Files
swift-mirror/lib/SILOptimizer/ARC/RefCountState.cpp
Xin Tong 8bb673895a Consistenly use RCIdentity to get the RCRoot of the operand.
We were using a stripCast in some places and getRCIdentityRoot in others.
stripCasts is not identical to getRCIdentityRoot.

In particular, it does not look through struct_extract, tuple_extract,
unchecked_enum_data.

Created a struct and tuple test cases for make sure things are optimized
as they should be.

We have test case for unchecked_enum_data before.
2016-02-23 16:47:19 -08:00

977 lines
35 KiB
C++

//===--- RefCountState.cpp ------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "arc-sequence-opts"
#include "RefCountState.h"
#include "RCStateTransition.h"
#include "llvm/Support/Debug.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Lattice State Merging
//===----------------------------------------------------------------------===//
static inline BottomUpRefCountState::LatticeState
MergeBottomUpLatticeStates(BottomUpRefCountState::LatticeState L1,
BottomUpRefCountState::LatticeState L2) {
using LatticeState = BottomUpRefCountState::LatticeState;
// If both states equal, return the first.
if (L1 == L2)
return L1;
// If either are none, return None.
if (L1 == LatticeState::None || L2 == LatticeState::None)
return LatticeState::None;
// Canonicalize.
if (unsigned(L1) > unsigned(L2))
std::swap(L1, L2);
// Choose the side further along in the sequence.
if ((L1 == LatticeState::Decremented || L1 == LatticeState::MightBeUsed) ||
(L2 == LatticeState::MightBeUsed ||
L2 == LatticeState::MightBeDecremented))
return L2;
// Otherwise, we don't know what happened, be conservative and return none.
return LatticeState::None;
}
static inline TopDownRefCountState::LatticeState
MergeTopDownLatticeStates(TopDownRefCountState::LatticeState L1,
TopDownRefCountState::LatticeState L2) {
using LatticeState = TopDownRefCountState::LatticeState;
// If both states equal, return the first.
if (L1 == L2)
return L1;
// If either are none, return None.
if (L1 == LatticeState::None || L2 == LatticeState::None)
return LatticeState::None;
// Canonicalize.
if (unsigned(L1) > unsigned(L2))
std::swap(L1, L2);
// Choose the side further along in the sequence.
if ((L1 == LatticeState::Incremented ||
L1 == LatticeState::MightBeDecremented) ||
(L2 == LatticeState::MightBeDecremented ||
L2 == LatticeState::MightBeUsed))
return L2;
// Otherwise, we don't know what happened, return none.
return LatticeState::None;
}
//===----------------------------------------------------------------------===//
// Bottom Up Ref Count State
//===----------------------------------------------------------------------===//
/// Initializes/reinitialized the state for I. If we reinitialize we return
/// true.
bool BottomUpRefCountState::initWithMutatorInst(
ImmutablePointerSet<SILInstruction> *I,
RCIdentityFunctionInfo *RCFI) {
assert(I->size() == 1);
SILInstruction *Inst = *I->begin();
assert((isa<StrongReleaseInst>(Inst) || isa<ReleaseValueInst>(Inst)) &&
"strong_release and release_value are only supported.");
(void) Inst;
bool NestingDetected = SuperTy::initWithMutatorInst(I, RCFI);
// If we know that there is another decrement on the same pointer that has
// not been matched up to an increment, then the pointer must have a
// reference count of at least 2 before this decrement. This implies it is
// known safe.
KnownSafe = NestingDetected;
// If we saw a non arc user that will keep this value alive, set known safe
// since we will not move non-arc instructions.
KnownSafe |= FoundNonARCUser;
// Set our lattice state to be decremented.
LatState = LatticeState::Decremented;
return NestingDetected;
}
/// Return true if we *might* remove this instruction.
