Files
swift-mirror/lib/SILOptimizer/Analysis/ArraySemantic.cpp
Arnold Schwaighofer b5f018a4b1 Mark Array.withUnsafeMutableBuffer as not escaping the array storage.
This is safe because the closure is not allowed to capture the array according
to the documentation of 'withUnsafeMutableBuffer' and the current implementation
makes sure that any such capture would observe an empty array by swapping self
with an empty array.

Users will get "almost guaranteed" stack promotion for small arrays by writing
something like:

  func testStackAllocation(p: Proto) {
    var a = [p, p, p]
    a.withUnsafeMutableBufferPointer {
      let array = $0
      work(array)
    }
  }

It is "almost guaranteed" because we need to statically be able to tell the size
required for the array (no unspecialized generics) and the total buffer size
must not exceed 1K.
2016-03-08 19:37:47 -08:00

683 lines
24 KiB
C++

//===--- ArraySemantic.cpp - Wrapper around array semantic calls. ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringSwitch.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
using namespace swift;
static ParameterConvention
getSelfParameterConvention(ApplyInst *SemanticsCall) {
FunctionRefInst *FRI = cast<FunctionRefInst>(SemanticsCall->getCallee());
SILFunction *F = FRI->getReferencedFunction();
auto FnTy = F->getLoweredFunctionType();
return FnTy->getSelfParameter().getConvention();
}
/// \brief Make sure that all parameters are passed with a reference count
/// neutral parameter convention except for self.
bool swift::ArraySemanticsCall::isValidSignature() {
assert(SemanticsCall && getKind() != ArrayCallKind::kNone &&
"Need an array semantic call");
FunctionRefInst *FRI = cast<FunctionRefInst>(SemanticsCall->getCallee());
SILFunction *F = FRI->getReferencedFunction();
auto FnTy = F->getLoweredFunctionType();
auto &Mod = F->getModule();
// Check whether we have a valid signature for semantic calls that we hoist.
switch (getKind()) {
// All other calls can be consider valid.
default: break;
case ArrayCallKind::kArrayPropsIsNativeTypeChecked: {
// @guaranteed/@owned Self
if (SemanticsCall->getNumArguments() != 1)
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Direct_Guaranteed ||
SelfConvention == ParameterConvention::Direct_Owned;
}
case ArrayCallKind::kCheckIndex: {
// Int, @guaranteed/@owned Self
if (SemanticsCall->getNumArguments() != 2 ||
!SemanticsCall->getArgument(0)->getType().isTrivial(Mod))
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Direct_Guaranteed ||
SelfConvention == ParameterConvention::Direct_Owned;
}
case ArrayCallKind::kCheckSubscript: {
// Int, Bool, Self
if (SemanticsCall->getNumArguments() != 3 ||
!SemanticsCall->getArgument(0)->getType().isTrivial(Mod))
return false;
if (!SemanticsCall->getArgument(1)->getType().isTrivial(Mod))
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Direct_Guaranteed ||
SelfConvention == ParameterConvention::Direct_Owned;
}
case ArrayCallKind::kMakeMutable: {
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Indirect_Inout;
}
case ArrayCallKind::kArrayUninitialized: {
// Make sure that if we are a _adoptStorage call that our storage is
// uniquely referenced by us.
SILValue Arg0 = SemanticsCall->getArgument(0);
if (Arg0->getType().isExistentialType()) {
auto *AllocBufferAI = dyn_cast<ApplyInst>(Arg0);
if (!AllocBufferAI)
return false;
auto *AllocFn = AllocBufferAI->getReferencedFunction();
if (!AllocFn)
return false;
StringRef AllocFuncName = AllocFn->getName();
if (AllocFuncName != "swift_bufferAllocate" &&
AllocFuncName != "swift_bufferAllocateOnStack")
return false;
if (!hasOneNonDebugUse(AllocBufferAI))
return false;
}
return true;
}
case ArrayCallKind::kWithUnsafeMutableBufferPointer: {
if (SemanticsCall->getOrigCalleeType()->getNumIndirectResults() != 1 ||
SemanticsCall->getNumArguments() != 3)
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Indirect_Inout;
}
}
return true;
}
/// Match array semantic calls.
