Files
swift-mirror/lib/SILGen/SILGenProlog.cpp
John McCall e249fd680e Destructure result types in SIL function types.
Similarly to how we've always handled parameter types, we
now recursively expand tuples in result types and separately
determine a result convention for each result.

The most important code-generation change here is that
indirect results are now returned separately from each
other and from any direct results.  It is generally far
better, when receiving an indirect result, to receive it
as an independent result; the caller is much more likely
to be able to directly receive the result in the address
they want to initialize, rather than having to receive it
in temporary memory and then copy parts of it into the
target.

The most important conceptual change here that clients and
producers of SIL must be aware of is the new distinction
between a SILFunctionType's *parameters* and its *argument
list*.  The former is just the formal parameters, derived
purely from the parameter types of the original function;
indirect results are no longer in this list.  The latter
includes the indirect result arguments; as always, all
the indirect results strictly precede the parameters.
Apply instructions and entry block arguments follow the
argument list, not the parameter list.

A relatively minor change is that there can now be multiple
direct results, each with its own result convention.
This is a minor change because I've chosen to leave
return instructions as taking a single operand and
apply instructions as producing a single result; when
the type describes multiple results, they are implicitly
bound up in a tuple.  It might make sense to split these
up and allow e.g. return instructions to take a list
of operands; however, it's not clear what to do on the
caller side, and this would be a major change that can
be separated out from this already over-large patch.

Unsurprisingly, the most invasive changes here are in
SILGen; this requires substantial reworking of both call
emission and reabstraction.  It also proved important
to switch several SILGen operations over to work with
RValue instead of ManagedValue, since otherwise they
would be forced to spuriously "implode" buffers.
2016-02-18 01:26:28 -08:00

470 lines
17 KiB
C++

//===--- SILGenProlog.cpp - Function prologue emission --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "SILGenFunction.h"
#include "Initialization.h"
#include "ManagedValue.h"
#include "Scope.h"
#include "swift/SIL/SILArgument.h"
#include "swift/AST/ParameterList.h"
#include "swift/Basic/Fallthrough.h"
using namespace swift;
using namespace Lowering;
SILValue SILGenFunction::emitSelfDecl(VarDecl *selfDecl) {
// Emit the implicit 'self' argument.
SILType selfType = getLoweredLoadableType(selfDecl->getType());
SILValue selfValue = new (SGM.M) SILArgument(F.begin(), selfType, selfDecl);
VarLocs[selfDecl] = VarLoc::get(selfValue);
SILLocation PrologueLoc(selfDecl);
PrologueLoc.markAsPrologue();
unsigned ArgNo = 1; // Hardcoded for destructors.
B.createDebugValue(PrologueLoc, selfValue, {selfDecl->isLet(), ArgNo});
return selfValue;
}
namespace {
/// Cleanup that writes back to an inout argument on function exit.
class CleanupWriteBackToInOut : public Cleanup {
VarDecl *var;
SILValue inoutAddr;
public:
CleanupWriteBackToInOut(VarDecl *var, SILValue inoutAddr)
: var(var), inoutAddr(inoutAddr) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
// Assign from the local variable to the inout address with an
// 'autogenerated' copyaddr.
l.markAutoGenerated();
gen.B.createCopyAddr(l, gen.VarLocs[var].value, inoutAddr,
IsNotTake, IsNotInitialization);
}
};
} // end anonymous namespace
namespace {
class StrongReleaseCleanup : public Cleanup {
SILValue box;
public:
StrongReleaseCleanup(SILValue box) : box(box) {}
void emit(SILGenFunction &gen, CleanupLocation l) override {
gen.B.emitStrongReleaseAndFold(l, box);
}
};
} // end anonymous namespace
namespace {
class EmitBBArguments : public CanTypeVisitor<EmitBBArguments,
/*RetTy*/ ManagedValue>
{
public:
SILGenFunction &gen;
SILBasicBlock *parent;
SILLocation loc;
bool functionArgs;
ArrayRef<SILParameterInfo> &parameters;
EmitBBArguments(SILGenFunction &gen, SILBasicBlock *parent,
SILLocation l, bool functionArgs,
ArrayRef<SILParameterInfo> &parameters)
: gen(gen), parent(parent), loc(l), functionArgs(functionArgs),
parameters(parameters) {}
ManagedValue getManagedValue(SILValue arg, CanType t,
SILParameterInfo parameterInfo) const {
switch (parameterInfo.getConvention()) {
case ParameterConvention::Direct_Deallocating:
// If we have a deallocating parameter, it is passed in at +0 and will not
// be deallocated since we do not allow for resurrection.
