|
}
|
|
|
|
/// Plan the emission of a call result into an outer result address.
|
|
void ResultPlanner::planIntoIndirectResult(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
PlanData &planData,
|
|
SILValue outerResultAddr) {
|
|
assert(!outerOrigType.isTuple());
|
|
|
|
// If the inner pattern is a tuple, expand it.
|
|
if (innerOrigType.isTuple()) {
|
|
planTupleIntoIndirectResult(innerOrigType, cast<TupleType>(innerSubstType),
|
|
outerOrigType, outerSubstType,
|
|
planData, outerResultAddr);
|
|
|
|
// Otherwise, it's scalar.
|
|
} else {
|
|
// Claim the next inner result.
|
|
SILResultInfo innerResult = claimNextInnerResult(planData);
|
|
|
|
planScalarIntoIndirectResult(innerOrigType, innerSubstType,
|
|
outerOrigType, outerSubstType,
|
|
planData, innerResult, outerResultAddr);
|
|
}
|
|
}
|
|
|
|
/// Plan the emission of a call result into an outer result address,
|
|
/// given that the inner abstraction pattern is a tuple.
|
|
void
|
|
ResultPlanner::planTupleIntoIndirectResult(AbstractionPattern innerOrigType,
|
|
CanTupleType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
PlanData &planData,
|
|
SILValue outerResultAddr) {
|
|
assert(innerOrigType.isTuple());
|
|
assert(!outerOrigType.isTuple());
|
|
|
|
CanTupleType outerSubstTupleType = dyn_cast<TupleType>(outerSubstType);
|
|
|
|
// If the outer type is not a tuple, it must be optional.
|
|
if (!outerSubstTupleType) {
|
|
// Figure out what kind of optional it is.
|
|
OptionalTypeKind optKind;
|
|
CanType outerSubstObjectType =
|
|
outerSubstType.getAnyOptionalObjectType(optKind);
|
|
assert(outerSubstObjectType &&
|
|
"inner type was a tuple but outer type was neither a tuple nor "
|
|
"optional");
|
|
auto someDecl = Gen.getASTContext().getOptionalSomeDecl(optKind);
|
|
|
|
// Prepare the value slot in the optional value.
|
|
SILType outerObjectType =
|
|
outerResultAddr->getType().getAnyOptionalObjectType(Gen.SGM.M, optKind);
|
|
SILValue outerObjectResultAddr
|
|
= Gen.B.createInitEnumDataAddr(Loc, outerResultAddr, someDecl,
|
|
outerObjectType);
|
|
|
|
// Emit into that address.
|
|
planTupleIntoIndirectResult(innerOrigType, innerSubstType,
|
|
outerOrigType.getAnyOptionalObjectType(),
|
|
outerSubstObjectType,
|
|
planData, outerObjectResultAddr);
|
|
|
|
// Add an operation to finish the enum initialization.
|
|
addInjectOptionalIndirect(someDecl, outerResultAddr);
|
|
return;
|
|
}
|
|
|
|
assert(innerSubstType->getNumElements()
|
|
== outerSubstTupleType->getNumElements());
|
|
|
|
for (auto eltIndex : indices(innerSubstType.getElementTypes())) {
|
|
// Project the address of the element.
|
|
SILValue outerEltResultAddr =
|
|
Gen.B.createTupleElementAddr(Loc, outerResultAddr, eltIndex);
|
|
|
|
// Plan to emit into that location.
|
|
planIntoIndirectResult(innerOrigType.getTupleElementType(eltIndex),
|
|
innerSubstType.getElementType(eltIndex),
|
|
outerOrigType.getTupleElementType(eltIndex),
|
|
outerSubstTupleType.getElementType(eltIndex),
|
|
planData, outerEltResultAddr);
|
|
}
|
|
}
|
|
|
|
/// Plan the emission of a call result as a single outer direct result.
|
|
void
|
|
ResultPlanner::planIntoDirectResult(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
PlanData &planData,
|
|
SILResultInfo outerResult) {
|
|
assert(!outerOrigType.isTuple());
|
|
|
|
// If the inner pattern is a tuple, expand it.
|
|
if (innerOrigType.isTuple()) {
|
|
planTupleIntoDirectResult(innerOrigType, cast<TupleType>(innerSubstType),
|
|
outerOrigType, outerSubstType,
|
|
planData, outerResult);
|
|
|
|
// Otherwise, it's scalar.
|
|
} else {
|
|
// Claim the next inner result.
|
|
SILResultInfo innerResult = claimNextInnerResult(planData);
|
|
|
|
planScalarIntoDirectResult(innerOrigType, innerSubstType,
|
|
outerOrigType, outerSubstType,
|
|
planData, innerResult, outerResult);
|
|
}
|
|
}
|
|
|
|
/// Plan the emission of a call result as a single outer direct result,
|
|
/// given that the inner abstraction pattern is a tuple.
|
|
void
|
|
ResultPlanner::planTupleIntoDirectResult(AbstractionPattern innerOrigType,
|
|
CanTupleType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
PlanData &planData,
|
|
SILResultInfo outerResult) {
|
|
assert(innerOrigType.isTuple());
|
|
assert(!outerOrigType.isTuple());
|
|
|
|
CanTupleType outerSubstTupleType = dyn_cast<TupleType>(outerSubstType);
|
|
|
|
// If the outer type is not a tuple, it must be optional.
|
|
if (!outerSubstTupleType) {
|
|
OptionalTypeKind optKind;
|
|
CanType outerSubstObjectType =
|
|
outerSubstType.getAnyOptionalObjectType(optKind);
|
|
assert(outerSubstObjectType &&
|
|
"inner type was a tuple but outer type was neither a tuple nor "
|
|
"optional");
|
|
|
|
auto someDecl = Gen.getASTContext().getOptionalSomeDecl(optKind);
|
|
SILType outerObjectType =
|
|
outerResult.getSILType().getAnyOptionalObjectType(Gen.SGM.M, optKind);
|
|
SILResultInfo outerObjectResult(outerObjectType.getSwiftRValueType(),
|
|
outerResult.getConvention());
|
|
|
|
// Plan to leave the tuple elements as a single direct outer result.
|
|
planTupleIntoDirectResult(innerOrigType, innerSubstType,
|
|
outerOrigType.getAnyOptionalObjectType(),
|
|
outerSubstObjectType,
|
|
planData, outerObjectResult);
|
|
|
|
// Take that result and inject it into an optional.
|
|
addInjectOptionalDirect(someDecl, outerResult);
|
|
return;
|
|
}
|
|
|
|
// Otherwise, the outer type is a tuple.
|
|
assert(innerSubstType->getNumElements()
|
|
== outerSubstTupleType->getNumElements());
|
|
|
|
// Create direct outer results for each of the elements.
|
|
for (auto eltIndex : indices(innerSubstType.getElementTypes())) {
|
|
auto outerEltType = outerResult.getSILType().getTupleElementType(eltIndex);
|
|
SILResultInfo outerEltResult(outerEltType.getSwiftRValueType(),
|
|
outerResult.getConvention());
|
|
|
|
planIntoDirectResult(innerOrigType.getTupleElementType(eltIndex),
|
|
innerSubstType.getElementType(eltIndex),
|
|
outerOrigType.getTupleElementType(eltIndex),
|
|
outerSubstTupleType.getElementType(eltIndex),
|
|
planData, outerEltResult);
|
|
}
|
|
|
|
// Bind them together into a single tuple.
