mirror of
https://github.com/apple/swift.git
synced 2025-12-14 20:36:38 +01:00
This instruction creates a "virtual" address to represent a property with a behavior that supports definite initialization. The instruction holds references to functions that perform the initialization and 'set' logic for the property. It will be DI's job to rewrite assignments into this virtual address into calls to the initializer or setter based on the initialization state of the property at the time of assignment.
1015 lines
37 KiB
C++
1015 lines
37 KiB
C++
//===--- PredictableMemOpt.cpp - Perform predictable memory optzns --------===//
|
|
//
|
|
// This source file is part of the Swift.org open source project
|
|
//
|
|
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
|
|
// Licensed under Apache License v2.0 with Runtime Library Exception
|
|
//
|
|
// See http://swift.org/LICENSE.txt for license information
|
|
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "predictable-memopt"
|
|
#include "swift/Basic/Fallthrough.h"
|
|
#include "swift/SILOptimizer/PassManager/Passes.h"
|
|
#include "DIMemoryUseCollector.h"
|
|
#include "swift/SIL/SILBuilder.h"
|
|
#include "swift/SILOptimizer/Utils/Local.h"
|
|
#include "swift/SILOptimizer/PassManager/Transforms.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
using namespace swift;
|
|
|
|
STATISTIC(NumLoadPromoted, "Number of loads promoted");
|
|
STATISTIC(NumDestroyAddrPromoted, "Number of destroy_addrs promoted");
|
|
STATISTIC(NumAllocRemoved, "Number of allocations completely removed");
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Subelement Analysis Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// We can only analyze components of structs whose storage is fully accessible
|
|
// from Swift.
|
|
static StructDecl *
|
|
getFullyReferenceableStruct(SILType Ty) {
|
|
auto SD = Ty.getStructOrBoundGenericStruct();
|
|
if (!SD || SD->hasUnreferenceableStorage())
|
|
return nullptr;
|
|
return SD;
|
|
}
|
|
|
|
static unsigned getNumSubElements(SILType T, SILModule &M) {
|
|
|
|
if (auto TT = T.getAs<TupleType>()) {
|
|
unsigned NumElements = 0;
|
|
for (auto index : indices(TT.getElementTypes()))
|
|
NumElements += getNumSubElements(T.getTupleElementType(index), M);
|
|
return NumElements;
|
|
}
|
|
|
|
if (auto *SD = getFullyReferenceableStruct(T)) {
|
|
unsigned NumElements = 0;
|
|
for (auto *D : SD->getStoredProperties())
|
|
NumElements += getNumSubElements(T.getFieldType(D, M), M);
|
|
return NumElements;
|
|
}
|
|
|
|
// If this isn't a tuple or struct, it is a single element.
|
|
return 1;
|
|
}
|
|
|
|
/// getAccessPathRoot - Given an address, dive through any tuple/struct element
|
|
/// addresses to get the underlying value.
|
|
static SILValue getAccessPathRoot(SILValue Pointer) {
|
|
while (1) {
|
|
if (auto *TEAI = dyn_cast<TupleElementAddrInst>(Pointer))
|
|
Pointer = TEAI->getOperand();
|
|
else if (auto SEAI = dyn_cast<StructElementAddrInst>(Pointer))
|
|
Pointer = SEAI->getOperand();
|
|
else
|
|
return Pointer;
|
|
}
|
|
}
|
|
|
|
/// Compute the subelement number indicated by the specified pointer (which is
|
|
/// derived from the root by a series of tuple/struct element addresses) by
|
|
/// treating the type as a linearized namespace with sequential elements. For
|
|
/// example, given:
|
|
///
|
|
/// root = alloc { a: { c: i64, d: i64 }, b: (i64, i64) }
|
|
/// tmp1 = struct_element_addr root, 1
|
|
/// tmp2 = tuple_element_addr tmp1, 0
|
|
///
|
|
/// This will return a subelement number of 2.
|
|
///
|
|
/// If this pointer is to within an existential projection, it returns ~0U.
|
|
///
|
|
static unsigned computeSubelement(SILValue Pointer, SILInstruction *RootInst) {
|
|
unsigned SubEltNumber = 0;
|
|
SILModule &M = RootInst->getModule();
|
|
|
|
while (1) {
|
|
// If we got to the root, we're done.
|
|
if (RootInst == Pointer)
|
|
return SubEltNumber;
|
|
|
|
auto *Inst = cast<SILInstruction>(Pointer);
|
|
if (auto *PBI = dyn_cast<ProjectBoxInst>(Inst)) {
|
|
Pointer = PBI->getOperand();
|
|
} else if (auto *TEAI = dyn_cast<TupleElementAddrInst>(Inst)) {
|
|
SILType TT = TEAI->getOperand()->getType();
|
|
|
|
// Keep track of what subelement is being referenced.
|
|
for (unsigned i = 0, e = TEAI->getFieldNo(); i != e; ++i) {
|
|
SubEltNumber += getNumSubElements(TT.getTupleElementType(i), M);
|
|
}
|
|
Pointer = TEAI->getOperand();
|
|
} else if (auto *SEAI = dyn_cast<StructElementAddrInst>(Inst)) {
|
|
SILType ST = SEAI->getOperand()->getType();
|
|
|
|
// Keep track of what subelement is being referenced.
|
|
StructDecl *SD = SEAI->getStructDecl();
|
|
for (auto *D : SD->getStoredProperties()) {
|
|
if (D == SEAI->getField()) break;
|
|
SubEltNumber += getNumSubElements(ST.getFieldType(D, M), M);
|
|
}
|
|
|
|
Pointer = SEAI->getOperand();
|
|
} else {
|
|
assert((isa<InitExistentialAddrInst>(Inst) || isa<InjectEnumAddrInst>(Inst))&&
|
|
"Unknown access path instruction");
|
|
// Cannot promote loads and stores from within an existential projection.