///
/// This is a conservative query given the information we know, so as we
/// perform the dataflow it may change value.
bool BottomUpRefCountState::mightRemoveMutators() {
if (LatState == LatticeState::None)
return false;
// We will not remove mutators if we have a might be decremented value that
// is not known safe.
return LatState != LatticeState::MightBeDecremented || isKnownSafe();
}
/// Uninitialize the current state.
void BottomUpRefCountState::clear() {
// If we cannot conservatively prove that the given RefCountState will not
// be removed, be conservative and clear the transition state, so we do not
// propagate KnownSafety forward.
if (mightRemoveMutators())
Transition = RCStateTransition();
LatState = LatticeState::None;
SuperTy::clear();
}
/// If advance the state's sequence appropriately for a decrement. If we do
/// advance return true. Otherwise return false.
bool BottomUpRefCountState::isRefCountStateModified() const {
switch (LatState) {
case LatticeState::Decremented:
return true;
case LatticeState::None:
case LatticeState::MightBeDecremented:
case LatticeState::MightBeUsed:
return false;
}
}
/// Returns true if given the current lattice state, do we care if the value
/// we are tracking is decremented.
bool BottomUpRefCountState::valueCanBeDecrementedGivenLatticeState() const {
switch (LatState) {
case LatticeState::MightBeUsed:
return true;
case LatticeState::None:
case LatticeState::MightBeDecremented:
case LatticeState::Decremented:
return false;
}
}
/// If advance the state's sequence appropriately for a decrement. If we do
/// advance return true. Otherwise return false.
bool BottomUpRefCountState::handleDecrement() {
switch (LatState) {
case LatticeState::MightBeUsed:
LatState = LatticeState::MightBeDecremented;
return true;
case LatticeState::None:
case LatticeState::MightBeDecremented:
case LatticeState::Decremented:
return false;
}
}
/// Returns true if given the current lattice state, do we care if the value we
/// are tracking is used.
bool BottomUpRefCountState::valueCanBeUsedGivenLatticeState() const {
switch (LatState) {
case LatticeState::Decremented:
return true;
case LatticeState::None:
case LatticeState::MightBeDecremented:
case LatticeState::MightBeUsed:
return false;
}
}
/// Given the current lattice state, if we have seen a use, advance the
/// lattice state. Return true if we do so and false otherwise.
bool BottomUpRefCountState::handleUser(
ArrayRef<SILInstruction *> NewInsertPts, SILValue RCIdentity,
ImmutablePointerSetFactory<SILInstruction> &SetFactory, AliasAnalysis *AA) {
assert(valueCanBeUsedGivenLatticeState() &&
"Must be able to be used at this point of the lattice.");
// Advance the sequence...
switch (LatState) {
case LatticeState::Decremented:
LatState = LatticeState::MightBeUsed;
assert(InsertPts->empty() && "If we are decremented, we should have no "
"insertion points.");
InsertPts = SetFactory.get(NewInsertPts);
DEBUG(llvm::dbgs() << " Insertion Points:\n";
for (auto I : *InsertPts) {
llvm::dbgs() << " " << *I;
});
return true;
case LatticeState::MightBeUsed:
case LatticeState::MightBeDecremented:
case LatticeState::None:
return false;
}
}
/// Returns true if given the current lattice state, do we care if the value
/// we are tracking is used.
bool BottomUpRefCountState::
valueCanBeGuaranteedUsedGivenLatticeState() const {
switch (LatState) {
case LatticeState::None:
case LatticeState::MightBeDecremented:
return false;
case LatticeState::Decremented:
case LatticeState::MightBeUsed:
return true;
}
}
/// Given the current lattice state, if we have seen a use, advance the
/// lattice state. Return true if we do so and false otherwise.
bool BottomUpRefCountState::handleGuaranteedUser(
ArrayRef<SILInstruction *> NewInsertPts, SILValue RCIdentity,
ImmutablePointerSetFactory<SILInstruction> &SetFactory, AliasAnalysis *AA) {
assert(valueCanBeGuaranteedUsedGivenLatticeState() &&
"Must be able to be used at this point of the lattice.");
// Advance the sequence...
switch (LatState) {
// If were decremented, insert the insertion point.
case LatticeState::Decremented: {
assert(InsertPts->empty() && "If we are decremented, we should have no "
"insertion points.");
InsertPts = SetFactory.get(NewInsertPts);
DEBUG(llvm::dbgs() << " Insertion Points:\n";
for (auto I : *InsertPts) {
llvm::dbgs() << " " << *I;
});
LatState = LatticeState::MightBeDecremented;
return true;
}
case LatticeState::MightBeUsed:
// If we have a might be used, we already created an insertion point
// earlier. Just move to MightBeDecremented.