|
|
addTupleDirect(innerSubstType->getNumElements(), outerResult);
|
|
}
|
|
|
|
/// Plan the emission of a call result as a single outer direct result,
|
|
/// given that the inner abstraction pattern is not a tuple.
|
|
void ResultPlanner::planScalarIntoDirectResult(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
PlanData &planData,
|
|
SILResultInfo innerResult,
|
|
SILResultInfo outerResult) {
|
|
assert(!innerOrigType.isTuple());
|
|
assert(!outerOrigType.isTuple());
|
|
|
|
// If the inner result is indirect, plan to emit from that.
|
|
if (innerResult.isIndirect()) {
|
|
SILValue innerResultAddr =
|
|
addInnerIndirectResultTemporary(planData, innerResult);
|
|
planScalarFromIndirectResult(innerOrigType, innerSubstType,
|
|
outerOrigType, outerSubstType,
|
|
innerResultAddr, outerResult, SILValue());
|
|
return;
|
|
}
|
|
|
|
// Otherwise, we have two direct results.
|
|
|
|
// If there's no abstraction difference, it's just returned directly.
|
|
if (innerResult.getSILType() == outerResult.getSILType()) {
|
|
addDirectToDirect(innerResult, outerResult);
|
|
|
|
// Otherwise, we need to reabstract.
|
|
} else {
|
|
addReabstractDirectToDirect(innerOrigType, innerSubstType,
|
|
outerOrigType, outerSubstType,
|
|
innerResult, outerResult);
|
|
}
|
|
}
|
|
|
|
/// Plan the emission of a call result into an outer result address,
|
|
/// given that the inner abstraction pattern is not a tuple.
|
|
void
|
|
ResultPlanner::planScalarIntoIndirectResult(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
PlanData &planData,
|
|
SILResultInfo innerResult,
|
|
SILValue outerResultAddr) {
|
|
assert(!innerOrigType.isTuple());
|
|
assert(!outerOrigType.isTuple());
|
|
|
|
bool hasAbstractionDifference =
|
|
(innerResult.getType() != outerResultAddr->getType().getSwiftRValueType());
|
|
|
|
// If the inner result is indirect, we need some memory to emit it into.
|
|
if (innerResult.isIndirect()) {
|
|
// If there's no abstraction difference, that can just be
|
|
// in-place into the outer result address.
|
|
if (!hasAbstractionDifference) {
|
|
addInPlace(planData, outerResultAddr);
|
|
|
|
// Otherwise, we'll need a temporary.
|
|
} else {
|
|
SILValue innerResultAddr =
|
|
addInnerIndirectResultTemporary(planData, innerResult);
|
|
addReabstractIndirectToIndirect(innerOrigType, innerSubstType,
|
|
outerOrigType, outerSubstType,
|
|
innerResultAddr, outerResultAddr);
|
|
}
|
|
|
|
// Otherwise, the inner result is direct.
|
|
} else {
|
|
// If there's no abstraction difference, we just need to store.
|
|
if (!hasAbstractionDifference) {
|
|
addDirectToIndirect(innerResult, outerResultAddr);
|
|
|
|
// Otherwise, we need to reabstract and store.
|
|
} else {
|
|
addReabstractDirectToIndirect(innerOrigType, innerSubstType,
|
|
outerOrigType, outerSubstType,
|
|
innerResult, outerResultAddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Plan the emission of a call result from an inner result address.
|
|
void ResultPlanner::planFromIndirectResult(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
PlanData &planData,
|
|
SILValue innerResultAddr) {
|
|
assert(!innerOrigType.isTuple());
|
|
|
|
if (outerOrigType.isTuple()) {
|
|
planTupleFromIndirectResult(innerOrigType, cast<TupleType>(innerSubstType),
|
|
outerOrigType, cast<TupleType>(outerSubstType),
|
|
planData, innerResultAddr);
|
|
} else {
|
|
auto outerResult = claimNextOuterResult(planData);
|
|
planScalarFromIndirectResult(innerOrigType, innerSubstType,
|
|
outerOrigType, outerSubstType,
|
|
innerResultAddr,
|
|
outerResult.first, outerResult.second);
|
|
}
|
|
}
|
|
|
|
/// Plan the emission of a call result from an inner result address, given
|
|
/// that the outer abstraction pattern is a tuple.
|
|
void
|
|
ResultPlanner::planTupleFromIndirectResult(AbstractionPattern innerOrigType,
|
|
CanTupleType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanTupleType outerSubstType,
|
|
PlanData &planData,
|
|
SILValue innerResultAddr) {
|
|
assert(!innerOrigType.isTuple());
|
|
assert(innerSubstType->getNumElements() == outerSubstType->getNumElements());
|
|
assert(outerOrigType.isTuple());
|
|
|
|
for (auto eltIndex : indices(innerSubstType.getElementTypes())) {
|
|
// Project the address of the element.
|
|
SILValue innerEltResultAddr =
|
|
Gen.B.createTupleElementAddr(Loc, innerResultAddr, eltIndex);
|
|
|
|
// Plan to expand from that location.
|
|
planFromIndirectResult(innerOrigType.getTupleElementType(eltIndex),
|
|
innerSubstType.getElementType(eltIndex),
|
|
outerOrigType.getTupleElementType(eltIndex),
|
|
outerSubstType.getElementType(eltIndex),
|
|
planData, innerEltResultAddr);
|
|
}
|
|
}
|
|
|
|
/// Plan the emission of a call result from an inner result address,
|
|
/// given that the outer abstraction pattern is not a tuple.
|
|
void
|
|
ResultPlanner::planScalarFromIndirectResult(AbstractionPattern innerOrigType,
|
|
CanType innerSubstType,
|
|
AbstractionPattern outerOrigType,
|
|
CanType outerSubstType,
|
|
SILValue innerResultAddr,
|
|
SILResultInfo outerResult,
|
|
SILValue optOuterResultAddr) {
|
|
assert(!innerOrigType.isTuple());
|
|
assert(!outerOrigType.isTuple());
|
|
assert(outerResult.isIndirect() == bool(optOuterResultAddr));
|
|
|
|
bool hasAbstractionDifference =
|
|
(innerResultAddr->getType().getSwiftRValueType() != outerResult.getType());
|
|
|
|
// The outer result can be indirect, and it doesn't necessarily have an
|
|
// abstraction difference. Note that we should only end up in this path
|
|
// in cases where simply forwarding the outer result address wasn't possible.