|
|
return ~0U;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// Given an aggregate value and an access path, extract the value indicated by
|
|
/// the path.
|
|
static SILValue ExtractSubElement(SILValue Val, unsigned SubElementNumber,
|
|
SILBuilder &B, SILLocation Loc) {
|
|
SILType ValTy = Val->getType();
|
|
|
|
// Extract tuple elements.
|
|
if (auto TT = ValTy.getAs<TupleType>()) {
|
|
for (unsigned EltNo : indices(TT.getElementTypes())) {
|
|
// Keep track of what subelement is being referenced.
|
|
SILType EltTy = ValTy.getTupleElementType(EltNo);
|
|
unsigned NumSubElt = getNumSubElements(EltTy, B.getModule());
|
|
if (SubElementNumber < NumSubElt) {
|
|
Val = B.emitTupleExtract(Loc, Val, EltNo, EltTy);
|
|
return ExtractSubElement(Val, SubElementNumber, B, Loc);
|
|
}
|
|
|
|
SubElementNumber -= NumSubElt;
|
|
}
|
|
|
|
llvm_unreachable("Didn't find field");
|
|
}
|
|
|
|
// Extract struct elements.
|
|
if (auto *SD = getFullyReferenceableStruct(ValTy)) {
|
|
for (auto *D : SD->getStoredProperties()) {
|
|
auto fieldType = ValTy.getFieldType(D, B.getModule());
|
|
unsigned NumSubElt = getNumSubElements(fieldType, B.getModule());
|
|
|
|
if (SubElementNumber < NumSubElt) {
|
|
Val = B.emitStructExtract(Loc, Val, D);
|
|
return ExtractSubElement(Val, SubElementNumber, B, Loc);
|
|
}
|
|
|
|
SubElementNumber -= NumSubElt;
|
|
|
|
}
|
|
llvm_unreachable("Didn't find field");
|
|
}
|
|
|
|
// Otherwise, we're down to a scalar.
|
|
assert(SubElementNumber == 0 && "Miscalculation indexing subelements");
|
|
return Val;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Allocation Optimization
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// AllocOptimize - This performs load promotion and deletes synthesized
|
|
/// allocations if all loads can be removed.
|
|
class AllocOptimize {
|
|
SILModule &Module;
|
|
|
|
/// TheMemory - This is either an alloc_box or alloc_stack instruction.
|
|
SILInstruction *TheMemory;
|
|
|
|
/// This is the SILType of the memory object.
|
|
SILType MemoryType;
|
|
|
|
/// The number of primitive subelements across all elements of this memory
|
|
/// value.
|
|
unsigned NumMemorySubElements;
|
|
|
|
SmallVectorImpl<DIMemoryUse> &Uses;
|
|
SmallVectorImpl<SILInstruction*> &Releases;
|
|
|
|
llvm::SmallPtrSet<SILBasicBlock*, 32> HasLocalDefinition;
|
|
|
|
/// This is a map of uses that are not loads (i.e., they are Stores,
|
|
/// InOutUses, and Escapes), to their entry in Uses.
|
|
llvm::SmallDenseMap<SILInstruction*, unsigned, 16> NonLoadUses;
|
|
|
|
/// Does this value escape anywhere in the function.
|
|
bool HasAnyEscape = false;
|
|
|
|
public:
|
|
AllocOptimize(SILInstruction *TheMemory,
|
|
SmallVectorImpl<DIMemoryUse> &Uses,
|
|
SmallVectorImpl<SILInstruction*> &Releases);
|
|
|
|
bool doIt();
|
|
|
|
private:
|
|
|
|
bool promoteLoad(SILInstruction *Inst);
|
|
bool promoteDestroyAddr(DestroyAddrInst *DAI);
|
|
|
|
// Load promotion.
|
|
bool hasEscapedAt(SILInstruction *I);
|
|
void updateAvailableValues(SILInstruction *Inst,
|
|
llvm::SmallBitVector &RequiredElts,
|
|
SmallVectorImpl<std::pair<SILValue, unsigned>> &Result,
|
|
llvm::SmallBitVector &ConflictingValues);
|
|
void computeAvailableValues(SILInstruction *StartingFrom,
|
|
llvm::SmallBitVector &RequiredElts,
|
|
SmallVectorImpl<std::pair<SILValue, unsigned>> &Result);
|
|
void computeAvailableValuesFrom(SILBasicBlock::iterator StartingFrom,
|
|
SILBasicBlock *BB,
|
|
llvm::SmallBitVector &RequiredElts,
|
|
SmallVectorImpl<std::pair<SILValue, unsigned>> &Result,
|
|
llvm::SmallDenseMap<SILBasicBlock*, llvm::SmallBitVector, 32> &VisitedBlocks,
|
|
llvm::SmallBitVector &ConflictingValues);
|
|
|
|
void explodeCopyAddr(CopyAddrInst *CAI);
|
|
|
|
bool tryToRemoveDeadAllocation();
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
AllocOptimize::AllocOptimize(SILInstruction *TheMemory,
|
|
SmallVectorImpl<DIMemoryUse> &Uses,
|
|
SmallVectorImpl<SILInstruction*> &Releases)
|
|
: Module(TheMemory->getModule()), TheMemory(TheMemory), Uses(Uses),
|
|
Releases(Releases) {
|
|
|
|
// Compute the type of the memory object.
|
|
if (auto *ABI = dyn_cast<AllocBoxInst>(TheMemory))
|
|
MemoryType = ABI->getElementType();
|
|
else {
|
|
assert(isa<AllocStackInst>(TheMemory));
|
|
MemoryType = cast<AllocStackInst>(TheMemory)->getElementType();
|
|
}
|
|
|
|
NumMemorySubElements = getNumSubElements(MemoryType, Module);
|
|
|
|
// The first step of processing an element is to collect information about the
|
|
// element into data structures we use later.