swift::ArraySemanticsCall::ArraySemanticsCall(ValueBase *V,
StringRef SemanticStr,
bool MatchPartialName) {
if (auto *AI = dyn_cast<ApplyInst>(V))
if (auto *Fn = AI->getReferencedFunction())
if ((MatchPartialName &&
Fn->hasSemanticsAttrThatStartsWith(SemanticStr)) ||
(!MatchPartialName && Fn->hasSemanticsAttr(SemanticStr))) {
SemanticsCall = AI;
// Need a 'self' argument otherwise this is not a semantic call that
// we recognize.
if (getKind() < ArrayCallKind::kArrayInit && !hasSelf())
SemanticsCall = nullptr;
// A arguments must be passed reference count neutral except for self.
if (SemanticsCall && !isValidSignature())
SemanticsCall = nullptr;
return;
}
// Otherwise, this is not the semantic call we are looking for.
SemanticsCall = nullptr;
}
/// Determine which kind of array semantics call this is.
ArrayCallKind swift::ArraySemanticsCall::getKind() const {
if (!SemanticsCall)
return ArrayCallKind::kNone;
auto F = cast<FunctionRefInst>(SemanticsCall->getCallee())
->getReferencedFunction();
ArrayCallKind Kind = ArrayCallKind::kNone;
for (auto &Attrs : F->getSemanticsAttrs()) {
auto Tmp =
llvm::StringSwitch<ArrayCallKind>(Attrs)
.Case("array.props.isNativeTypeChecked",
ArrayCallKind::kArrayPropsIsNativeTypeChecked)
.Case("array.init", ArrayCallKind::kArrayInit)
.Case("array.uninitialized", ArrayCallKind::kArrayUninitialized)
.Case("array.check_subscript", ArrayCallKind::kCheckSubscript)
.Case("array.check_index", ArrayCallKind::kCheckIndex)
.Case("array.get_count", ArrayCallKind::kGetCount)
.Case("array.get_capacity", ArrayCallKind::kGetCapacity)
.Case("array.get_element", ArrayCallKind::kGetElement)
.Case("array.owner", ArrayCallKind::kGetArrayOwner)
.Case("array.make_mutable", ArrayCallKind::kMakeMutable)
.Case("array.get_element_address",
ArrayCallKind::kGetElementAddress)
.Case("array.mutate_unknown", ArrayCallKind::kMutateUnknown)
.Case("array.withUnsafeMutableBufferPointer", ArrayCallKind::kWithUnsafeMutableBufferPointer)
.Default(ArrayCallKind::kNone);
if (Tmp != ArrayCallKind::kNone) {
assert(Kind == ArrayCallKind::kNone && "Multiple array semantic "
"strings?!");
Kind = Tmp;
}
}
return Kind;
}
bool swift::ArraySemanticsCall::hasSelf() const {
assert(SemanticsCall && "Must have a semantics call");
// Array.init and Array.uninitialized return 'self' @owned.