|
|
|
|
if (outerResult.isIndirect()) {
|
|
assert(optOuterResultAddr);
|
|
if (!hasAbstractionDifference) {
|
|
addIndirectToIndirect(innerResultAddr, optOuterResultAddr);
|
|
} else {
|
|
addReabstractIndirectToIndirect(innerOrigType, innerSubstType,
|
|
outerOrigType, outerSubstType,
|
|
innerResultAddr, optOuterResultAddr);
|
|
}
|
|
} else {
|
|
if (!hasAbstractionDifference) {
|
|
addIndirectToDirect(innerResultAddr, outerResult);
|
|
} else {
|
|
addReabstractIndirectToDirect(innerOrigType, innerSubstType,
|
|
outerOrigType, outerSubstType,
|
|
innerResultAddr, outerResult);
|
|
}
|
|
}
|
|
}
|
|
|
|
SILValue ResultPlanner::execute(SILValue innerResult) {
|
|
// The code emission here assumes that we don't need to have
|
|
// active cleanups for all the result values we're not actively
|
|
// transforming. In other words, it's not "exception-safe".
|
|
|
|
// Explode the inner direct results.
|
|
SmallVector<SILValue, 4> innerDirectResults;
|
|
auto innerResultTupleType = innerResult->getType().getAs<TupleType>();
|
|
if (!innerResultTupleType) {
|
|
innerDirectResults.push_back(innerResult);
|
|
} else {
|
|
for (auto eltIndex : indices(innerResultTupleType.getElementTypes())) {
|
|
auto elt = Gen.B.createTupleExtract(Loc, innerResult, eltIndex);
|
|
innerDirectResults.push_back(elt);
|
|
}
|
|
}
|
|
|
|
// Translate the result values.
|
|
SmallVector<SILValue, 4> outerDirectResults;
|
|
execute(innerDirectResults, outerDirectResults);
|
|
|
|
// Implode the outer direct results.
|
|
SILValue outerResult;
|
|
if (outerDirectResults.size() == 1) {
|
|
outerResult = outerDirectResults[0];
|
|
} else {
|
|
outerResult = Gen.B.createTuple(Loc, outerDirectResults);
|
|
}
|
|
|
|
return outerResult;
|
|
}
|
|
|
|
void ResultPlanner::execute(ArrayRef<SILValue> innerDirectResults,
|
|
SmallVectorImpl<SILValue> &outerDirectResults) {
|
|
// A helper function to claim an inner direct result.
|
|
auto claimNextInnerDirectResult = [&](SILResultInfo result) -> ManagedValue {
|
|
auto resultValue = claimNext(innerDirectResults);
|
|
assert(resultValue->getType() == result.getSILType());
|
|
auto &resultTL = Gen.getTypeLowering(result.getSILType());
|
|
switch (result.getConvention()) {
|
|
case ResultConvention::Indirect:
|
|
llvm_unreachable("claiming indirect result as direct!");
|
|
case ResultConvention::Owned:
|
|
case ResultConvention::Autoreleased:
|
|
return Gen.emitManagedRValueWithCleanup(resultValue, resultTL);
|
|
case ResultConvention::UnownedInnerPointer:
|
|
// FIXME: We can't reasonably lifetime-extend an inner-pointer result
|
|
// through a thunk. We don't know which parameter to the thunk was
|
|
// originally 'self'.
|
|
Gen.SGM.diagnose(Loc.getSourceLoc(), diag::not_implemented,
|
|
"reabstraction of returns_inner_pointer function");
|
|
SWIFT_FALLTHROUGH;
|
|
case ResultConvention::Unowned:
|
|
resultTL.emitRetainValue(Gen.B, Loc, resultValue);
|
|
return Gen.emitManagedRValueWithCleanup(resultValue, resultTL);
|
|
}
|
|
llvm_unreachable("bad result convention!");
|
|
};
|
|
|
|
// A helper function to add an outer direct result.
|
|
auto addOuterDirectResult = [&](ManagedValue resultValue,
|
|
SILResultInfo result) {
|
|
assert(resultValue.getType() ==
|
|
Gen.F.mapTypeIntoContext(result.getSILType()));
|
|
outerDirectResults.push_back(resultValue.forward(Gen));
|
|
};
|
|
|
|
auto emitReabstract =
|
|
[&](Operation &op, bool innerIsIndirect, bool outerIsIndirect) {
|
|
// Set up the inner result.
|
|
ManagedValue innerResult;
|
|
if (innerIsIndirect) {
|
|
innerResult = Gen.emitManagedBufferWithCleanup(op.InnerResultAddr);
|
|
} else {
|
|
innerResult = claimNextInnerDirectResult(op.InnerResult);
|
|
}
|
|
|
|
// Set up the context into which to emit the outer result.
|
|
SGFContext outerResultCtxt;
|
|
Optional<TemporaryInitialization> outerResultInit;
|
|
if (outerIsIndirect) {
|
|
outerResultInit.emplace(op.OuterResultAddr, CleanupHandle::invalid());
|
|
outerResultCtxt = SGFContext(&*outerResultInit);
|
|
}
|
|
|
|
// Perform the translation.
|
|
auto translated =
|
|
Gen.emitTransformedValue(Loc, innerResult,
|
|
op.InnerOrigType, op.InnerSubstType,
|
|
op.OuterOrigType, op.OuterSubstType,
|
|
outerResultCtxt);
|
|
|
|
// If the outer is indirect, force it into the context.
|
|
if (outerIsIndirect) {
|
|
if (!translated.isInContext()) {
|
|
translated.forwardInto(Gen, Loc, op.OuterResultAddr);
|
|
}
|
|
|
|
// Otherwise, it's a direct result.
|
|
} else {
|
|
addOuterDirectResult(translated, op.OuterResult);
|
|
}
|
|
};
|
|
|
|
// Execute each operation.
|
|
for (auto &op : Operations) {
|
|
switch (op.TheKind) {
|
|
case Operation::DirectToDirect: {
|
|
auto result = claimNextInnerDirectResult(op.InnerResult);
|
|
addOuterDirectResult(result, op.OuterResult);
|
|
continue;
|
|
}
|
|
|
|
case Operation::DirectToIndirect: {
|
|
auto result = claimNextInnerDirectResult(op.InnerResult);
|
|
Gen.B.createStore(Loc, result.forward(Gen), op.OuterResultAddr);
|
|
continue;
|
|
}
|
|
|
|
case Operation::IndirectToDirect: {
|
|
auto resultAddr = op.InnerResultAddr;
|
|
auto &resultTL = Gen.getTypeLowering(resultAddr->getType());
|
|
auto result = Gen.emitManagedRValueWithCleanup(
|
|
Gen.B.createLoad(Loc, resultAddr), resultTL);
|
|
addOuterDirectResult(result, op.OuterResult);
|
|
continue;
|
|
}
|
|
|
|
case Operation::IndirectToIndirect: {
|
|
// The type could be address-only; just take.