|
|
for (unsigned ui = 0, e = Uses.size(); ui != e; ++ui) {
|
|
auto &Use = Uses[ui];
|
|
assert(Use.Inst && "No instruction identified?");
|
|
|
|
// Keep track of all the uses that aren't loads.
|
|
if (Use.Kind == DIUseKind::Load)
|
|
continue;
|
|
|
|
NonLoadUses[Use.Inst] = ui;
|
|
|
|
HasLocalDefinition.insert(Use.Inst->getParent());
|
|
|
|
if (Use.Kind == DIUseKind::Escape) {
|
|
// Determine which blocks the value can escape from. We aren't allowed to
|
|
// promote loads in blocks reachable from an escape point.
|
|
HasAnyEscape = true;
|
|
}
|
|
}
|
|
|
|
// If isn't really a use, but we account for the alloc_box/mark_uninitialized
|
|
// as a use so we see it in our dataflow walks.
|
|
NonLoadUses[TheMemory] = ~0U;
|
|
HasLocalDefinition.insert(TheMemory->getParent());
|
|
}
|
|
|
|
|
|
/// hasEscapedAt - Return true if the box has escaped at the specified
|
|
/// instruction. We are not allowed to do load promotion in an escape region.
|
|
bool AllocOptimize::hasEscapedAt(SILInstruction *I) {
|
|
// FIXME: This is not an aggressive implementation. :)
|
|
|
|
// TODO: At some point, we should special case closures that just *read* from
|
|
// the escaped value (by looking at the body of the closure). They should not
|
|
// prevent load promotion, and will allow promoting values like X in regions
|
|
// dominated by "... && X != 0".
|
|
return HasAnyEscape;
|
|
}
|
|
|
|
|
|
/// The specified instruction is a non-load access of the element being
|
|
/// promoted. See if it provides a value or refines the demanded element mask
|
|
/// used for load promotion.
|
|
void AllocOptimize::
|
|
updateAvailableValues(SILInstruction *Inst, llvm::SmallBitVector &RequiredElts,
|
|
SmallVectorImpl<std::pair<SILValue, unsigned>> &Result,
|
|
llvm::SmallBitVector &ConflictingValues) {
|
|
// Handle store and assign.
|
|
if (isa<StoreInst>(Inst) || isa<AssignInst>(Inst)) {
|
|
unsigned StartSubElt = computeSubelement(Inst->getOperand(1), TheMemory);
|
|
assert(StartSubElt != ~0U && "Store within enum projection not handled");
|
|
SILType ValTy = Inst->getOperand(0)->getType();
|
|
|
|
for (unsigned i = 0, e = getNumSubElements(ValTy, Module); i != e; ++i) {
|
|
// If this element is not required, don't fill it in.
|
|
if (!RequiredElts[StartSubElt+i]) continue;
|
|
|
|
// If there is no result computed for this subelement, record it. If
|
|
// there already is a result, check it for conflict. If there is no
|
|
// conflict, then we're ok.
|
|
auto &Entry = Result[StartSubElt+i];
|
|
if (Entry.first == SILValue())
|
|
Entry = { Inst->getOperand(0), i };
|
|
else if (Entry.first != Inst->getOperand(0) || Entry.second != i)
|
|
ConflictingValues[StartSubElt+i] = true;
|
|
|
|
// This element is now provided.
|
|
RequiredElts[StartSubElt+i] = false;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// If we get here with a copy_addr, it must be storing into the element. Check
|
|
// to see if any loaded subelements are being used, and if so, explode the
|
|
// copy_addr to its individual pieces.
|
|
if (auto *CAI = dyn_cast<CopyAddrInst>(Inst)) {
|
|
unsigned StartSubElt = computeSubelement(Inst->getOperand(1), TheMemory);
|
|
assert(StartSubElt != ~0U && "Store within enum projection not handled");
|
|
SILType ValTy = Inst->getOperand(1)->getType();
|
|
|
|
bool AnyRequired = false;
|
|
for (unsigned i = 0, e = getNumSubElements(ValTy, Module); i != e; ++i) {
|
|
// If this element is not required, don't fill it in.
|
|
AnyRequired = RequiredElts[StartSubElt+i];
|
|
if (AnyRequired) break;
|
|
}
|
|
|
|
// If this is a copy addr that doesn't intersect the loaded subelements,
|
|
// just continue with an unmodified load mask.
|
|
if (!AnyRequired)
|
|
return;
|
|
|
|
// If the copyaddr is of a non-loadable type, we can't promote it. Just
|
|
// consider it to be a clobber.
|
|
if (CAI->getOperand(0)->getType().isLoadable(Module)) {
|
|
// Otherwise, some part of the copy_addr's value is demanded by a load, so
|
|
// we need to explode it to its component pieces. This only expands one
|
|
// level of the copyaddr.
|
|
explodeCopyAddr(CAI);
|
|
|
|
// The copy_addr doesn't provide any values, but we've arranged for our
|
|
// iterators to visit the newly generated instructions, which do.