return ManagedValue::forUnmanaged(arg);
case ParameterConvention::Direct_Guaranteed:
case ParameterConvention::Indirect_In_Guaranteed:
// If we have a guaranteed parameter, it is passed in at +0, and its
// lifetime is guaranteed. We can potentially use the argument as-is
// if the parameter is bound as a 'let' without cleaning up.
return ManagedValue::forUnmanaged(arg);
case ParameterConvention::Direct_Unowned:
// An unowned parameter is passed at +0, like guaranteed, but it isn't
// kept alive by the caller, so we need to retain and manage it
// regardless.
return gen.emitManagedRetain(loc, arg);
case ParameterConvention::Indirect_Inout:
case ParameterConvention::Indirect_InoutAliasable:
// An inout parameter is +0 and guaranteed, but represents an lvalue.
return ManagedValue::forLValue(arg);
case ParameterConvention::Direct_Owned:
case ParameterConvention::Indirect_In:
// An owned or 'in' parameter is passed in at +1. We can claim ownership
// of the parameter and clean it up when it goes out of scope.
return gen.emitManagedRValueWithCleanup(arg);
}
llvm_unreachable("bad parameter convention");
}
ManagedValue visitType(CanType t) {
auto argType = gen.getLoweredType(t);
// Pop the next parameter info.
auto parameterInfo = parameters.front();
parameters = parameters.slice(1);
assert(argType == parent->getParent()
->mapTypeIntoContext(parameterInfo.getSILType()) &&
"argument does not have same type as specified by parameter info");
SILValue arg = new (gen.SGM.M)
SILArgument(parent, argType, loc.getAsASTNode<ValueDecl>());
ManagedValue mv = getManagedValue(arg, t, parameterInfo);
// If the value is a (possibly optional) ObjC block passed into the entry
// point of the function, then copy it so we can treat the value reliably
// as a heap object. Escape analysis can eliminate this copy if it's
// unneeded during optimization.
CanType objectType = t;
if (auto theObjTy = t.getAnyOptionalObjectType())
objectType = theObjTy;
if (functionArgs
&& isa<FunctionType>(objectType)
&& cast<FunctionType>(objectType)->getRepresentation()
== FunctionType::Representation::Block) {
SILValue blockCopy = gen.B.createCopyBlock(loc, mv.getValue());
mv = gen.emitManagedRValueWithCleanup(blockCopy);
}
return mv;
}
ManagedValue visitTupleType(CanTupleType t) {
SmallVector<ManagedValue, 4> elements;
auto &tl = gen.getTypeLowering(t);
bool canBeGuaranteed = tl.isLoadable();
// Collect the exploded elements.
for (auto fieldType : t.getElementTypes()) {
auto elt = visit(fieldType);
// If we can't borrow one of the elements as a guaranteed parameter, then
// we have to +1 the tuple.
if (elt.hasCleanup())
canBeGuaranteed = false;
elements.push_back(elt);
}
if (tl.isLoadable()) {
SmallVector<SILValue, 4> elementValues;
if (canBeGuaranteed) {
// If all of the elements were guaranteed, we can form a guaranteed tuple.
for (auto element : elements)
elementValues.push_back(element.getUnmanagedValue());
} else {
// Otherwise, we need to move or copy values into a +1 tuple.
for (auto element : elements) {
SILValue value = element.hasCleanup()
? element.forward(gen)
: element.copyUnmanaged(gen, loc).forward(gen);
elementValues.push_back(value);
}
}
auto tupleValue = gen.B.createTuple(loc, tl.getLoweredType(),
elementValues);
return canBeGuaranteed
? ManagedValue::forUnmanaged(tupleValue)
: gen.emitManagedRValueWithCleanup(tupleValue);
} else {
// If the type is address-only, we need to move or copy the elements into
// a tuple in memory.
// TODO: It would be a bit more efficient to use a preallocated buffer
// in this case.
auto buffer = gen.emitTemporaryAllocation(loc, tl.getLoweredType());
for (auto i : indices(elements)) {
auto element = elements[i];
auto elementBuffer = gen.B.createTupleElementAddr(loc, buffer,
i, element.getType().getAddressType());
if (element.hasCleanup())
element.forwardInto(gen, loc, elementBuffer);
else
element.copyInto(gen, elementBuffer, loc);
}
return gen.emitManagedRValueWithCleanup(buffer);
}
}
};
} // end anonymous namespace
namespace {
/// A helper for creating SILArguments and binding variables to the argument
/// names.
struct ArgumentInitHelper {
SILGenFunction &gen;
SILFunction &f;
SILGenBuilder &initB;
/// An ArrayRef that we use in our SILParameterList queue. Parameters are
/// sliced off of the front as they're emitted.