|
|
Gen.B.createCopyAddr(Loc, op.InnerResultAddr, op.OuterResultAddr,
|
|
IsTake, IsInitialization);
|
|
continue;
|
|
}
|
|
|
|
case Operation::ReabstractIndirectToIndirect:
|
|
emitReabstract(op, /*indirect source*/ true, /*indirect dest*/ true);
|
|
continue;
|
|
case Operation::ReabstractIndirectToDirect:
|
|
emitReabstract(op, /*indirect source*/ true, /*indirect dest*/ false);
|
|
continue;
|
|
case Operation::ReabstractDirectToIndirect:
|
|
emitReabstract(op, /*indirect source*/ false, /*indirect dest*/ true);
|
|
continue;
|
|
case Operation::ReabstractDirectToDirect:
|
|
emitReabstract(op, /*indirect source*/ false, /*indirect dest*/ false);
|
|
continue;
|
|
|
|
case Operation::TupleDirect: {
|
|
auto firstEltIndex = outerDirectResults.size() - op.NumElements;
|
|
auto elts = makeArrayRef(outerDirectResults).slice(firstEltIndex);
|
|
auto tupleType = Gen.F.mapTypeIntoContext(op.OuterResult.getSILType());
|
|
auto tuple = Gen.B.createTuple(Loc, tupleType, elts);
|
|
outerDirectResults.resize(firstEltIndex);
|
|
outerDirectResults.push_back(tuple);
|
|
continue;
|
|
}
|
|
|
|
case Operation::InjectOptionalDirect: {
|
|
SILValue value = outerDirectResults.pop_back_val();
|
|
auto tupleType = Gen.F.mapTypeIntoContext(op.OuterResult.getSILType());
|
|
SILValue optValue = Gen.B.createEnum(Loc, value, op.SomeDecl, tupleType);
|
|
outerDirectResults.push_back(optValue);
|
|
continue;
|
|
}
|
|
|
|
case Operation::InjectOptionalIndirect:
|
|
Gen.B.createInjectEnumAddr(Loc, op.OuterResultAddr, op.SomeDecl);
|
|
continue;
|
|
}
|
|
llvm_unreachable("bad operation kind");
|
|
}
|
|
|
|
assert(innerDirectResults.empty() && "didn't consume all inner results?");
|
|
}
|
|
|
|
/// Build the body of a transformation thunk.
|
|
///
|
|
/// \param inputOrigType Abstraction pattern of function value being thunked
|
|
/// \param inputSubstType Formal AST type of function value being thunked
|
|
/// \param outputOrigType Abstraction pattern of the thunk
|
|
/// \param outputSubstType Formal AST type of the thunk
|
|
static void buildThunkBody(SILGenFunction &gen, SILLocation loc,
|
|
AbstractionPattern inputOrigType,
|
|
CanAnyFunctionType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanAnyFunctionType outputSubstType) {
|
|
PrettyStackTraceSILFunction stackTrace("emitting reabstraction thunk in",
|
|
&gen.F);
|
|
auto thunkType = gen.F.getLoweredFunctionType();
|
|
|
|
FullExpr scope(gen.Cleanups, CleanupLocation::get(loc));
|
|
|
|
SmallVector<ManagedValue, 8> params;
|
|
// TODO: Could accept +0 arguments here when forwardFunctionArguments/
|
|
// emitApply can.
|
|
gen.collectThunkParams(loc, params, /*allowPlusZero*/ false);
|
|
|
|
ManagedValue fnValue = params.pop_back_val();
|
|
auto fnType = fnValue.getType().castTo<SILFunctionType>();
|
|
assert(!fnType->isPolymorphic());
|
|
auto argTypes = fnType->getParameters();
|
|
|
|
// Translate the argument values. Function parameters are
|
|
// contravariant: we want to switch the direction of transformation
|
|
// on them by flipping inputOrigType and outputOrigType.
|
|
//
|
|
// For example, a transformation of (Int,Int)->Int to (T,T)->T is
|
|
// one that should take an (Int,Int)->Int value and make it be
|
|
// abstracted like a (T,T)->T value. This must be done with a thunk.
|
|
// Within the thunk body, the result of calling the inner function
|
|
// needs to be translated from Int to T (we receive a normal Int
|
|
// and return it like a T), but the parameters are translated in the
|
|
// other direction (the thunk receives an Int like a T, and passes it
|
|
// like a normal Int when calling the inner function).
|
|
SmallVector<ManagedValue, 8> args;
|
|
TranslateArguments(gen, loc, params, args, argTypes)
|
|
.translate(outputOrigType.getFunctionInputType(),
|
|
outputSubstType.getInput(),
|
|
inputOrigType.getFunctionInputType(),
|
|
inputSubstType.getInput());
|
|
|
|
SmallVector<SILValue, 8> argValues;
|
|
|
|
// Plan the results. This builds argument values for all the
|
|
// inner indirect results.
|
|
ResultPlanner resultPlanner(gen, loc);
|
|
resultPlanner.plan(inputOrigType.getFunctionResultType(),
|
|
inputSubstType.getResult(),
|
|
outputOrigType.getFunctionResultType(),
|
|
outputSubstType.getResult(),
|
|
fnType, thunkType, argValues);
|
|
|
|
// Add the rest of the arguments.
|
|
forwardFunctionArguments(gen, loc, fnType, args, argValues);
|
|
|
|
SILValue innerResult =
|
|
gen.emitApplyWithRethrow(loc, fnValue.forward(gen),
|
|
/*substFnType*/ fnValue.getType(),
|
|
/*substitutions*/ {},
|
|
argValues);
|
|
|
|
// Reabstract the result.
|
|
SILValue outerResult = resultPlanner.execute(innerResult);
|
|
|
|
scope.pop();
|
|
gen.B.createReturn(loc, outerResult);
|
|
}
|
|
|
|
/// Build the type of a function transformation thunk.
|
|
CanSILFunctionType SILGenFunction::buildThunkType(
|
|
ManagedValue fn,
|
|
CanSILFunctionType expectedType,
|
|
CanSILFunctionType &substFnType,
|
|
SmallVectorImpl<Substitution> &subs) {
|
|
auto sourceType = fn.getType().castTo<SILFunctionType>();
|
|
|
|
assert(!expectedType->isPolymorphic());
|
|
assert(!sourceType->isPolymorphic());
|
|
// Can't build a thunk without context, so we require ownership semantics
|
|
// on the result type.
|
|
assert(expectedType->getExtInfo().hasContext());
|
|
|
|
// Just use the generic signature from the context.
|
|
// This isn't necessarily optimal.
|
|
auto genericSig = F.getLoweredFunctionType()->getGenericSignature();
|
|
auto subsArray = F.getForwardingSubstitutions();
|
|
subs.append(subsArray.begin(), subsArray.end());
|
|
|
|
// Add the function type as the parameter.
|
|
SmallVector<SILParameterInfo, 4> params;
|
|
params.append(expectedType->getParameters().begin(),
|
|
expectedType->getParameters().end());
|
|
params.push_back({sourceType,
|
|
sourceType->getExtInfo().hasContext()
|
|
? DefaultThickCalleeConvention
|
|
: ParameterConvention::Direct_Unowned});
|
|
|
|
auto extInfo = expectedType->getExtInfo()
|
|
.withRepresentation(SILFunctionType::Representation::Thin);
|
|
|
|
// Map the parameter and expected types out of context to get the interface
|
|
// type of the thunk.