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// TODO: inout apply's should only clobber pieces passed in.
|
|
|
|
// Otherwise, this is some unknown instruction, conservatively assume that all
|
|
// values are clobbered.
|
|
RequiredElts.clear();
|
|
ConflictingValues = llvm::SmallBitVector(Result.size(), true);
|
|
return;
|
|
}
|
|
|
|
|
|
/// Try to find available values of a set of subelements of the current value,
|
|
/// starting right before the specified instruction.
|
|
///
|
|
/// The bitvector indicates which subelements we're interested in, and result
|
|
/// captures the available value (plus an indicator of which subelement of that
|
|
/// value is needed).
|
|
///
|
|
void AllocOptimize::
|
|
computeAvailableValues(SILInstruction *StartingFrom,
|
|
llvm::SmallBitVector &RequiredElts,
|
|
SmallVectorImpl<std::pair<SILValue, unsigned>> &Result) {
|
|
llvm::SmallDenseMap<SILBasicBlock*, llvm::SmallBitVector, 32> VisitedBlocks;
|
|
llvm::SmallBitVector ConflictingValues(Result.size());
|
|
|
|
computeAvailableValuesFrom(StartingFrom->getIterator(),
|
|
StartingFrom->getParent(), RequiredElts, Result,
|
|
VisitedBlocks, ConflictingValues);
|
|
|
|
// If we have any conflicting values, explicitly mask them out of the result,
|
|
// so we don't pick one arbitrary available value.
|
|
if (!ConflictingValues.none())
|
|
for (unsigned i = 0, e = Result.size(); i != e; ++i)
|
|
if (ConflictingValues[i])
|
|
Result[i] = { SILValue(), 0U };
|
|
|
|
return;
|
|
}
|
|
|
|
void AllocOptimize::
|
|
computeAvailableValuesFrom(SILBasicBlock::iterator StartingFrom,
|
|
SILBasicBlock *BB,
|
|
llvm::SmallBitVector &RequiredElts,
|
|
SmallVectorImpl<std::pair<SILValue, unsigned>> &Result,
|
|
llvm::SmallDenseMap<SILBasicBlock*, llvm::SmallBitVector, 32> &VisitedBlocks,
|
|
llvm::SmallBitVector &ConflictingValues) {
|
|
assert(!RequiredElts.none() && "Scanning with a goal of finding nothing?");
|
|
|
|
// If there is a potential modification in the current block, scan the block
|
|
// to see if the store or escape is before or after the load. If it is
|
|
// before, check to see if it produces the value we are looking for.
|
|
if (HasLocalDefinition.count(BB)) {
|
|
for (SILBasicBlock::iterator BBI = StartingFrom; BBI != BB->begin();) {
|
|
SILInstruction *TheInst = &*std::prev(BBI);
|
|
|
|
// If this instruction is unrelated to the element, ignore it.
|
|
if (!NonLoadUses.count(TheInst)) {
|
|
--BBI;
|
|
continue;
|
|
}
|
|
|
|
// Given an interesting instruction, incorporate it into the set of
|
|
// results, and filter down the list of demanded subelements that we still
|
|
// need.
|
|
updateAvailableValues(TheInst, RequiredElts, Result, ConflictingValues);
|
|
|
|
// If this satisfied all of the demanded values, we're done.
|
|
if (RequiredElts.none())
|
|
return;
|
|
|
|
// Otherwise, keep scanning the block. If the instruction we were looking
|
|
// at just got exploded, don't skip the next instruction.
|
|
if (&*std::prev(BBI) == TheInst)
|
|
--BBI;
|
|
}
|
|
}
|
|
|
|
|
|
// Otherwise, we need to scan up the CFG looking for available values.
|
|
for (auto PI = BB->pred_begin(), E = BB->pred_end(); PI != E; ++PI) {
|
|
SILBasicBlock *PredBB = *PI;
|
|
|
|
// If the predecessor block has already been visited (potentially due to a
|
|
// cycle in the CFG), don't revisit it. We can do this safely because we
|
|
// are optimistically assuming that all incoming elements in a cycle will be
|
|
// the same. If we ever detect a conflicting element, we record it and do
|
|
// not look at the result.
|
|
auto Entry = VisitedBlocks.insert({PredBB, RequiredElts});
|
|
if (!Entry.second) {
|
|
// If we are revisiting a block and asking for different required elements
|
|
// then anything that isn't agreeing is in conflict.
|
|
const auto &PrevRequired = Entry.first->second;
|
|
if (PrevRequired != RequiredElts) {
|
|
ConflictingValues |= (PrevRequired ^ RequiredElts);
|
|
|
|
RequiredElts &= ~ConflictingValues;
|
|
if (RequiredElts.none())
|
|
return;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Make sure to pass in the same set of required elements for each pred.
|
|
llvm::SmallBitVector Elts = RequiredElts;
|
|
computeAvailableValuesFrom(PredBB->end(), PredBB, Elts, Result,
|
|
VisitedBlocks, ConflictingValues);
|
|
|
|
// If we have any conflicting values, don't bother searching for them.
|
|
RequiredElts &= ~ConflictingValues;
|
|
if (RequiredElts.none())
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
static bool anyMissing(unsigned StartSubElt, unsigned NumSubElts,
|
|
ArrayRef<std::pair<SILValue, unsigned>> &Values) {
|
|
while (NumSubElts) {
|
|
if (!Values[StartSubElt].first) return true;
|
|
++StartSubElt;
|
|
--NumSubElts;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/// AggregateAvailableValues - Given a bunch of primitive subelement values,
|
|
/// build out the right aggregate type (LoadTy) by emitting tuple and struct
|
|
/// instructions as necessary.
|
|
static SILValue
|
|
AggregateAvailableValues(SILInstruction *Inst, SILType LoadTy,
|
|
SILValue Address,
|
|
ArrayRef<std::pair<SILValue, unsigned>> AvailableValues,
|
|
unsigned FirstElt) {
|
|
assert(LoadTy.isObject());
|
|
SILModule &M = Inst->getModule();
|
|
|
|
// Check to see if the requested value is fully available, as an aggregate.
|
|
// This is a super-common case for single-element structs, but is also a
|
|
// general answer for arbitrary structs and tuples as well.