LatState = LatticeState::MightBeDecremented;
return true;
case LatticeState::MightBeDecremented:
case LatticeState::None:
return false;
}
}
// Returns true if the passed in ref count inst matches the ref count inst
// we are tracking. This handles generically retains/release.
bool BottomUpRefCountState::isRefCountInstMatchedToTrackedInstruction(
SILInstruction *RefCountInst) {
// If we are not tracking any state transitions bail.
if (!Transition.isValid())
return false;
// Otherwise, ask the transition state if this instruction causes a
// transition that can be matched with the transition in order to eliminate
// the transition.
if (!Transition.matchingInst(RefCountInst))
return false;
return handleRefCountInstMatch(RefCountInst);
}
/// We have a matching ref count inst. Return true if we advance the sequence
/// and false otherwise.
bool
BottomUpRefCountState::
handleRefCountInstMatch(SILInstruction *RefCountInst) {
// Otherwise modify the state appropriately in preparation for removing the
// increment, decrement pair.
switch (LatState) {
case LatticeState::None:
return false;
case LatticeState::Decremented:
case LatticeState::MightBeUsed:
// Unset InsertPt so we remove retain release pairs instead of
// performing code motion.
InsertPts = ImmutablePointerSetFactory<SILInstruction>::getEmptySet();
SWIFT_FALLTHROUGH;
case LatticeState::MightBeDecremented:
return true;
}
}
bool BottomUpRefCountState::merge(const BottomUpRefCountState &Other) {
auto NewState = MergeBottomUpLatticeStates(LatState, Other.LatState);
DEBUG(llvm::dbgs() << " Performing BottomUp Merge.\n");
DEBUG(llvm::dbgs() << " Left: " << LatState << "; Right: "
<< Other.LatState << "; Result: " << NewState << "\n");
DEBUG(llvm::dbgs() << " V: ";
if (hasRCRoot())
getRCRoot()->dump();
else
llvm::dbgs() << "\n";
llvm::dbgs() << " OtherV: ";
if (Other.hasRCRoot())
Other.getRCRoot()->dump();
else
llvm::dbgs() << "\n");
LatState = NewState;
KnownSafe &= Other.KnownSafe;
FoundNonARCUser &= Other.FoundNonARCUser;
// If we're doing a merge on a path that's previously seen a partial merge,
// conservatively drop the sequence, to avoid doing partial RR elimination. If
// the branch predicates for the two merge differ, mixing them is unsafe since
// they are not control dependent.
//
// TODO: Add support for working around control dependence issues.
if (LatState == BottomUpRefCountState::LatticeState::None) {
DEBUG(llvm::dbgs() << " Found LatticeState::None. "
"Clearing State!\n");
clear();
return false;
}
if (!Transition.isValid() || !Other.Transition.isValid() ||
!Transition.merge(Other.Transition)) {
DEBUG(llvm::dbgs() << " Failed merge!\n");
clear();
return false;
}
// We need to determine if we performed any partial merging of insertion
// points.
Partial |= Other.Partial;
if (*InsertPts != *Other.InsertPts) {
Partial = true;
InsertPts = InsertPts->merge(Other.InsertPts);
}
DEBUG(llvm::dbgs() << " Partial: " << (Partial ? "yes" : "no")
<< "\n");
DEBUG(llvm::dbgs() << " Insertion Points:\n";
for (auto I : *InsertPts) {
llvm::dbgs() << " " << *I;
});
return true;
}
// Check if PotentialGuaranteedUser can use the reference count associated with
// the value we are tracking. If so advance the state's sequence appropriately
// and return true. Otherwise return false.
bool BottomUpRefCountState::handlePotentialGuaranteedUser(
SILInstruction *PotentialGuaranteedUser, SILInstruction *InputInsertPt,
ImmutablePointerSetFactory<SILInstruction> &SetFactory, AliasAnalysis *AA) {
// If we are not tracking a ref count, just return false.
if (!isTrackingRefCount())
return false;
// If at the current lattice state, we don't care if the value we are
// tracking can be decremented or used, just return false.