ArrayRef<SILParameterInfo> parameters;
unsigned ArgNo = 0;
ArgumentInitHelper(SILGenFunction &gen, SILFunction &f)
: gen(gen), f(f), initB(gen.B),
parameters(f.getLoweredFunctionType()->getParameters()) {
}
unsigned getNumArgs() const { return ArgNo; }
ManagedValue makeArgument(Type ty, SILBasicBlock *parent, SILLocation l) {
assert(ty && "no type?!");
// Create an RValue by emitting destructured arguments into a basic block.
CanType canTy = ty->getCanonicalType();
return EmitBBArguments(gen, parent, l, /*functionArgs*/ true,
parameters).visit(canTy);
}
/// Create a SILArgument and store its value into the given Initialization,
/// if not null.
void makeArgumentIntoBinding(Type ty, SILBasicBlock *parent, VarDecl *vd) {
SILLocation loc(vd);
loc.markAsPrologue();
ManagedValue argrv = makeArgument(ty, parent, loc);
// Create a shadow copy of inout parameters so they can be captured
// by closures. The InOutDeshadowing guaranteed optimization will
// eliminate the variable if it is not needed.
if (auto inOutTy = vd->getType()->getAs<InOutType>()) {
SILValue address = argrv.getUnmanagedValue();
CanType objectType = inOutTy->getObjectType()->getCanonicalType();
// As a special case, don't introduce a local variable for
// Builtin.UnsafeValueBuffer, which is not copyable.
if (isa<BuiltinUnsafeValueBufferType>(objectType)) {
// FIXME: mark a debug location?
gen.VarLocs[vd] = SILGenFunction::VarLoc::get(address);
gen.B.createDebugValueAddr(loc, address, {vd->isLet(), ArgNo});
return;
}
// Allocate the local variable for the inout.
auto initVar = gen.emitLocalVariableWithCleanup(vd, false, ArgNo);
// Initialize with the value from the inout with an "autogenerated"
// copyaddr.
loc.markAutoGenerated();
gen.B.createCopyAddr(loc, address, initVar->getAddress(),
IsNotTake, IsInitialization);
initVar->finishInitialization(gen);
// Set up a cleanup to write back to the inout.
gen.Cleanups.pushCleanup<CleanupWriteBackToInOut>(vd, address);
} else if (vd->isLet()) {
// If the variable is immutable, we can bind the value as is.
// Leave the cleanup on the argument, if any, in place to consume the
// argument if we're responsible for it.
gen.VarLocs[vd] = SILGenFunction::VarLoc::get(argrv.getValue());
if (argrv.getType().isAddress())
gen.B.createDebugValueAddr(loc, argrv.getValue(), {vd->isLet(), ArgNo});
else
gen.B.createDebugValue(loc, argrv.getValue(), {vd->isLet(), ArgNo});
} else {
// If the variable is mutable, we need to copy or move the argument
// value to local mutable memory.
auto initVar = gen.emitLocalVariableWithCleanup(vd, false, ArgNo);
// If we have a cleanup on the value, we can move it into the variable.
if (argrv.hasCleanup())
argrv.forwardInto(gen, loc, initVar->getAddress());
// Otherwise, we need an independently-owned copy.
else
argrv.copyInto(gen, initVar->getAddress(), loc);
initVar->finishInitialization(gen);
}
}
void emitParam(ParamDecl *PD) {
++ArgNo;
if (PD->hasName()) {
makeArgumentIntoBinding(PD->getType(), &*f.begin(), PD);
return;
}
ManagedValue argrv = makeArgument(PD->getType(), &*f.begin(), PD);
// Emit debug information for the argument.
SILLocation loc(PD);
loc.markAsPrologue();
if (argrv.getType().isAddress())
gen.B.createDebugValueAddr(loc, argrv.getValue(), {PD->isLet(), ArgNo});
else
gen.B.createDebugValue(loc, argrv.getValue(), {PD->isLet(), ArgNo});
// A value bound to _ is unused and can be immediately released.
Scope discardScope(gen.Cleanups, CleanupLocation(PD));
// Popping the scope destroys the value.
}
};
} // end anonymous namespace
static void makeArgument(Type ty, ParamDecl *decl,
SmallVectorImpl<SILValue> &args, SILGenFunction &gen) {
assert(ty && "no type?!");
// Destructure tuple arguments.
if (TupleType *tupleTy = ty->getAs<TupleType>()) {
for (auto fieldType : tupleTy->getElementTypes())
makeArgument(fieldType, decl, args, gen);
} else {
auto arg = new (gen.F.getModule()) SILArgument(gen.F.begin(),
gen.getLoweredType(ty),decl);
args.push_back(arg);
}
}
void SILGenFunction::bindParametersForForwarding(const ParameterList *params,
SmallVectorImpl<SILValue> &parameters) {
for (auto param : *params) {
makeArgument(param->getType(), param, parameters, *this);
}
}
static void emitCaptureArguments(SILGenFunction &gen, CapturedValue capture,
unsigned ArgNo) {
auto *VD = capture.getDecl();
auto type = VD->getType();
SILLocation Loc(VD);
Loc.markAsPrologue();
switch (gen.SGM.Types.getDeclCaptureKind(capture)) {
case CaptureKind::None:
break;
case CaptureKind::Constant: {
auto &lowering = gen.getTypeLowering(VD->getType());
// Constant decls are captured by value.