|
|
if (FirstElt < AvailableValues.size()) { // #Elements may be zero.
|
|
SILValue FirstVal = AvailableValues[FirstElt].first;
|
|
if (FirstVal && AvailableValues[FirstElt].second == 0 &&
|
|
FirstVal->getType() == LoadTy) {
|
|
// If the first element of this value is available, check any extra ones
|
|
// before declaring success.
|
|
bool AllMatch = true;
|
|
for (unsigned i = 0, e = getNumSubElements(LoadTy, M); i != e; ++i)
|
|
if (AvailableValues[FirstElt+i].first != FirstVal ||
|
|
AvailableValues[FirstElt+i].second != i) {
|
|
AllMatch = false;
|
|
break;
|
|
}
|
|
|
|
if (AllMatch)
|
|
return FirstVal;
|
|
}
|
|
}
|
|
|
|
|
|
SILBuilderWithScope B(Inst);
|
|
|
|
if (TupleType *TT = LoadTy.getAs<TupleType>()) {
|
|
SmallVector<SILValue, 4> ResultElts;
|
|
|
|
for (unsigned EltNo : indices(TT->getElements())) {
|
|
SILType EltTy = LoadTy.getTupleElementType(EltNo);
|
|
unsigned NumSubElt = getNumSubElements(EltTy, M);
|
|
|
|
// If we are missing any of the available values in this struct element,
|
|
// compute an address to load from.
|
|
SILValue EltAddr;
|
|
if (anyMissing(FirstElt, NumSubElt, AvailableValues))
|
|
EltAddr = B.createTupleElementAddr(Inst->getLoc(), Address, EltNo,
|
|
EltTy.getAddressType());
|
|
|
|
ResultElts.push_back(AggregateAvailableValues(Inst, EltTy, EltAddr,
|
|
AvailableValues, FirstElt));
|
|
FirstElt += NumSubElt;
|
|
}
|
|
|
|
return B.createTuple(Inst->getLoc(), LoadTy, ResultElts);
|
|
}
|
|
|
|
// Extract struct elements from fully referenceable structs.
|
|
if (auto *SD = getFullyReferenceableStruct(LoadTy)) {
|
|
SmallVector<SILValue, 4> ResultElts;
|
|
|
|
for (auto *FD : SD->getStoredProperties()) {
|
|
SILType EltTy = LoadTy.getFieldType(FD, M);
|
|
unsigned NumSubElt = getNumSubElements(EltTy, M);
|
|
|
|
// If we are missing any of the available values in this struct element,
|
|
// compute an address to load from.
|
|
SILValue EltAddr;
|
|
if (anyMissing(FirstElt, NumSubElt, AvailableValues))
|
|
EltAddr = B.createStructElementAddr(Inst->getLoc(), Address, FD,
|
|
EltTy.getAddressType());
|
|
|
|
ResultElts.push_back(AggregateAvailableValues(Inst, EltTy, EltAddr,
|
|
AvailableValues, FirstElt));
|
|
FirstElt += NumSubElt;
|
|
}
|
|
return B.createStruct(Inst->getLoc(), LoadTy, ResultElts);
|
|
}
|
|
|
|
// Otherwise, we have a simple primitive. If the value is available, use it,
|
|
// otherwise emit a load of the value.
|
|
auto Val = AvailableValues[FirstElt];
|
|
if (!Val.first)
|
|
return B.createLoad(Inst->getLoc(), Address);
|
|
|
|
SILValue EltVal = ExtractSubElement(Val.first, Val.second, B, Inst->getLoc());
|
|
// It must be the same type as LoadTy if available.
|
|
assert(EltVal->getType() == LoadTy &&
|
|
"Subelement types mismatch");
|
|
return EltVal;
|
|
}
|
|
|
|
|
|
/// At this point, we know that this element satisfies the definitive init
|
|
/// requirements, so we can try to promote loads to enable SSA-based dataflow
|
|
/// analysis. We know that accesses to this element only access this element,
|
|
/// cross element accesses have been scalarized.
|
|
///
|
|
/// This returns true if the load has been removed from the program.
|
|
///
|
|
bool AllocOptimize::promoteLoad(SILInstruction *Inst) {
|
|
// Note that we intentionally don't support forwarding of weak pointers,
|
|
// because the underlying value may drop be deallocated at any time. We would
|
|
// have to prove that something in this function is holding the weak value
|
|
// live across the promoted region and that isn't desired for a stable
|
|
// diagnostics pass this like one.
|
|
|
|
// We only handle load and copy_addr right now.
|
|
if (auto CAI = dyn_cast<CopyAddrInst>(Inst)) {
|
|
// If this is a CopyAddr, verify that the element type is loadable. If not,
|
|
// we can't explode to a load.
|
|
if (!CAI->getSrc()->getType().isLoadable(Module))
|
|
return false;
|
|
} else if (!isa<LoadInst>(Inst))
|
|
return false;
|
|
|
|
// If the box has escaped at this instruction, we can't safely promote the
|
|
// load.
|
|
if (hasEscapedAt(Inst))
|
|
return false;
|
|
|
|
SILType LoadTy = Inst->getOperand(0)->getType().getObjectType();
|
|
|
|
// If this is a load/copy_addr from a struct field that we want to promote,
|
|
// compute the access path down to the field so we can determine precise
|
|
// def/use behavior.
|
|
unsigned FirstElt = computeSubelement(Inst->getOperand(0), TheMemory);
|
|
|
|
// If this is a load from within an enum projection, we can't promote it since
|
|
// we don't track subelements in a type that could be changing.
|
|
if (FirstElt == ~0U)
|
|
return false;
|
|
|
|
unsigned NumLoadSubElements = getNumSubElements(LoadTy, Module);
|
|
|
|
// Set up the bitvector of elements being demanded by the load.