//
// This causes us to only perform alias queries when we are at a lattice
// state where the alias queries will actually be used.
if (!valueCanBeGuaranteedUsedGivenLatticeState())
return false;
// If we can prove that Other cannot use the pointer we are tracking,
// return...
if (!mayGuaranteedUseValue(PotentialGuaranteedUser, getRCRoot(), AA))
return false;
// Instructions that we do not recognize (and thus will not move) and that
// *must* use RCIdentity, implies we are always known safe as long as meet
// over all path constraints are satisfied.
if (isRCStateTransitionUnknown(PotentialGuaranteedUser))
if (mustUseValue(PotentialGuaranteedUser, getRCRoot(), AA))
FoundNonARCUser = true;
// Otherwise, update the ref count state given the guaranteed user.
return handleGuaranteedUser(InputInsertPt, getRCRoot(), SetFactory, AA);
}
/// Check if PotentialDecrement can decrement the reference count associated
/// with the value we are tracking. If so advance the state's sequence
/// appropriately and return true. Otherwise return false.
bool BottomUpRefCountState::handlePotentialDecrement(
SILInstruction *PotentialDecrement, AliasAnalysis *AA) {
// If we are not tracking a ref count, just return false.
if (!isTrackingRefCount())
return false;
// If at the current lattice state, we don't care if the value we are
// tracking can be decremented, just return false.
//
// This causes us to only perform alias queries when we are at a lattice
// state where the alias queries will actually be used.
if (!valueCanBeDecrementedGivenLatticeState())
return false;
// If we can prove that Other cannot use the pointer we are tracking,
// return...
if (!mayDecrementRefCount(PotentialDecrement, getRCRoot(), AA))
return false;
// Otherwise, allow the CRTP substruct to update itself given we have a
// potential decrement.
return handleDecrement();
}
// Check if PotentialUser could be a use of the reference counted value that
// requires user to be alive. If so advance the state's sequence
// appropriately and return true. Otherwise return false.
bool BottomUpRefCountState::handlePotentialUser(
SILInstruction *PotentialUser, ArrayRef<SILInstruction *> InputInsertPts,
ImmutablePointerSetFactory<SILInstruction> &SetFactory, AliasAnalysis *AA) {
// If we are not tracking a ref count, just return false.
if (!isTrackingRefCount())
return false;
// If at the current lattice state, we don't care if the value we are
// tracking can be used, just return false.
//
// This causes us to only perform alias queries when we are at a lattice
// state where the alias queries will actually be used.
if (!valueCanBeUsedGivenLatticeState())
return false;
if (!mayUseValue(PotentialUser, getRCRoot(), AA))
return false;
// Instructions that we do not recognize (and thus will not move) and that
// *must* use RCIdentity, implies we are always known safe as long as meet
// over all path constraints are satisfied.
if (isRCStateTransitionUnknown(PotentialUser))
if (mustUseValue(PotentialUser, getRCRoot(), AA))
FoundNonARCUser = true;
return handleUser(InputInsertPts, getRCRoot(), SetFactory, AA);
}
void BottomUpRefCountState::updateForSameLoopInst(
SILInstruction *I, SILInstruction *InputInsertPt,
ImmutablePointerSetFactory<SILInstruction> &SetFactory, AliasAnalysis *AA) {
// If this state is not tracking anything, there is nothing to update.
if (!isTrackingRefCount())
return;
// Check if the instruction we are visiting could potentially use our
// instruction in a way that requires us to guarantee the lifetime of the
// pointer up to this point. This has the effect of performing a use and a
// decrement.
if (handlePotentialGuaranteedUser(I, InputInsertPt, SetFactory, AA)) {
DEBUG(llvm::dbgs() << " Found Potential Guaranteed Use:\n "
<< getRCRoot());
return;
}
// Check if the instruction we are visiting could potentially decrement
// the reference counted value we are tracking... in a manner that could
// cause us to change states. If we do change states continue...
if (handlePotentialDecrement(I, AA)) {
DEBUG(llvm::dbgs() << " Found Potential Decrement:\n "
<< getRCRoot());
return;
}
// Otherwise check if the reference counted value we are tracking
// could be used by the given instruction.
if (!handlePotentialUser(I, InputInsertPt, SetFactory, AA))
return;
DEBUG(llvm::dbgs() << " Found Potential Use:\n " << getRCRoot());
}
void BottomUpRefCountState::updateForDifferentLoopInst(
SILInstruction *I, ArrayRef<SILInstruction *> InputInsertPts,
ImmutablePointerSetFactory<SILInstruction> &SetFactory, AliasAnalysis *AA) {
// If we are not tracking anything, bail.