return SemanticsCall->getOrigCalleeType()->hasSelfParam();
}
SILValue swift::ArraySemanticsCall::getSelf() const {
return SemanticsCall->getSelfArgument();
}
Operand &swift::ArraySemanticsCall::getSelfOperand() const {
return SemanticsCall->getSelfArgumentOperand();
}
bool swift::ArraySemanticsCall::hasGuaranteedSelf() const {
if (!hasSelf())
return false;
return getSelfParameterConvention(SemanticsCall) ==
ParameterConvention::Direct_Guaranteed;
}
bool swift::ArraySemanticsCall::hasGetElementDirectResult() const {
assert(getKind() == ArrayCallKind::kGetElement &&
"must be an array.get_element call");
bool DirectResult =
(SemanticsCall->getOrigCalleeType()->getNumIndirectResults() == 0);
assert((DirectResult && SemanticsCall->getNumArguments() == 4 ||
!DirectResult && SemanticsCall->getNumArguments() == 5) &&
"wrong number of array.get_element call arguments");
return DirectResult;
}
SILValue swift::ArraySemanticsCall::getTypeCheckedArgument() const {
return SemanticsCall->getArgument(hasGetElementDirectResult() ? 1 : 2);
}
SILValue swift::ArraySemanticsCall::getSubscriptCheckArgument() const {
return SemanticsCall->getArgument(hasGetElementDirectResult() ? 2 : 3);
}
SILValue swift::ArraySemanticsCall::getIndex() const {
assert(SemanticsCall && "Must have a semantics call");
assert(SemanticsCall->getNumArguments() && "Must have arguments");
assert(getKind() == ArrayCallKind::kCheckSubscript ||
getKind() == ArrayCallKind::kCheckIndex ||
getKind() == ArrayCallKind::kGetElement ||
getKind() == ArrayCallKind::kGetElementAddress);
if (getKind() == ArrayCallKind::kGetElement)
return SemanticsCall->getArgument(hasGetElementDirectResult() ? 0 : 1);
return SemanticsCall->getArgument(0);
}
Optional<int64_t> swift::ArraySemanticsCall::getConstantIndex() const {
auto *IndexStruct = dyn_cast<StructInst>(getIndex());
if (!IndexStruct)
return None;
auto StructOpds = IndexStruct->getElements();
if (StructOpds.size() != 1)
return None;
auto *Literal = dyn_cast<IntegerLiteralInst>(StructOpds[0]);
if (!Literal)
return None;
auto Val = Literal->getValue();
if (Val.getNumWords()>1)
return None;
return Val.getSExtValue();
}
static bool canHoistArrayArgument(ApplyInst *SemanticsCall, SILValue Arr,
SILInstruction *InsertBefore,
DominanceInfo *DT) {
// We only know how to hoist inout, owned or guaranteed parameters.
auto Convention = getSelfParameterConvention(SemanticsCall);
if (Convention != ParameterConvention::Indirect_Inout &&
Convention != ParameterConvention::Direct_Owned &&
Convention != ParameterConvention::Direct_Guaranteed)
return false;
ValueBase *SelfVal = Arr;
auto *SelfBB = SelfVal->getParentBB();
if (DT->dominates(SelfBB, InsertBefore->getParent()))
return true;
if (auto LI = dyn_cast<LoadInst>(SelfVal)) {
// Are we loading a value from an address in a struct defined at a point
// dominating the hoist point.
auto Val = LI->getOperand();
bool DoesNotDominate;
StructElementAddrInst *SEI;
while ((DoesNotDominate = !DT->dominates(Val->getParentBB(),
InsertBefore->getParent())) &&
(SEI = dyn_cast<StructElementAddrInst>(Val)))
Val = SEI->getOperand();
return !DoesNotDominate;
}
return false;
}
bool swift::ArraySemanticsCall::canHoist(SILInstruction *InsertBefore,
DominanceInfo *DT) const {
auto Kind = getKind();
switch (Kind) {
default:
break;
case ArrayCallKind::kCheckIndex:
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
case ArrayCallKind::kGetElementAddress:
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity:
return canHoistArrayArgument(SemanticsCall, getSelf(), InsertBefore, DT);
case ArrayCallKind::kGetElement:
// Not implemented yet.
return false;
case ArrayCallKind::kCheckSubscript: {
auto IsNativeArg = getArrayPropertyIsNativeTypeChecked();
ArraySemanticsCall IsNative(IsNativeArg,
"array.props.isNativeTypeChecked", true);
if (!IsNative) {
// Do we have a constant parameter?
auto *SI = dyn_cast<StructInst>(IsNativeArg);
if (!SI)
return false;
if (!isa<IntegerLiteralInst>(SI->getOperand(0)))
return false;
} else if (!IsNative.canHoist(InsertBefore, DT))
// Otherwise, we must be able to hoist the function call.
return false;
return canHoistArrayArgument(SemanticsCall, getSelf(), InsertBefore, DT);
}
case ArrayCallKind::kMakeMutable: {
return canHoistArrayArgument(SemanticsCall, getSelf(), InsertBefore, DT);
}
} // End switch.
return false;
}
/// Copy the array load to the insert point.
static SILValue copyArrayLoad(SILValue ArrayStructValue,
SILInstruction *InsertBefore,
DominanceInfo *DT) {
if (DT->dominates(ArrayStructValue->getParentBB(),
InsertBefore->getParent()))
return ArrayStructValue;
auto *LI = cast<LoadInst>(ArrayStructValue);
// Recursively move struct_element_addr.