|
|
llvm::SmallBitVector RequiredElts(NumMemorySubElements);
|
|
RequiredElts.set(FirstElt, FirstElt+NumLoadSubElements);
|
|
|
|
SmallVector<std::pair<SILValue, unsigned>, 8> AvailableValues;
|
|
AvailableValues.resize(NumMemorySubElements);
|
|
|
|
// Find out if we have any available values. If no bits are demanded, we
|
|
// trivially succeed. This can happen when there is a load of an empty struct.
|
|
if (NumLoadSubElements != 0) {
|
|
computeAvailableValues(Inst, RequiredElts, AvailableValues);
|
|
|
|
// If there are no values available at this load point, then we fail to
|
|
// promote this load and there is nothing to do.
|
|
bool AnyAvailable = false;
|
|
for (unsigned i = FirstElt, e = i+NumLoadSubElements; i != e; ++i)
|
|
if (AvailableValues[i].first) {
|
|
AnyAvailable = true;
|
|
break;
|
|
}
|
|
|
|
if (!AnyAvailable)
|
|
return false;
|
|
}
|
|
|
|
// Ok, we have some available values. If we have a copy_addr, explode it now,
|
|
// exposing the load operation within it. Subsequent optimization passes will
|
|
// see the load and propagate the available values into it.
|
|
if (auto *CAI = dyn_cast<CopyAddrInst>(Inst)) {
|
|
explodeCopyAddr(CAI);
|
|
|
|
// This is removing the copy_addr, but explodeCopyAddr takes care of
|
|
// removing the instruction from Uses for us, so we return false.
|
|
return false;
|
|
}
|
|
|
|
// Aggregate together all of the subelements into something that has the same
|
|
// type as the load did, and emit smaller) loads for any subelements that were
|
|
// not available.
|
|
auto NewVal = AggregateAvailableValues(Inst, LoadTy, Inst->getOperand(0),
|
|
AvailableValues, FirstElt);
|
|
|
|
++NumLoadPromoted;
|
|
|
|
// Simply replace the load.
|
|
assert(isa<LoadInst>(Inst));
|
|
DEBUG(llvm::dbgs() << " *** Promoting load: " << *Inst << "\n");
|
|
DEBUG(llvm::dbgs() << " To value: " << *NewVal << "\n");
|
|
|
|
Inst->replaceAllUsesWith(NewVal);
|
|
SILValue Addr = Inst->getOperand(0);
|
|
Inst->eraseFromParent();
|
|
if (auto *AddrI = dyn_cast<SILInstruction>(Addr))
|
|
recursivelyDeleteTriviallyDeadInstructions(AddrI);
|
|
return true;
|
|
}
|
|
|
|
/// promoteDestroyAddr - DestroyAddr is a composed operation merging
|
|
/// load+strong_release. If the implicit load's value is available, explode it.
|
|
///
|
|
/// Note that we handle the general case of a destroy_addr of a piece of the
|
|
/// memory object, not just destroy_addrs of the entire thing.
|
|
///
|
|
bool AllocOptimize::promoteDestroyAddr(DestroyAddrInst *DAI) {
|
|
SILValue Address = DAI->getOperand();
|
|
|
|
// We cannot promote destroys of address-only types, because we can't expose
|
|
// the load.
|
|
SILType LoadTy = Address->getType().getObjectType();
|
|
if (LoadTy.isAddressOnly(Module))
|
|
return false;
|
|
|
|
// If the box has escaped at this instruction, we can't safely promote the
|
|
// load.
|
|
if (hasEscapedAt(DAI))
|
|
return false;
|
|
|
|
// Compute the access path down to the field so we can determine precise
|
|
// def/use behavior.
|
|
unsigned FirstElt = computeSubelement(Address, TheMemory);
|
|
assert(FirstElt != ~0U && "destroy within enum projection is not valid");
|
|
unsigned NumLoadSubElements = getNumSubElements(LoadTy, Module);
|
|
|
|
// Set up the bitvector of elements being demanded by the load.
|
|
llvm::SmallBitVector RequiredElts(NumMemorySubElements);
|
|
RequiredElts.set(FirstElt, FirstElt+NumLoadSubElements);
|
|
|
|
SmallVector<std::pair<SILValue, unsigned>, 8> AvailableValues;
|
|
AvailableValues.resize(NumMemorySubElements);
|
|
|
|
// Find out if we have any available values. If no bits are demanded, we
|
|
// trivially succeed. This can happen when there is a load of an empty struct.
|
|
if (NumLoadSubElements != 0) {
|
|
computeAvailableValues(DAI, RequiredElts, AvailableValues);
|
|
|
|
// If some value is not available at this load point, then we fail.
|
|
for (unsigned i = FirstElt, e = FirstElt+NumLoadSubElements; i != e; ++i)
|
|
if (!AvailableValues[i].first)
|
|
return false;
|
|
}
|
|
|
|
// Aggregate together all of the subelements into something that has the same
|
|
// type as the load did, and emit smaller) loads for any subelements that were
|
|
// not available.
|
|
auto NewVal =
|
|
AggregateAvailableValues(DAI, LoadTy, Address, AvailableValues, FirstElt);
|
|
|
|
++NumDestroyAddrPromoted;
|
|
|
|
DEBUG(llvm::dbgs() << " *** Promoting destroy_addr: " << *DAI << "\n");
|
|
DEBUG(llvm::dbgs() << " To value: " << *NewVal << "\n");
|
|
|
|
SILBuilderWithScope(DAI).emitReleaseValueOperation(DAI->getLoc(), NewVal);
|
|
DAI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
/// Explode a copy_addr instruction of a loadable type into lower level
|
|
/// operations like loads, stores, retains, releases, retain_value, etc.