if (!isTrackingRefCount())
return;
if (valueCanBeGuaranteedUsedGivenLatticeState()) {
if (mayGuaranteedUseValue(I, getRCRoot(), AA) ||
mayDecrementRefCount(I, getRCRoot(), AA)) {
DEBUG(llvm::dbgs() << " Found potential guaranteed use:\n "
<< getRCRoot());
handleGuaranteedUser(InputInsertPts, getRCRoot(), SetFactory, AA);
return;
}
}
// We can just handle potential users normally, since if we handle the user we
// already saw a decrement implying that we will treat this like a guaranteed
// use.
if (!handlePotentialUser(I, InputInsertPts, SetFactory, AA))
return;
DEBUG(llvm::dbgs() << " Found Potential Use:\n " << getRCRoot());
}
void BottomUpRefCountState::updateForPredTerminators(
ArrayRef<SILInstruction *> Terms, SILInstruction *InputInsertPt,
ImmutablePointerSetFactory<SILInstruction> &SetFactory, AliasAnalysis *AA) {
// If this state is not tracking anything, there is nothing to update.
if (!isTrackingRefCount())
return;
if (valueCanBeGuaranteedUsedGivenLatticeState() &&
std::any_of(Terms.begin(), Terms.end(),
[this, &AA](SILInstruction *I) -> bool {
return mayGuaranteedUseValue(I, getRCRoot(), AA);
})) {
handleGuaranteedUser(InputInsertPt, getRCRoot(), SetFactory, AA);
return;
}
if (valueCanBeDecrementedGivenLatticeState() &&
std::any_of(Terms.begin(), Terms.end(),
[this, &AA](SILInstruction *I) -> bool {
return mayDecrementRefCount(I, getRCRoot(), AA);
})) {
handleDecrement();
return;
}
if (!valueCanBeUsedGivenLatticeState() ||
std::none_of(Terms.begin(), Terms.end(),
[this, &AA](SILInstruction *I)
-> bool { return mayUseValue(I, getRCRoot(), AA); }))
return;
handleUser(InputInsertPt, getRCRoot(), SetFactory, AA);
}
//===----------------------------------------------------------------------===//
// Top Down Ref Count State
//===----------------------------------------------------------------------===//
/// Initializes/reinitialized the state for I. If we reinitialize we return
/// true.
bool TopDownRefCountState::initWithMutatorInst(
ImmutablePointerSet<SILInstruction> *I,
RCIdentityFunctionInfo *RCFI) {
assert(I->size() == 1);
SILInstruction *Inst = *I->begin();
(void)Inst;
assert((isa<StrongRetainInst>(Inst) || isa<RetainValueInst>(Inst)) &&
"strong_retain and retain_value are only supported.");
bool NestingDetected = SuperTy::initWithMutatorInst(I, RCFI);
// This retain is known safe if the operand we are tracking was already
// known incremented previously. This occurs when you have nested
// increments.
KnownSafe = isRefCountStateModified();
// Set our lattice state to be incremented.
LatState = LatticeState::Incremented;
return NestingDetected;
}
/// Initialize this ref count state with the @owned Arg at +1.
void TopDownRefCountState::initWithArg(SILArgument *Arg) {
LatState = LatticeState::Incremented;
Transition = RCStateTransition(Arg);
assert(Transition.getKind() == RCStateTransitionKind::StrongEntrance &&
"Expected a strong entrance here");
RCRoot = Arg;
KnownSafe = false;
InsertPts = ImmutablePointerSetFactory<SILInstruction>::getEmptySet();
}
/// Initialize this RefCountState with an instruction which introduces a new
/// ref count at +1.
void TopDownRefCountState::initWithEntranceInst(
ImmutablePointerSet<SILInstruction> *I, SILValue RCIdentity) {
LatState = LatticeState::Incremented;
Transition = RCStateTransition(I);
assert(Transition.getKind() == RCStateTransitionKind::StrongEntrance &&
"Expected a strong entrance here");
RCRoot = RCIdentity;
KnownSafe = false;
InsertPts = ImmutablePointerSetFactory<SILInstruction>::getEmptySet();
}
/// Uninitialize the current state.
void TopDownRefCountState::clear() {
Transition = RCStateTransition();
LatState = LatticeState::None;
SuperTy::clear();
}
/// Can we guarantee that the given reference counted value has been modified?