|
|
SmallVector<SILParameterInfo, 4> interfaceParams;
|
|
interfaceParams.reserve(params.size());
|
|
for (auto ¶m : params) {
|
|
interfaceParams.push_back(
|
|
SILParameterInfo(
|
|
F.mapTypeOutOfContext(param.getType())
|
|
->getCanonicalType(),
|
|
param.getConvention()));
|
|
}
|
|
|
|
SmallVector<SILResultInfo, 4> interfaceResults;
|
|
for (auto &result : expectedType->getAllResults()) {
|
|
auto interfaceResult = result.getWithType(
|
|
F.mapTypeOutOfContext(result.getType())
|
|
->getCanonicalType());
|
|
interfaceResults.push_back(interfaceResult);
|
|
}
|
|
|
|
Optional<SILResultInfo> interfaceErrorResult;
|
|
if (expectedType->hasErrorResult()) {
|
|
interfaceErrorResult = SILResultInfo(
|
|
F.mapTypeOutOfContext(expectedType->getErrorResult().getType())
|
|
->getCanonicalType(),
|
|
expectedType->getErrorResult().getConvention());
|
|
}
|
|
|
|
// The type of the thunk function.
|
|
auto thunkType = SILFunctionType::get(genericSig, extInfo,
|
|
ParameterConvention::Direct_Unowned,
|
|
interfaceParams, interfaceResults,
|
|
interfaceErrorResult,
|
|
getASTContext());
|
|
|
|
// Define the substituted function type for partial_apply's purposes.
|
|
if (!genericSig) {
|
|
substFnType = thunkType;
|
|
} else {
|
|
substFnType = SILFunctionType::get(nullptr, extInfo,
|
|
ParameterConvention::Direct_Unowned,
|
|
params,
|
|
expectedType->getAllResults(),
|
|
expectedType->getOptionalErrorResult(),
|
|
getASTContext());
|
|
}
|
|
|
|
return thunkType;
|
|
}
|
|
|
|
/// Create a reabstraction thunk.
|
|
static ManagedValue createThunk(SILGenFunction &gen,
|
|
SILLocation loc,
|
|
ManagedValue fn,
|
|
AbstractionPattern inputOrigType,
|
|
CanAnyFunctionType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanAnyFunctionType outputSubstType,
|
|
const TypeLowering &expectedTL) {
|
|
auto expectedType = expectedTL.getLoweredType().castTo<SILFunctionType>();
|
|
|
|
// We can't do bridging here.
|
|
assert(expectedType->getLanguage() ==
|
|
fn.getType().castTo<SILFunctionType>()->getLanguage() &&
|
|
"bridging in re-abstraction thunk?");
|
|
|
|
// Declare the thunk.
|
|
SmallVector<Substitution, 4> substitutions;
|
|
CanSILFunctionType substFnType;
|
|
auto thunkType = gen.buildThunkType(fn, expectedType,
|
|
substFnType, substitutions);
|
|
auto thunk = gen.SGM.getOrCreateReabstractionThunk(
|
|
gen.F.getContextGenericParams(),
|
|
thunkType,
|
|
fn.getType().castTo<SILFunctionType>(),
|
|
expectedType,
|
|
gen.F.isFragile());
|
|
|
|
// Build it if necessary.
|
|
if (thunk->empty()) {
|
|
// Borrow the context archetypes from the enclosing function.
|
|
thunk->setContextGenericParams(gen.F.getContextGenericParams());
|
|
SILGenFunction thunkSGF(gen.SGM, *thunk);
|
|
auto loc = RegularLocation::getAutoGeneratedLocation();
|
|
buildThunkBody(thunkSGF, loc,
|
|
inputOrigType, inputSubstType,
|
|
outputOrigType, outputSubstType);
|
|
}
|
|
|
|
// Create it in our current function.
|
|
auto thunkValue = gen.B.createFunctionRef(loc, thunk);
|
|
auto thunkedFn = gen.B.createPartialApply(loc, thunkValue,
|
|
SILType::getPrimitiveObjectType(substFnType),
|
|
substitutions, fn.forward(gen),
|
|
SILType::getPrimitiveObjectType(expectedType));
|
|
return gen.emitManagedRValueWithCleanup(thunkedFn, expectedTL);
|
|
}
|
|
|
|
ManagedValue Transform::transformFunction(ManagedValue fn,
|
|
AbstractionPattern inputOrigType,
|
|
CanAnyFunctionType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanAnyFunctionType outputSubstType,
|
|
const TypeLowering &expectedTL) {
|
|
assert(fn.getType().isObject() &&
|
|
"expected input to emitTransformedFunctionValue to be loaded");
|
|
|
|
auto expectedFnType = expectedTL.getLoweredType().castTo<SILFunctionType>();
|
|
|
|
auto fnType = fn.getType().castTo<SILFunctionType>();
|
|
assert(expectedFnType->getExtInfo().hasContext()
|
|
|| !fnType->getExtInfo().hasContext());
|
|
|
|
// If there's no abstraction difference, we're done.
|
|
if (fnType == expectedFnType) {
|
|
return fn;
|
|
}
|
|
|
|
// Check if we require a re-abstraction thunk.
|
|
if (SGF.SGM.Types.checkForABIDifferences(fnType, expectedFnType) ==
|
|
TypeConverter::ABIDifference::NeedsThunk) {
|
|
assert(expectedFnType->getExtInfo().hasContext()
|
|
&& "conversion thunk will not be thin!");
|
|
return createThunk(SGF, Loc, fn,
|
|
inputOrigType, inputSubstType,
|
|
outputOrigType, outputSubstType,
|
|
expectedTL);
|
|
}
|
|
|
|
// We do not, conversion is trivial.
|
|
auto expectedEI = expectedFnType->getExtInfo();
|
|
auto newEI = expectedEI.withRepresentation(fnType->getRepresentation());
|
|
auto newFnType = adjustFunctionType(expectedFnType, newEI,
|
|
fnType->getCalleeConvention());
|
|
// Apply any ABI-compatible conversions before doing thin-to-thick.
|
|
if (fnType != newFnType) {
|
|
SILType resTy = SILType::getPrimitiveObjectType(newFnType);
|
|
fn = ManagedValue(
|
|
SGF.B.createConvertFunction(Loc, fn.getValue(), resTy),
|
|
fn.getCleanup());
|
|
}
|
|
|
|
// Now do thin-to-thick if necessary.
|
|
if (newFnType != expectedFnType) {
|
|
assert(expectedEI.getRepresentation() ==
|
|
SILFunctionTypeRepresentation::Thick &&
|
|
"all other conversions should have been handled by "
|
|
"FunctionConversionExpr");
|
|
SILType resTy = SILType::getPrimitiveObjectType(expectedFnType);
|
|
fn = SGF.emitManagedRValueWithCleanup(
|
|
SGF.B.createThinToThickFunction(Loc, fn.forward(SGF), resTy));
|
|
}
|
|
|
|
return fn;
|
|
}
|
|
|
|
/// Given a value with the abstraction patterns of the original formal
|
|
/// type, give it the abstraction patterns of the substituted formal type.
|
|
ManagedValue
|
|
SILGenFunction::emitOrigToSubstValue(SILLocation loc, ManagedValue v,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
SGFContext ctxt) {
|
|
|
|
return emitTransformedValue(loc, v,
|
|
origType, substType,
|
|
AbstractionPattern(substType), substType,
|
|
ctxt);
|
|
}
|
|
|
|
/// Given a value with the abstraction patterns of the original formal
|
|
/// type, give it the abstraction patterns of the substituted formal type.