SILType ty = lowering.getLoweredType();
SILValue val = new (gen.SGM.M) SILArgument(gen.F.begin(), ty, VD);
// If the original variable was settable, then Sema will have treated the
// VarDecl as an lvalue, even in the closure's use. As such, we need to
// allow formation of the address for this captured value. Create a
// temporary within the closure to provide this address.
if (VD->isSettable(VD->getDeclContext())) {
auto addr = gen.emitTemporaryAllocation(VD, ty);
gen.B.createStore(VD, val, addr);
val = addr;
}
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(val);
if (auto *AllocStack = dyn_cast<AllocStackInst>(val))
AllocStack->setArgNo(ArgNo);
else
gen.B.createDebugValue(Loc, val, {/*Constant*/true, ArgNo});
// TODO: Closure contexts should always be guaranteed.
if (!gen.SGM.M.getOptions().EnableGuaranteedClosureContexts
&& !lowering.isTrivial())
gen.enterDestroyCleanup(val);
break;
}
case CaptureKind::Box: {
// LValues are captured as a retained @box that owns
// the captured value.
SILType ty = gen.getLoweredType(type).getAddressType();
SILType boxTy = SILType::getPrimitiveObjectType(
SILBoxType::get(ty.getSwiftRValueType()));
SILValue box = new (gen.SGM.M) SILArgument(gen.F.begin(), boxTy, VD);
SILValue addr = gen.B.createProjectBox(VD, box);
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(addr, box);
gen.B.createDebugValueAddr(Loc, addr, {/*Constant*/false, ArgNo});
if (!gen.SGM.M.getOptions().EnableGuaranteedClosureContexts)
gen.Cleanups.pushCleanup<StrongReleaseCleanup>(box);
break;
}
case CaptureKind::StorageAddress: {
// Non-escaping stored decls are captured as the address of the value.
SILType ty = gen.getLoweredType(type).getAddressType();
SILValue addr = new (gen.SGM.M) SILArgument(gen.F.begin(), ty, VD);
gen.VarLocs[VD] = SILGenFunction::VarLoc::get(addr);
gen.B.createDebugValueAddr(Loc, addr, {/*Constant*/true, ArgNo});
break;
}
}
}
void SILGenFunction::emitProlog(AnyFunctionRef TheClosure,
ArrayRef<ParameterList*> paramPatterns,
Type resultType) {
unsigned ArgNo =
emitProlog(paramPatterns, resultType, TheClosure.getAsDeclContext());
// Emit the capture argument variables. These are placed last because they
// become the first curry level of the SIL function.
auto captureInfo = SGM.Types.getLoweredLocalCaptures(TheClosure);
for (auto capture : captureInfo.getCaptures())
emitCaptureArguments(*this, capture, ++ArgNo);
}
static void emitIndirectResultParameters(SILGenFunction &gen, Type resultType,
DeclContext *DC) {
// Expand tuples.
if (auto tupleType = resultType->getAs<TupleType>()) {
for (auto eltType : tupleType->getElementTypes()) {
emitIndirectResultParameters(gen, eltType, DC);
}
return;
}
// If the return type is address-only, emit the indirect return argument.
const TypeLowering &resultTI = gen.getTypeLowering(resultType);
if (!resultTI.isReturnedIndirectly()) return;
auto &ctx = gen.getASTContext();
auto var = new (ctx) ParamDecl(/*IsLet*/ false, SourceLoc(), SourceLoc(),
ctx.getIdentifier("$return_value"), SourceLoc(),
ctx.getIdentifier("$return_value"), resultType,
DC);
auto arg =
new (gen.SGM.M) SILArgument(gen.F.begin(), resultTI.getLoweredType(), var);
(void) arg;
}
unsigned SILGenFunction::emitProlog(ArrayRef<ParameterList*> paramLists,
Type resultType, DeclContext *DC) {
// Create the indirect result parameters.
emitIndirectResultParameters(*this, resultType, DC);
// Emit the argument variables in calling convention order.
ArgumentInitHelper emitter(*this, F);
for (ParameterList *paramList : reversed(paramLists)) {
// Add the SILArguments and use them to initialize the local argument
// values.
for (auto &param : *paramList)
emitter.emitParam(param);
}
return emitter.getNumArgs();
}