bool TopDownRefCountState::isRefCountStateModified() const {
switch (LatState) {
case LatticeState::Incremented:
return true;
case LatticeState::None:
case LatticeState::MightBeDecremented:
case LatticeState::MightBeUsed:
return false;
}
}
/// Returns true if given the current lattice state, do we care if the value
/// we are tracking is decremented.
bool TopDownRefCountState::valueCanBeDecrementedGivenLatticeState() const {
switch (LatState) {
case LatticeState::Incremented:
return true;
case LatticeState::None:
case LatticeState::MightBeDecremented:
case LatticeState::MightBeUsed:
return false;
}
}
/// If advance the state's sequence appropriately for a decrement. If we do
/// advance return true. Otherwise return false.
bool TopDownRefCountState::handleDecrement(
SILInstruction *PotentialDecrement, SILInstruction *NewInsertPt,
ImmutablePointerSetFactory<SILInstruction> &SetFactory) {
switch (LatState) {
case LatticeState::Incremented:
LatState = LatticeState::MightBeDecremented;
InsertPts = SetFactory.merge(InsertPts, NewInsertPt);
return true;
case LatticeState::None:
case LatticeState::MightBeDecremented:
case LatticeState::MightBeUsed:
return false;
}
}
/// Returns true if given the current lattice state, do we care if the value
/// we are tracking is used.
bool TopDownRefCountState::valueCanBeUsedGivenLatticeState() const {
switch (LatState) {
case LatticeState::MightBeDecremented:
return true;
case LatticeState::None:
case LatticeState::Incremented:
case LatticeState::MightBeUsed:
return false;
}
}
/// Given the current lattice state, if we have seen a use, advance the
/// lattice state. Return true if we do so and false otherwise.
bool TopDownRefCountState::handleUser(SILInstruction *PotentialUser,
SILValue RCIdentity,
AliasAnalysis *AA) {
assert(valueCanBeUsedGivenLatticeState() &&
"Must be able to be used at this point of the lattice.");
// Otherwise advance the sequence...
switch (LatState) {
case LatticeState::MightBeDecremented:
LatState = LatticeState::MightBeUsed;
return true;
case LatticeState::Incremented:
case LatticeState::None:
case LatticeState::MightBeUsed:
return false;
}
}
/// Returns true if given the current lattice state, do we care if the value
/// we are tracking is used.
bool
TopDownRefCountState::
valueCanBeGuaranteedUsedGivenLatticeState() const {
switch (LatState) {
case LatticeState::None:
case LatticeState::MightBeUsed:
return false;
case LatticeState::Incremented:
case LatticeState::MightBeDecremented:
return true;
}
}
/// Given the current lattice state, if we have seen a use, advance the
/// lattice state. Return true if we do so and false otherwise.
bool TopDownRefCountState::handleGuaranteedUser(
SILInstruction *PotentialGuaranteedUser, SILInstruction *NewInsertPt,
SILValue RCIdentity, ImmutablePointerSetFactory<SILInstruction> &SetFactory,
AliasAnalysis *AA) {
assert(valueCanBeGuaranteedUsedGivenLatticeState() &&
"Must be able to be used at this point of the lattice.");
// Advance the sequence...
switch (LatState) {
// If were decremented, insert the insertion point.
case LatticeState::Incremented: {
assert(InsertPts->empty() && "If we are decremented, we should have no "
"insertion points.");
LatState = LatticeState::MightBeUsed;
InsertPts = SetFactory.get(NewInsertPt);
return true;
}
case LatticeState::MightBeDecremented:
// If we have a might be used, we already created an insertion point
// earlier. Just move to MightBeDecremented.
LatState = LatticeState::MightBeUsed;
return true;
case LatticeState::MightBeUsed:
case LatticeState::None:
return false;
}
}
// Returns true if the passed in ref count inst matches the ref count inst
// we are tracking. This handles generically retains/release.
bool TopDownRefCountState::isRefCountInstMatchedToTrackedInstruction(
SILInstruction *RefCountInst) {
// If we are not tracking any state transitions bail.
if (!Transition.isValid())
return false;
// Otherwise, ask the transition state if this instruction causes a
// transition that can be matched with the transition in order to eliminate
// the transition.
if (!Transition.matchingInst(RefCountInst))
return false;
return handleRefCountInstMatch(RefCountInst);
}
/// We have a matching ref count inst. Return true if we advance the sequence
/// and false otherwise.
bool TopDownRefCountState::
handleRefCountInstMatch(SILInstruction *RefCountInst) {
// Otherwise modify the state appropriately in preparation for removing the
// increment, decrement pair.
switch (LatState) {
case LatticeState::None:
return false;
case LatticeState::Incremented:
case LatticeState::MightBeDecremented:
// Unset InsertPt so we remove retain release pairs instead of performing
// code motion.