|
|
RValue SILGenFunction::emitOrigToSubstValue(SILLocation loc, RValue &&v,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
SGFContext ctxt) {
|
|
return emitTransformedValue(loc, std::move(v),
|
|
origType, substType,
|
|
AbstractionPattern(substType), substType,
|
|
ctxt);
|
|
}
|
|
|
|
/// Given a value with the abstraction patterns of the substituted
|
|
/// formal type, give it the abstraction patterns of the original
|
|
/// formal type.
|
|
ManagedValue
|
|
SILGenFunction::emitSubstToOrigValue(SILLocation loc, ManagedValue v,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
SGFContext ctxt) {
|
|
return emitTransformedValue(loc, v,
|
|
AbstractionPattern(substType), substType,
|
|
origType, substType,
|
|
ctxt);
|
|
}
|
|
|
|
/// Given a value with the abstraction patterns of the substituted
|
|
/// formal type, give it the abstraction patterns of the original
|
|
/// formal type.
|
|
RValue SILGenFunction::emitSubstToOrigValue(SILLocation loc, RValue &&v,
|
|
AbstractionPattern origType,
|
|
CanType substType,
|
|
SGFContext ctxt) {
|
|
return emitTransformedValue(loc, std::move(v),
|
|
AbstractionPattern(substType), substType,
|
|
origType, substType,
|
|
ctxt);
|
|
}
|
|
|
|
ManagedValue
|
|
SILGenFunction::emitRValueAsOrig(Expr *expr, AbstractionPattern origPattern,
|
|
const TypeLowering &origTL, SGFContext ctxt) {
|
|
auto outputSubstType = expr->getType()->getCanonicalType();
|
|
auto &substTL = getTypeLowering(outputSubstType);
|
|
if (substTL.getLoweredType() == origTL.getLoweredType())
|
|
return emitRValueAsSingleValue(expr, ctxt);
|
|
|
|
ManagedValue temp = emitRValueAsSingleValue(expr);
|
|
return emitSubstToOrigValue(expr, temp, origPattern,
|
|
outputSubstType, ctxt);
|
|
}
|
|
|
|
ManagedValue
|
|
SILGenFunction::emitTransformedValue(SILLocation loc, ManagedValue v,
|
|
CanType inputType,
|
|
CanType outputType,
|
|
SGFContext ctxt) {
|
|
return emitTransformedValue(loc, v,
|
|
AbstractionPattern(inputType), inputType,
|
|
AbstractionPattern(outputType), outputType);
|
|
}
|
|
|
|
ManagedValue
|
|
SILGenFunction::emitTransformedValue(SILLocation loc, ManagedValue v,
|
|
AbstractionPattern inputOrigType,
|
|
CanType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanType outputSubstType,
|
|
SGFContext ctxt) {
|
|
return Transform(*this, loc).transform(v,
|
|
inputOrigType,
|
|
inputSubstType,
|
|
outputOrigType,
|
|
outputSubstType, ctxt);
|
|
}
|
|
|
|
RValue
|
|
SILGenFunction::emitTransformedValue(SILLocation loc, RValue &&v,
|
|
AbstractionPattern inputOrigType,
|
|
CanType inputSubstType,
|
|
AbstractionPattern outputOrigType,
|
|
CanType outputSubstType,
|
|
SGFContext ctxt) {
|
|
return Transform(*this, loc).transform(std::move(v),
|
|
inputOrigType,
|
|
inputSubstType,
|
|
outputOrigType,
|
|
outputSubstType, ctxt);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// vtable thunks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void
|
|
SILGenFunction::emitVTableThunk(SILDeclRef derived,
|
|
AbstractionPattern inputOrigType,
|
|
CanAnyFunctionType inputSubstType,
|
|
CanAnyFunctionType outputSubstType) {
|
|
auto fd = cast<AbstractFunctionDecl>(derived.getDecl());
|
|
|
|
SILLocation loc(fd);
|
|
loc.markAutoGenerated();
|
|
CleanupLocation cleanupLoc(fd);
|
|
cleanupLoc.markAutoGenerated();
|
|
Scope scope(Cleanups, cleanupLoc);
|
|
|
|
auto implFn = SGM.getFunction(derived, NotForDefinition);
|
|
auto fTy = implFn->getLoweredFunctionType();
|
|
|
|
ArrayRef<Substitution> subs;
|
|
if (auto context = fd->getGenericParamsOfContext()) {
|
|
F.setContextGenericParams(context);
|
|
subs = getForwardingSubstitutions();
|
|
fTy = fTy->substGenericArgs(SGM.M, SGM.SwiftModule, subs);
|
|
|
|
inputSubstType = cast<FunctionType>(
|
|
cast<GenericFunctionType>(inputSubstType)
|
|
->substGenericArgs(SGM.SwiftModule, subs)->getCanonicalType());
|
|
outputSubstType = cast<FunctionType>(
|
|
cast<GenericFunctionType>(outputSubstType)
|
|
->substGenericArgs(SGM.SwiftModule, subs)->getCanonicalType());
|
|
}
|
|
|
|
// Emit the indirect return and arguments.
|
|
auto thunkTy = F.getLoweredFunctionType();
|
|
|
|
SmallVector<ManagedValue, 8> thunkArgs;
|
|
collectThunkParams(loc, thunkArgs, /*allowPlusZero*/ true);
|
|
|
|
SmallVector<ManagedValue, 8> substArgs;
|
|
|
|
AbstractionPattern outputOrigType(outputSubstType);
|
|
|
|
// Reabstract the arguments.
|
|
TranslateArguments(*this, loc, thunkArgs, substArgs, fTy->getParameters())
|
|
.translate(inputOrigType.getFunctionInputType(),
|
|
inputSubstType.getInput(),
|
|
outputOrigType.getFunctionInputType(),
|
|
outputSubstType.getInput());
|
|
|
|
// Collect the arguments to the implementation.
|
|
SmallVector<SILValue, 8> args;
|
|
|
|
// First, indirect results.
|
|
ResultPlanner resultPlanner(*this, loc);
|
|
resultPlanner.plan(outputOrigType.getFunctionResultType(),
|
|
outputSubstType.getResult(),
|
|
inputOrigType.getFunctionResultType(),
|
|
inputSubstType.getResult(),
|
|
fTy, thunkTy, args);
|
|
|
|
// Then, the arguments.
|
|
forwardFunctionArguments(*this, loc, fTy, substArgs, args);
|
|
|
|
// Create the call.
|
|
auto implRef = B.createFunctionRef(loc, implFn);
|
|
SILValue implResult = emitApplyWithRethrow(loc, implRef,
|
|
SILType::getPrimitiveObjectType(fTy),
|
|
subs, args);
|
|
|
|
// Reabstract the return.
|
|
SILValue result = resultPlanner.execute(implResult);
|
|
|
|
scope.pop();
|
|
B.createReturn(loc, result);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Protocol witnesses
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
enum class WitnessDispatchKind {
|
|
Static,
|
|
Dynamic,
|
|
Class
|
|
};
|
|
|
|
static WitnessDispatchKind
|
|
getWitnessDispatchKind(Type selfType, SILDeclRef witness, bool isFree) {
|
|
// Free functions are always statically dispatched...
|
|
if (isFree)
|
|
return WitnessDispatchKind::Static;
|
|
|
|
// If we have a non-class, non-objc method or a class, objc method that is
|
|
// final, we do not dynamic dispatch.