|
|
void AllocOptimize::explodeCopyAddr(CopyAddrInst *CAI) {
|
|
DEBUG(llvm::dbgs() << " -- Exploding copy_addr: " << *CAI << "\n");
|
|
|
|
SILType ValTy = CAI->getDest()->getType().getObjectType();
|
|
auto &TL = Module.getTypeLowering(ValTy);
|
|
|
|
// Keep track of the new instructions emitted.
|
|
SmallVector<SILInstruction*, 4> NewInsts;
|
|
SILBuilder B(CAI, &NewInsts);
|
|
B.setCurrentDebugScope(CAI->getDebugScope());
|
|
|
|
// Use type lowering to lower the copyaddr into a load sequence + store
|
|
// sequence appropriate for the type.
|
|
SILValue StoredValue = TL.emitLoadOfCopy(B, CAI->getLoc(), CAI->getSrc(),
|
|
CAI->isTakeOfSrc());
|
|
|
|
TL.emitStoreOfCopy(B, CAI->getLoc(), StoredValue, CAI->getDest(),
|
|
CAI->isInitializationOfDest());
|
|
|
|
// Update our internal state for this being gone.
|
|
NonLoadUses.erase(CAI);
|
|
|
|
// Remove the copy_addr from Uses. A single copy_addr can appear multiple
|
|
// times if the source and dest are to elements within a single aggregate, but
|
|
// we only want to pick up the CopyAddrKind from the store.
|
|
DIMemoryUse LoadUse, StoreUse;
|
|
for (auto &Use : Uses) {
|
|
if (Use.Inst != CAI) continue;
|
|
|
|
if (Use.Kind == DIUseKind::Load) {
|
|
assert(LoadUse.isInvalid());
|
|
LoadUse = Use;
|
|
} else {
|
|
assert(StoreUse.isInvalid());
|
|
StoreUse = Use;
|
|
}
|
|
|
|
Use.Inst = nullptr;
|
|
|
|
// Keep scanning in case the copy_addr appears multiple times.
|
|
}
|
|
|
|
assert((LoadUse.isValid() || StoreUse.isValid()) &&
|
|
"we should have a load or a store, possibly both");
|
|
assert(StoreUse.isInvalid() || StoreUse.Kind == Assign ||
|
|
StoreUse.Kind == PartialStore || StoreUse.Kind == Initialization);
|
|
|
|
// Now that we've emitted a bunch of instructions, including a load and store
|
|
// but also including other stuff, update the internal state of
|
|
// LifetimeChecker to reflect them.
|
|
|
|
// Update the instructions that touch the memory. NewInst can grow as this
|
|
// iterates, so we can't use a foreach loop.
|
|
for (auto *NewInst : NewInsts) {
|
|
switch (NewInst->getKind()) {
|
|
default:
|
|
NewInst->dump();
|
|
llvm_unreachable("Unknown instruction generated by copy_addr lowering");
|
|
|
|
case ValueKind::StoreInst:
|
|
// If it is a store to the memory object (as oppose to a store to
|
|
// something else), track it as an access.
|
|
if (StoreUse.isValid()) {
|
|
StoreUse.Inst = NewInst;
|
|
NonLoadUses[NewInst] = Uses.size();
|
|
Uses.push_back(StoreUse);
|
|
}
|
|
continue;
|
|
|
|
case ValueKind::LoadInst:
|
|
// If it is a load from the memory object (as oppose to a load from
|
|
// something else), track it as an access. We need to explicitly check to
|
|
// see if the load accesses "TheMemory" because it could either be a load
|
|
// for the copy_addr source, or it could be a load corresponding to the
|
|
// "assign" operation on the destination of the copyaddr.
|
|
if (LoadUse.isValid() &&
|
|
getAccessPathRoot(NewInst->getOperand(0)) == TheMemory) {
|
|
LoadUse.Inst = NewInst;
|
|
Uses.push_back(LoadUse);
|
|
}
|
|
continue;
|
|
|
|
case ValueKind::RetainValueInst:
|
|
case ValueKind::StrongRetainInst:
|
|
case ValueKind::StrongReleaseInst:
|
|
case ValueKind::UnownedRetainInst:
|
|
case ValueKind::UnownedReleaseInst:
|
|
case ValueKind::ReleaseValueInst: // Destroy overwritten value
|
|
// These are ignored.
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Next, remove the copy_addr itself.
|
|
CAI->eraseFromParent();
|
|
}
|
|
|
|
/// tryToRemoveDeadAllocation - If the allocation is an autogenerated allocation
|
|
/// that is only stored to (after load promotion) then remove it completely.
|
|
bool AllocOptimize::tryToRemoveDeadAllocation() {
|
|
assert((isa<AllocBoxInst>(TheMemory) || isa<AllocStackInst>(TheMemory)) &&
|
|
"Unhandled allocation case");
|
|
|
|
// We don't want to remove allocations that are required for useful debug
|
|
// information at -O0. As such, we only remove allocations if:
|
|
//
|
|
// 1. They are in a transparent function.
|
|
// 2. They are in a normal function, but didn't come from a VarDecl, or came
|
|
// from one that was autogenerated or inlined from a transparent function.
|
|
SILLocation Loc = TheMemory->getLoc();
|
|
if (!TheMemory->getFunction()->isTransparent() &&
|
|
Loc.getAsASTNode<VarDecl>() && !Loc.isAutoGenerated() &&
|
|
!Loc.is<MandatoryInlinedLocation>())
|
|
return false;
|
|
|
|
// Check the uses list to see if there are any non-store uses left over after
|
|
// load promotion and other things DI does.
|
|
for (auto &U : Uses) {
|
|
// Ignore removed instructions.