ValueBase *Val = LI->getOperand();
auto *InsertPt = InsertBefore;
while (!DT->dominates(Val->getParentBB(), InsertBefore->getParent())) {
auto *Inst = cast<StructElementAddrInst>(Val);
Inst->moveBefore(InsertPt);
Val = Inst->getOperand();
InsertPt = Inst;
}
return LI->clone(InsertBefore);
}
static ApplyInst *hoistOrCopyCall(ApplyInst *AI, SILInstruction *InsertBefore,
bool LeaveOriginal, DominanceInfo *DT) {
if (!LeaveOriginal) {
AI->moveBefore(InsertBefore);
} else {
// Leave the original and 'hoist' a clone.
AI = cast<ApplyInst>(AI->clone(InsertBefore));
}
placeFuncRef(AI, DT);
return AI;
}
/// \brief Hoist or copy the self argument of the semantics call.
/// Return the hoisted self argument.
static SILValue hoistOrCopySelf(ApplyInst *SemanticsCall,
SILInstruction *InsertBefore,
DominanceInfo *DT, bool LeaveOriginal) {
auto SelfConvention = getSelfParameterConvention(SemanticsCall);
assert((SelfConvention == ParameterConvention::Direct_Owned ||
SelfConvention == ParameterConvention::Direct_Guaranteed) &&
"Expect @owned or @guaranteed self");
auto Self = SemanticsCall->getSelfArgument();
bool IsOwnedSelf = SelfConvention == ParameterConvention::Direct_Owned;
// Emit matching release for owned self if we are moving the original call.
if (!LeaveOriginal && IsOwnedSelf)
SILBuilderWithScope(SemanticsCall)
.createReleaseValue(SemanticsCall->getLoc(), Self);
auto NewArrayStructValue = copyArrayLoad(Self, InsertBefore, DT);
// Retain the array.
if (IsOwnedSelf)
SILBuilderWithScope(InsertBefore, SemanticsCall)
.createRetainValue(SemanticsCall->getLoc(), NewArrayStructValue);
return NewArrayStructValue;
}
ApplyInst *swift::ArraySemanticsCall::hoistOrCopy(SILInstruction *InsertBefore,
DominanceInfo *DT,
bool LeaveOriginal) {
assert(canHoist(InsertBefore, DT) &&
"Must be able to hoist the semantics call");
auto Kind = getKind();
switch (Kind) {
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity: {
assert(SemanticsCall->getNumArguments() == 1 &&
"Expect 'self' parameter only");
auto HoistedSelf =
hoistOrCopySelf(SemanticsCall, InsertBefore, DT, LeaveOriginal);
auto *Call =
hoistOrCopyCall(SemanticsCall, InsertBefore, LeaveOriginal, DT);
Call->setSelfArgument(HoistedSelf);
return Call;
}
case ArrayCallKind::kCheckSubscript:
case ArrayCallKind::kCheckIndex: {
auto HoistedSelf =
hoistOrCopySelf(SemanticsCall, InsertBefore, DT, LeaveOriginal);
SILValue NewArrayProps;
if (Kind == ArrayCallKind::kCheckSubscript) {
// Copy the array.props argument call.
auto IsNativeArg = getArrayPropertyIsNativeTypeChecked();
ArraySemanticsCall IsNative(IsNativeArg,
"array.props.isNativeTypeChecked", true);
if (!IsNative) {
// Do we have a constant parameter?