|
|
ClassDecl *C = selfType->getClassOrBoundGenericClass();
|
|
if (!C)
|
|
return WitnessDispatchKind::Static;
|
|
|
|
auto *decl = witness.getDecl();
|
|
|
|
// If the witness is dynamic, go through dynamic dispatch.
|
|
if (decl->getAttrs().hasAttribute<DynamicAttr>())
|
|
return WitnessDispatchKind::Dynamic;
|
|
|
|
bool isFinal = (decl->isFinal() || C->isFinal());
|
|
if (auto fnDecl = dyn_cast<AbstractFunctionDecl>(witness.getDecl()))
|
|
isFinal |= fnDecl->hasForcedStaticDispatch();
|
|
|
|
bool isExtension = isa<ExtensionDecl>(decl->getDeclContext());
|
|
|
|
// If we have a final method or a method from an extension that is not
|
|
// objective c, emit a static reference.
|
|
// A natively ObjC method witness referenced this way will end up going
|
|
// through its native thunk, which will redispatch the method after doing
|
|
// bridging just like we want.
|
|
if (isFinal || isExtension || witness.isForeignToNativeThunk()
|
|
// Hack--We emit a static thunk for ObjC allocating constructors.
|
|
|| (decl->hasClangNode() && witness.kind == SILDeclRef::Kind::Allocator))
|
|
return WitnessDispatchKind::Static;
|
|
|
|
// Otherwise emit a class method.
|
|
return WitnessDispatchKind::Class;
|
|
}
|
|
|
|
static CanSILFunctionType
|
|
getWitnessFunctionType(SILGenModule &SGM,
|
|
SILDeclRef witness,
|
|
WitnessDispatchKind witnessKind) {
|
|
switch (witnessKind) {
|
|
case WitnessDispatchKind::Static:
|
|
case WitnessDispatchKind::Dynamic:
|
|
return SGM.Types.getConstantInfo(witness).SILFnType;
|
|
case WitnessDispatchKind::Class:
|
|
return SGM.Types.getConstantOverrideType(witness);
|
|
}
|
|
}
|
|
|
|
static SILValue
|
|
getWitnessFunctionRef(SILGenFunction &gen,
|
|
SILDeclRef witness,
|
|
WitnessDispatchKind witnessKind,
|
|
SmallVectorImpl<ManagedValue> &witnessParams,
|
|
SILLocation loc) {
|
|
SILGenModule &SGM = gen.SGM;
|
|
|
|
switch (witnessKind) {
|
|
case WitnessDispatchKind::Static:
|
|
return gen.emitGlobalFunctionRef(loc, witness);
|
|
case WitnessDispatchKind::Dynamic:
|
|
return gen.emitDynamicMethodRef(loc, witness,
|
|
SGM.Types.getConstantInfo(witness));
|
|
case WitnessDispatchKind::Class:
|
|
SILValue selfPtr = witnessParams.back().getValue();
|
|
return gen.B.createClassMethod(loc, selfPtr, witness);
|
|
}
|
|
}
|
|
|
|
static CanType dropLastElement(CanType type) {
|
|
auto elts = cast<TupleType>(type)->getElements().drop_back();
|
|
return TupleType::get(elts, type->getASTContext())->getCanonicalType();
|
|
}
|
|
|
|
static void addConformanceToSubstitutionMap(SILGenModule &SGM,
|
|
TypeSubstitutionMap &subs,
|
|
GenericParamList *context,
|
|
CanType base,
|
|
const ProtocolConformance *conformance) {
|
|
conformance->forEachTypeWitness(nullptr, [&](AssociatedTypeDecl *assocTy,
|
|
Substitution sub,
|
|
TypeDecl *) -> bool {
|
|
auto depTy =
|
|
CanDependentMemberType::get(base, assocTy, SGM.getASTContext());
|
|
auto replacement = sub.getReplacement()->getCanonicalType();
|
|
replacement = ArchetypeBuilder::mapTypeOutOfContext(SGM.M.getSwiftModule(),
|
|
context,
|
|
replacement)
|
|
->getCanonicalType();
|
|
subs.insert({depTy.getPointer(), replacement});
|
|
for (auto conformance : sub.getConformances()) {
|
|
if (conformance.isAbstract())
|
|
continue;
|
|
addConformanceToSubstitutionMap(SGM, subs, context,
|
|
depTy, conformance.getConcrete());
|
|
}
|
|
return false;
|
|
});
|
|
}
|
|
|
|
/// Substitute the `Self` type from a protocol conformance into a protocol
|
|
/// requirement's type to get the type of the witness.
|
|
CanAnyFunctionType SILGenModule::
|
|
substSelfTypeIntoProtocolRequirementType(CanGenericFunctionType reqtTy,
|
|
ProtocolConformance *conformance) {
|
|
// Build a substitution map to replace `self` and its associated types.
|
|
auto &C = M.getASTContext();
|
|
CanType selfParamTy = CanGenericTypeParamType::get(0, 0, C);
|
|
|
|
TypeSubstitutionMap subs;
|
|
subs.insert({selfParamTy.getPointer(), conformance->getInterfaceType()
|
|
->getCanonicalType()});
|
|
addConformanceToSubstitutionMap(*this, subs, conformance->getGenericParams(),
|
|
selfParamTy, conformance);
|
|
|
|
// Drop requirements rooted in the applied generic parameters.
|
|
SmallVector<Requirement, 4> unappliedReqts;
|
|
auto rootedInSelf = [&](Type t) -> bool {
|
|
while (auto dmt = t->getAs<DependentMemberType>()) {
|
|
t = dmt->getBase();
|
|
}
|
|
return t->isEqual(selfParamTy);
|
|
};
|
|
|
|
#if 0
|
|
llvm::errs() << "--\n";
|
|
for (auto &pair : subs) {
|
|
pair.first->print(llvm::errs());
|
|
llvm::errs() << " => ";
|
|
pair.second->dump();
|
|
llvm::errs() << "\n";
|
|
}
|
|
#endif
|
|
|
|
// Get the unapplied params.
|
|
auto unappliedParams = reqtTy->getGenericParams().slice(1);
|
|
|
|
// Get the requirements that aren't rooted in the applied 'self' parameter.
|
|
for (auto &reqt : reqtTy->getRequirements()) {
|
|
switch (reqt.getKind()) {
|
|
case RequirementKind::Conformance:
|
|
case RequirementKind::Superclass:
|
|
case RequirementKind::WitnessMarker:
|
|
// Substituting the parameter eliminates conformance constraints rooted
|
|
// in the parameter.
|
|
if (rootedInSelf(reqt.getFirstType()))
|
|
continue;
|
|
break;
|
|
|
|
case RequirementKind::SameType: {
|
|
// Same-type constraints are eliminated if both sides of the constraint
|
|
// are rooted in substituted parameters.
|
|
if (rootedInSelf(reqt.getFirstType())
|
|
&& rootedInSelf(reqt.getSecondType()))
|
|
continue;
|
|
|
|
// Otherwise, substitute the constrained types.