|
|
if (U.Inst == nullptr) continue;
|
|
|
|
switch (U.Kind) {
|
|
case DIUseKind::SelfInit:
|
|
case DIUseKind::SuperInit:
|
|
llvm_unreachable("Can't happen on allocations");
|
|
case DIUseKind::Assign:
|
|
case DIUseKind::PartialStore:
|
|
case DIUseKind::InitOrAssign:
|
|
break; // These don't prevent removal.
|
|
case DIUseKind::Initialization:
|
|
if (!isa<ApplyInst>(U.Inst) &&
|
|
// A copy_addr that is not a take affects the retain count
|
|
// of the source.
|
|
(!isa<CopyAddrInst>(U.Inst) ||
|
|
cast<CopyAddrInst>(U.Inst)->isTakeOfSrc()))
|
|
break;
|
|
// FALL THROUGH.
|
|
SWIFT_FALLTHROUGH;
|
|
case DIUseKind::Load:
|
|
case DIUseKind::IndirectIn:
|
|
case DIUseKind::InOutUse:
|
|
case DIUseKind::Escape:
|
|
DEBUG(llvm::dbgs() << "*** Failed to remove autogenerated alloc: "
|
|
"kept alive by: " << *U.Inst);
|
|
return false; // These do prevent removal.
|
|
}
|
|
}
|
|
|
|
// If the memory object has non-trivial type, then removing the deallocation
|
|
// will drop any releases. Check that there is nothing preventing removal.
|
|
if (!MemoryType.isTrivial(Module)) {
|
|
for (auto *R : Releases) {
|
|
if (R == nullptr || isa<DeallocStackInst>(R) || isa<DeallocBoxInst>(R))
|
|
continue;
|
|
|
|
DEBUG(llvm::dbgs() << "*** Failed to remove autogenerated alloc: "
|
|
"kept alive by release: " << *R);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
DEBUG(llvm::dbgs() << "*** Removing autogenerated alloc_stack: "<<*TheMemory);
|
|
|
|
// If it is safe to remove, do it. Recursively remove all instructions
|
|
// hanging off the allocation instruction, then return success. Let the
|
|
// caller remove the allocation itself to avoid iterator invalidation.
|
|
eraseUsesOfInstruction(TheMemory);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// doIt - returns true on error.
|
|
bool AllocOptimize::doIt() {
|
|
bool Changed = false;
|
|
|
|
// Don't try to optimize incomplete aggregates.
|
|
if (MemoryType.aggregateHasUnreferenceableStorage())
|
|
return false;
|
|
|
|
// If we've successfully checked all of the definitive initialization
|
|
// requirements, try to promote loads. This can explode copy_addrs, so the
|
|
// use list may change size.
|
|
for (unsigned i = 0; i != Uses.size(); ++i) {
|
|
auto &Use = Uses[i];
|
|
// Ignore entries for instructions that got expanded along the way.
|
|
if (Use.Inst && Use.Kind == DIUseKind::Load)
|
|
if (promoteLoad(Use.Inst)) {
|
|
Uses[i].Inst = nullptr; // remove entry if load got deleted.
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
// destroy_addr(p) is strong_release(load(p)), try to promote it too.
|
|
for (unsigned i = 0; i != Releases.size(); ++i) {
|
|
if (auto *DAI = dyn_cast_or_null<DestroyAddrInst>(Releases[i]))
|
|
if (promoteDestroyAddr(DAI)) {
|
|
// remove entry if destroy_addr got deleted.
|
|
Releases[i] = nullptr;
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
// If this is an allocation, try to remove it completely.
|
|
if (!isa<MarkUninitializedInst>(TheMemory)
|
|
&& !isa<MarkUninitializedBehaviorInst>(TheMemory))
|
|
Changed |= tryToRemoveDeadAllocation();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
|
|
static bool optimizeMemoryAllocations(SILFunction &Fn) {
|
|
bool Changed = false;
|
|
for (auto &BB : Fn) {
|
|
auto I = BB.begin(), E = BB.end();
|
|
while (I != E) {
|
|
SILInstruction *Inst = &*I;
|
|
if (!isa<AllocBoxInst>(Inst) && !isa<AllocStackInst>(Inst)) {
|
|
++I;
|
|
continue;
|
|
}
|
|
|
|
DEBUG(llvm::dbgs() << "*** DI Optimize looking at: " << *Inst << "\n");
|
|
DIMemoryObjectInfo MemInfo(Inst);
|
|
|
|
// Set up the datastructure used to collect the uses of the allocation.
|
|
SmallVector<DIMemoryUse, 16> Uses;
|
|
SmallVector<TermInst*, 1> FailableInits;
|
|
SmallVector<SILInstruction*, 4> Releases;
|
|
|
|
// Walk the use list of the pointer, collecting them.
|
|
collectDIElementUsesFrom(MemInfo, Uses, FailableInits, Releases, true);
|
|
|
|
Changed |= AllocOptimize(Inst, Uses, Releases).doIt();
|
|
|
|
// Carefully move iterator to avoid invalidation problems.
|
|
++I;
|
|
if (Inst->use_empty()) {
|
|
Inst->eraseFromParent();
|
|
++NumAllocRemoved;
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
namespace {
|
|
class PredictableMemoryOptimizations : public SILFunctionTransform {
|
|
|
|
/// The entry point to the transformation.
|
|
void run() override {
|
|
if (optimizeMemoryAllocations(*getFunction()))
|
|
invalidateAnalysis(SILAnalysis::InvalidationKind::FunctionBody);
|
|
}
|
|
|
|
StringRef getName() override { return "Predictable Memory Opts"; }
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
SILTransform *swift::createPredictableMemoryOptimizations() {
|
|
return new PredictableMemoryOptimizations();
|
|
}
|