auto *SI = dyn_cast<StructInst>(IsNativeArg);
assert(SI && isa<IntegerLiteralInst>(SI->getOperand(0)) &&
"Must have a constant parameter or an array.props.isNative call "
"as argument");
SI->moveBefore(&*DT->findNearestCommonDominator(
InsertBefore->getParent(), SI->getParent())
->begin());
auto *IL = cast<IntegerLiteralInst>(SI->getOperand(0));
IL->moveBefore(&*DT->findNearestCommonDominator(
InsertBefore->getParent(), IL->getParent())
->begin());
} else {
NewArrayProps = IsNative.copyTo(InsertBefore, DT);
}
// Replace all uses of the check subscript call by a use of the empty
// dependence. The check subscript call is no longer associated with
// another operation.
auto EmptyDep = SILBuilderWithScope(SemanticsCall)
.createStruct(SemanticsCall->getLoc(),
SemanticsCall->getType(), {});
SemanticsCall->replaceAllUsesWith(EmptyDep);
}
// Hoist the call.
auto Call = hoistOrCopyCall(SemanticsCall, InsertBefore, LeaveOriginal, DT);
Call->setSelfArgument(HoistedSelf);
if (NewArrayProps) {
// Set the array.props argument.
Call->setArgument(1, NewArrayProps);
}
return Call;
}
case ArrayCallKind::kMakeMutable: {
assert(!LeaveOriginal && "Copying not yet implemented");
// Hoist the call.
auto Call = hoistOrCopyCall(SemanticsCall, InsertBefore, LeaveOriginal, DT);
return Call;
}
default:
llvm_unreachable("Don't know how to hoist this instruction");
break;
} // End switch.
}
void swift::ArraySemanticsCall::removeCall() {
if (getSelfParameterConvention(SemanticsCall) ==
ParameterConvention::Direct_Owned)
SILBuilderWithScope(SemanticsCall)
.createReleaseValue(SemanticsCall->getLoc(), getSelf());
switch (getKind()) {
default: break;
case ArrayCallKind::kCheckSubscript: {
// Remove all uses with the empty tuple ().
auto EmptyDep = SILBuilderWithScope(SemanticsCall)
.createStruct(SemanticsCall->getLoc(),
SemanticsCall->getType(), {});
SemanticsCall->replaceAllUsesWith(EmptyDep);
}
break;
case ArrayCallKind::kGetElement: {
// Remove the matching isNativeTypeChecked and check_subscript call.
ArraySemanticsCall IsNative(getTypeCheckedArgument(),
"array.props.isNativeTypeChecked");
ArraySemanticsCall SubscriptCheck(getSubscriptCheckArgument(),
"array.check_subscript");
if (SubscriptCheck)
SubscriptCheck.removeCall();
// array.isNativeTypeChecked might be shared among several get_element
// calls. The last user should delete it.
if (IsNative && getSingleNonDebugUser((ApplyInst *)IsNative) ==
SemanticsCall) {
deleteAllDebugUses(IsNative);
(*IsNative).replaceAllUsesWithUndef();
IsNative.removeCall();
}
}
break;
}
SemanticsCall->eraseFromParent();
SemanticsCall = nullptr;
}
SILValue
swift::ArraySemanticsCall::getArrayPropertyIsNativeTypeChecked() const {
switch (getKind()) {
case ArrayCallKind::kCheckSubscript:
return SemanticsCall->getArgument(1);
case ArrayCallKind::kGetElement:
return getTypeCheckedArgument();
default:
llvm_unreachable("Must have an array.props argument");
}
}
bool swift::ArraySemanticsCall::doesNotChangeArray() const {
switch (getKind()) {
default: return false;
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
case ArrayCallKind::kCheckSubscript:
case ArrayCallKind::kCheckIndex:
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity:
case ArrayCallKind::kGetElement:
return true;
}
}
bool swift::ArraySemanticsCall::mayHaveBridgedObjectElementType() const {
assert(hasSelf() && "Need self parameter");
auto Ty = getSelf()->getType().getSwiftRValueType();
auto Canonical = Ty.getCanonicalTypeOrNull();
if (Canonical.isNull())
return true;
auto *Struct = Canonical->getStructOrBoundGenericStruct();
assert(Struct && "Array must be a struct !?");
if (Struct) {
auto BGT = dyn_cast<BoundGenericType>(Ty);
if (!BGT)
return true;
// Check the array element type parameter.
bool isClass = true;
for (auto TP : BGT->getGenericArgs()) {
auto EltTy = TP.getCanonicalTypeOrNull();
if (EltTy.isNull())
return true;
if (EltTy->isBridgeableObjectType())
return true;
isClass = false;
}
return isClass;
}
return true;
}
SILValue swift::ArraySemanticsCall::getInitializationCount() const {
if (getKind() == ArrayCallKind::kArrayUninitialized) {
// Can be either a call to _adoptStorage or _allocateUninitialized.