InsertPts = ImmutablePointerSetFactory<SILInstruction>::getEmptySet();
SWIFT_FALLTHROUGH;
case LatticeState::MightBeUsed:
return true;
}
}
bool TopDownRefCountState::merge(const TopDownRefCountState &Other) {
auto NewState = MergeTopDownLatticeStates(LatState, Other.LatState);
DEBUG(llvm::dbgs() << " Performing TopDown Merge.\n");
DEBUG(llvm::dbgs() << " Left: " << LatState << "; Right: "
<< Other.LatState << "; Result: " << NewState << "\n");
DEBUG(llvm::dbgs() << " V: ";
if (hasRCRoot())
getRCRoot()->dump();
else
llvm::dbgs() << "\n";
llvm::dbgs() << " OtherV: ";
if (Other.hasRCRoot())
Other.getRCRoot()->dump();
else
llvm::dbgs() << "\n");
LatState = NewState;
KnownSafe &= Other.KnownSafe;
// If we're doing a merge on a path that's previously seen a partial merge,
// conservatively drop the sequence, to avoid doing partial RR elimination. If
// the branch predicates for the two merge differ, mixing them is unsafe since
// they are not control dependent.
//
// TODO: Add support for determining control dependence.
if (LatState == TopDownRefCountState::LatticeState::None) {
clear();
DEBUG(llvm::dbgs() << " Found LatticeState::None. "
"Clearing State!\n");
return false;
}
if (!Transition.isValid() || !Other.Transition.isValid() ||
!Transition.merge(Other.Transition)) {
DEBUG(llvm::dbgs() << " Failed merge!\n");
clear();
return false;
}
Partial |= Other.Partial;
if (*InsertPts != *Other.InsertPts) {
Partial = true;
InsertPts = InsertPts->merge(Other.InsertPts);
}
DEBUG(llvm::dbgs() << " Partial: " << (Partial ? "yes" : "no")
<< "\n");
return true;
}
// Check if PotentialGuaranteedUser can use the reference count associated with
// the value we are tracking. If so advance the state's sequence appropriately
// and return true. Otherwise return false.
bool TopDownRefCountState::handlePotentialGuaranteedUser(
SILInstruction *PotentialGuaranteedUser, SILInstruction *NewInsertPt,
ImmutablePointerSetFactory<SILInstruction> &SetFactory, AliasAnalysis *AA) {
// If we are not tracking a ref count, just return false.
if (!isTrackingRefCount())
return false;
// If at the current lattice state, we don't care if the value we are
// tracking can be decremented or used, just return false.
//
// This causes us to only perform alias queries when we are at a lattice
// state where the alias queries will actually be used.
if (!valueCanBeGuaranteedUsedGivenLatticeState())
return false;
// If we can prove that Other cannot use the pointer we are tracking,
// return...
if (!mayGuaranteedUseValue(PotentialGuaranteedUser, getRCRoot(), AA))
return false;
// Otherwise, update our step given that we have a potential decrement.
return handleGuaranteedUser(PotentialGuaranteedUser, NewInsertPt, getRCRoot(),
SetFactory, AA);
}
// Check if PotentialDecrement can decrement the reference count associated with
// the value we are tracking. If so advance the state's sequence appropriately
// and return true. Otherwise return false.
bool TopDownRefCountState::handlePotentialDecrement(
SILInstruction *PotentialDecrement, SILInstruction *NewInsertPt,
ImmutablePointerSetFactory<SILInstruction> &SetFactory, AliasAnalysis *AA) {
// If we are not tracking a ref count, just return false.
if (!isTrackingRefCount())
return false;
// If at the current lattice state, we don't care if the value we are
// tracking can be decremented, just return false.