|
|
unappliedReqts.push_back(
|
|
Requirement(RequirementKind::SameType,
|
|
reqt.getFirstType().subst(M.getSwiftModule(), subs,
|
|
SubstFlags::IgnoreMissing),
|
|
reqt.getSecondType().subst(M.getSwiftModule(), subs,
|
|
SubstFlags::IgnoreMissing)));
|
|
continue;
|
|
}
|
|
}
|
|
unappliedReqts.push_back(reqt);
|
|
}
|
|
|
|
auto input = reqtTy->getInput().subst(M.getSwiftModule(), subs,
|
|
SubstFlags::IgnoreMissing)
|
|
->getCanonicalType();
|
|
auto result = reqtTy->getResult().subst(M.getSwiftModule(), subs,
|
|
SubstFlags::IgnoreMissing)
|
|
->getCanonicalType();
|
|
|
|
if (!unappliedParams.empty() && !unappliedReqts.empty()) {
|
|
auto sig = GenericSignature::get(unappliedParams,
|
|
unappliedReqts)->getCanonicalSignature();
|
|
|
|
return CanGenericFunctionType::get(sig, input, result, reqtTy->getExtInfo());
|
|
} else {
|
|
return CanFunctionType::get(input, result, reqtTy->getExtInfo());
|
|
}
|
|
}
|
|
|
|
void SILGenFunction::emitProtocolWitness(Type selfType,
|
|
AbstractionPattern reqtOrigTy,
|
|
CanAnyFunctionType reqtSubstTy,
|
|
SILDeclRef requirement,
|
|
SILDeclRef witness,
|
|
ArrayRef<Substitution> witnessSubs,
|
|
IsFreeFunctionWitness_t isFree) {
|
|
// FIXME: Disable checks that the protocol witness carries debug info.
|
|
// Should we carry debug info for witnesses?
|
|
F.setBare(IsBare);
|
|
|
|
SILLocation loc(witness.getDecl());
|
|
FullExpr scope(Cleanups, CleanupLocation::get(loc));
|
|
|
|
auto witnessKind = getWitnessDispatchKind(selfType, witness, isFree);
|
|
auto thunkTy = F.getLoweredFunctionType();
|
|
|
|
SmallVector<ManagedValue, 8> origParams;
|
|
// TODO: Should be able to accept +0 values here, once
|
|
// forwardFunctionArguments/emitApply are able to.
|
|
collectThunkParams(loc, origParams, /*allowPlusZero*/ false);
|
|
|
|
// Handle special abstraction differences in "self".
|
|
// If the witness is a free function, drop it completely.
|
|
// WAY SPECULATIVE TODO: What if 'self' comprised multiple SIL-level params?
|
|
if (isFree)
|
|
origParams.pop_back();
|
|
|
|
// Get the type of the witness.
|
|
auto witnessInfo = getConstantInfo(witness);
|
|
CanAnyFunctionType witnessSubstTy = witnessInfo.LoweredInterfaceType;
|
|
if (!witnessSubs.empty()) {
|
|
witnessSubstTy = cast<FunctionType>(
|
|
cast<GenericFunctionType>(witnessSubstTy)
|
|
->substGenericArgs(SGM.M.getSwiftModule(), witnessSubs)
|
|
->getCanonicalType());
|
|
}
|
|
CanType reqtSubstInputTy = F.mapTypeIntoContext(reqtSubstTy.getInput())
|
|
->getCanonicalType();
|
|
CanType reqtSubstResultTy = F.mapTypeIntoContext(reqtSubstTy.getResult())
|
|
->getCanonicalType();
|
|
|
|
AbstractionPattern reqtOrigInputTy = reqtOrigTy.getFunctionInputType();
|
|
// For a free function witness, discard the 'self' parameter of the
|
|
// requirement.
|
|
if (isFree) {
|
|
reqtOrigInputTy = reqtOrigInputTy.dropLastTupleElement();
|
|
reqtSubstInputTy = dropLastElement(reqtSubstInputTy);
|
|
}
|
|
|
|
// Translate the argument values from the requirement abstraction level to
|
|
// the substituted signature of the witness.
|
|
auto witnessFTy = getWitnessFunctionType(SGM, witness, witnessKind);
|
|
if (!witnessSubs.empty())
|
|
witnessFTy = witnessFTy->substGenericArgs(SGM.M, SGM.M.getSwiftModule(),
|
|
witnessSubs);
|
|
|
|
SmallVector<ManagedValue, 8> witnessParams;
|
|
|
|
if (!isFree) {
|
|
// If the requirement has a self parameter passed as an indirect +0 value,
|
|
// and the witness takes it as a non-inout value, we must load and retain
|
|
// the self pointer coming in. This happens when class witnesses implement
|
|
// non-mutating protocol requirements.
|
|
auto reqConvention = thunkTy->getSelfParameter().getConvention();
|
|
auto witnessConvention = witnessFTy->getSelfParameter().getConvention();
|
|
|
|
bool inoutDifference;
|
|
|
|
inoutDifference = reqConvention == ParameterConvention::Indirect_Inout &&
|
|
witnessConvention != ParameterConvention::Indirect_Inout;
|
|
|
|
if (inoutDifference) {
|
|
// If there is an inout difference in self, load the inout self parameter.
|
|
ManagedValue &selfParam = origParams.back();
|
|
SILValue selfAddr = selfParam.getUnmanagedValue();
|
|
selfParam = emitLoad(loc, selfAddr,
|
|
getTypeLowering(selfType),
|
|
SGFContext(),
|
|
IsNotTake);
|
|
}
|
|
}
|
|
|
|
AbstractionPattern witnessOrigTy(witnessInfo.LoweredInterfaceType);
|
|
TranslateArguments(*this, loc,
|
|
origParams, witnessParams,
|
|
witnessFTy->getParameters())
|
|
.translate(reqtOrigInputTy,
|
|
reqtSubstInputTy,
|
|
witnessOrigTy.getFunctionInputType(),
|
|
witnessSubstTy.getInput());
|
|
|
|
SILValue witnessFnRef = getWitnessFunctionRef(*this, witness, witnessKind,
|
|
witnessParams, loc);
|
|
|
|
// Collect the arguments.
|
|
SmallVector<SILValue, 8> args;
|
|
|
|
// - indirect results
|
|
ResultPlanner resultPlanner(*this, loc);
|
|
resultPlanner.plan(witnessOrigTy.getFunctionResultType(),
|
|
witnessSubstTy.getResult(),
|
|
reqtOrigTy.getFunctionResultType(),
|
|
reqtSubstResultTy,
|
|
witnessFTy, thunkTy, args);
|
|
|
|
// - the rest of the arguments
|
|
forwardFunctionArguments(*this, loc, witnessFTy, witnessParams, args);
|
|
|
|
// Perform the call.
|
|
SILType witnessSILTy = SILType::getPrimitiveObjectType(witnessFTy);
|
|
SILValue witnessResultValue =
|
|
emitApplyWithRethrow(loc, witnessFnRef, witnessSILTy, witnessSubs, args);
|
|
|
|
// Reabstract the result value.
|
|
SILValue reqtResultValue = resultPlanner.execute(witnessResultValue);
|
|
|
|
scope.pop();
|
|
B.createReturn(loc, reqtResultValue);
|
|
}
|