// A call to _adoptStorage has the buffer as AnyObject as the first
// argument. The count is the second argument.
// A call to _allocateUninitialized has the count as first argument.
SILValue Arg0 = SemanticsCall->getArgument(0);
if (Arg0->getType().isExistentialType())
return SemanticsCall->getArgument(1);
else return SemanticsCall->getArgument(0);
}
if (getKind() == ArrayCallKind::kArrayInit &&
SemanticsCall->getNumArguments() == 3)
return SemanticsCall->getArgument(0);
return SILValue();
}
SILValue swift::ArraySemanticsCall::getArrayValue() const {
if (getKind() == ArrayCallKind::kArrayUninitialized) {
TupleExtractInst *ArrayDef = nullptr;
for (auto *Op : SemanticsCall->getUses()) {
auto *TupleElt = dyn_cast<TupleExtractInst>(Op->getUser());
if (!TupleElt)
return SILValue();
switch (TupleElt->getFieldNo()) {
default:
return SILValue();
case 0: {
// Should only have one tuple extract after CSE.
if (ArrayDef)
return SILValue();
ArrayDef = TupleElt;
break;
}
case 1: /*Ignore the storage address */ break;
}
}
return SILValue(ArrayDef);
}
if(getKind() == ArrayCallKind::kArrayInit)
return SILValue(SemanticsCall);
return SILValue();
}
SILValue swift::ArraySemanticsCall::getArrayElementStoragePointer() const {
if (getKind() == ArrayCallKind::kArrayUninitialized) {
TupleExtractInst *ArrayElementStorage = nullptr;
for (auto *Op : SemanticsCall->getUses()) {
auto *TupleElt = dyn_cast<TupleExtractInst>(Op->getUser());
if (!TupleElt)
return SILValue();
switch (TupleElt->getFieldNo()) {
default:
return SILValue();
case 0: {
// Ignore the array value.
break;
}
case 1:
// Should only have one tuple extract after CSE.
if (ArrayElementStorage)
return SILValue();
ArrayElementStorage = TupleElt;
break;
}
}
return SILValue(ArrayElementStorage);
}
return SILValue();
}
bool swift::ArraySemanticsCall::replaceByValue(SILValue V) {
assert(getKind() == ArrayCallKind::kGetElement &&
"Must be a get_element call");
// We only handle loadable types.
if (!V->getType().isLoadable(SemanticsCall->getModule()))
return false;
// Expect a check_subscript call or the empty dependence.
auto SubscriptCheck = getSubscriptCheckArgument();
ArraySemanticsCall Check(SubscriptCheck, "array.check_subscript");
auto *EmptyDep = dyn_cast<StructInst>(SubscriptCheck);
if (!Check && (!EmptyDep || !EmptyDep->getElements().empty()))
return false;
SILBuilderWithScope Builder(SemanticsCall);
auto &ValLowering = Builder.getModule().getTypeLowering(V->getType());
if (hasGetElementDirectResult()) {
ValLowering.emitRetainValue(Builder, SemanticsCall->getLoc(), V);
SemanticsCall->replaceAllUsesWith(V);
} else {
auto Dest = SemanticsCall->getArgument(0);
// Expect an alloc_stack initialization.
auto *ASI = dyn_cast<AllocStackInst>(Dest);
if (!ASI)
return false;
ValLowering.emitRetainValue(Builder, SemanticsCall->getLoc(), V);
ValLowering.emitStoreOfCopy(Builder, SemanticsCall->getLoc(), V, Dest,
IsInitialization_t::IsInitialization);
}
removeCall();
return true;
}