//
// This causes us to only perform alias queries when we are at a lattice
// state where the alias queries will actually be used.
if (!valueCanBeDecrementedGivenLatticeState())
return false;
// If we can prove that Other cannot use the pointer we are tracking,
// return...
if (!mayDecrementRefCount(PotentialDecrement, getRCRoot(), AA))
return false;
// Otherwise, update our state given the potential decrement.
return handleDecrement(PotentialDecrement, NewInsertPt, SetFactory);
}
// Check if PotentialUser could be a use of the reference counted value that
// requires user to be alive. If so advance the state's sequence appropriately
// and return true. Otherwise return false.
bool TopDownRefCountState::handlePotentialUser(SILInstruction *PotentialUser,
AliasAnalysis *AA) {
// If we are not tracking a ref count, just return false.
if (!isTrackingRefCount())
return false;
// If at the current lattice state, we don't care if the value we are
// tracking can be used, just return false.
//
// This causes us to only perform alias queries when we are at a lattice
// state where the alias queries will actually be used.
if (!valueCanBeUsedGivenLatticeState())
return false;
if (!mayUseValue(PotentialUser, getRCRoot(), AA))
return false;
return handleUser(PotentialUser, getRCRoot(), AA);
}
void TopDownRefCountState::updateForSameLoopInst(
SILInstruction *I, SILInstruction *NewInsertPt,
ImmutablePointerSetFactory<SILInstruction> &SetFactory, AliasAnalysis *AA) {
// If we are not tracking anything, bail.
if (!isTrackingRefCount())
return;
// Check if the instruction we are visiting could potentially use our
// instruction in a way that requires us to guarantee the lifetime of the
// pointer up to this point. This has the effect of performing a use and a
// decrement.
if (handlePotentialGuaranteedUser(I, NewInsertPt, SetFactory, AA)) {
DEBUG(llvm::dbgs() << " Found Potential Guaranteed Use:\n "
<< getRCRoot());
return;
}
// Check if the instruction we are visiting could potentially decrement
// the reference counted value we are tracking in a manner that could
// cause us to change states. If we do change states continue...
if (handlePotentialDecrement(I, NewInsertPt, SetFactory, AA)) {
DEBUG(llvm::dbgs() << " Found Potential Decrement:\n "
<< getRCRoot());
return;
}
// Otherwise check if the reference counted value we are tracking
// could be used by the given instruction.
if (!handlePotentialUser(I, AA))
return;
DEBUG(llvm::dbgs() << " Found Potential Use:\n " << getRCRoot());
}
void TopDownRefCountState::updateForDifferentLoopInst(
SILInstruction *I, SILInstruction *NewInsertPt,
ImmutablePointerSetFactory<SILInstruction> &SetFactory, AliasAnalysis *AA) {
// If we are not tracking anything, bail.
if (!isTrackingRefCount())
return;
if (valueCanBeGuaranteedUsedGivenLatticeState()) {
if (mayGuaranteedUseValue(I, getRCRoot(), AA) ||
mayDecrementRefCount(I, getRCRoot(), AA)) {
DEBUG(llvm::dbgs() << " Found potential guaranteed use!\n");
handleGuaranteedUser(I, NewInsertPt, getRCRoot(), SetFactory, AA);
return;
}
}
if (!handlePotentialUser(I, AA))
return;
DEBUG(llvm::dbgs() << " Found Potential Use:\n " << getRCRoot());
}
//===----------------------------------------------------------------------===//
// Printing Utilities
//===----------------------------------------------------------------------===//
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS,
BottomUpRefCountState::LatticeState S) {
using LatticeState = BottomUpRefCountState::LatticeState;
switch (S) {
case LatticeState::None:
return OS << "None";
case LatticeState::Decremented:
return OS << "Decremented";
case LatticeState::MightBeUsed:
return OS << "MightBeUsed";
case LatticeState::MightBeDecremented:
return OS << "MightBeDecremented";
}
}
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
TopDownRefCountState::LatticeState S) {
using LatticeState = TopDownRefCountState::LatticeState;
switch (S) {
case LatticeState::None:
return OS << "None";
case LatticeState::Incremented:
return OS << "Incremented";
case LatticeState::MightBeUsed:
return OS << "MightBeUsed";
case LatticeState::MightBeDecremented:
return OS << "MightBeDecremented";
}
}
} // end namespace llvm